# Flow of a Viscous Incompressible Fluid from a Moving Point Source

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Problem Statement

## 3. Exact Solution of Simplified Navier–Stokes Equations

## 4. Investigation of Hydrodynamic Fields

## 5. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Stokes, G.G. Mathematical and Physical Papers; Cambridge University Press: Cambridge, UK, 1880; Volume 1. [Google Scholar]
- Moiseyev, N.N.; Rumyantsev, V.V. Dynamic Stability of Bodies Containing Fluid; Springer: New York, NY, USA, 1968. [Google Scholar]
- Ratner, B.D.; Hoffman, A.S.; Schoen, F.J.; Lemons, J.E. (Eds.) Nanomedicine, Biomaterials Science: An Introduction to Materials in Medicine; Academic Press: San Diego, CA, USA, 1996. [Google Scholar]
- Humphrey, J.D.; Delange, S.L. An Introduction to Biomechanics: Solids and Fluids, Analysis and Design; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Planas, G.; Sueur, F. On the “viscous incompressible fluid + rigid body” system with Navier conditions. Ann. Inst. H. Poincaré Anal. Non Linéaire
**2014**, 31, 55–80. [Google Scholar] [CrossRef] - Ershkov, S.V.; Prosviryakov, E.Y.; Burmasheva, N.V.; Christianto, V. Towards understanding the algorithms for solving the Navier-Stokes equations. Fluid Dyn. Res.
**2021**, 53, 044501. [Google Scholar] [CrossRef] - Aristov, S.N.; Knyazev, D.V.; Polyanin, A.D. Exact solutions of the Navier–Stokes equations with the linear dependence of velocity components on two space variables. Theor. Found. Chem. Eng.
**2009**, 43, 642–662. [Google Scholar] [CrossRef] - Drazin, P.G.; Riley, N. The Navier–Stokes Equations: A Classification of Flows and Exact Solutions; Cambridge University Press: Cambridge, UK, 2006; 196p. [Google Scholar]
- Aristov, S.N. An Exact Solution to the Point Source Problem. Dokl. Phys.
**1995**, 40, 346–348. [Google Scholar] - Aristov, S.N. Stationary Cylindrical Vortex in a Viscous Fluid. Dokl. Phys.
**2001**, 46, 251–253. [Google Scholar] [CrossRef] - Leporini, M.; Terenzi, A.; Marchetti, B.; Giacchetta, G.; Corvaro, F. Experiences in numerical simulation of wax deposition in oil and multiphase pipelines: Theory versus reality. J. Pet. Sci. Eng.
**2019**, 174, 997–1008. [Google Scholar] [CrossRef] - Sedov, L.I. Mechanics of Continuous Media; World Scientific: Singapore, 1997; Volume 1. [Google Scholar]
- Liu, Y.; Peng, Y. Study on the Collapse Process of Cavitation Bubbles Including Heat Transfer by Lattice Boltzmann Method. J. Mar. Sci. Eng.
**2021**, 9, 219. [Google Scholar] [CrossRef] - Ershkov, S.V. Non-stationary helical flows for incompressible 3D Navier–Stokes equations. Appl. Math. Comput.
**2016**, 274, 611–614. [Google Scholar] [CrossRef] - Ershkov, S.V. About existence of stationary points for the Arnold-Beltrami-Childress (ABC) flow. Appl. Math. Comput.
**2016**, 276, 379–383. [Google Scholar] [CrossRef][Green Version] - Ershkov, S.V.; Shamin, R.V. A Riccati-type solution of 3D Euler equations for incompressible flow. J. King Saud Univ. - Sci.
**2020**, 32, 125–130. [Google Scholar] [CrossRef] - Ershkov, S.V.; Rachinskaya, A.; Prosviryakov, E.Y.; Shamin, R.V. On the semi-analytical solutions in hydrodynamics of ideal fluid flows governed by large-scale coherent structures of spiral-type. Symmetry
**2021**, 13, 2307. [Google Scholar] [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ershkov, S.V.; Prosviryakov, E.Y.; Leshchenko, D.D.
Flow of a Viscous Incompressible Fluid from a Moving Point Source. *Symmetry* **2022**, *14*, 2156.
https://doi.org/10.3390/sym14102156

**AMA Style**

Ershkov SV, Prosviryakov EY, Leshchenko DD.
Flow of a Viscous Incompressible Fluid from a Moving Point Source. *Symmetry*. 2022; 14(10):2156.
https://doi.org/10.3390/sym14102156

**Chicago/Turabian Style**

Ershkov, Sergey V., Evgeniy Yu. Prosviryakov, and Dmytro D. Leshchenko.
2022. "Flow of a Viscous Incompressible Fluid from a Moving Point Source" *Symmetry* 14, no. 10: 2156.
https://doi.org/10.3390/sym14102156