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Abstract: The spectral graph theory explores connections between combinatorial features of graphs
and algebraic properties of associated matrices. The neighborhood inverse sum indeg (NI) index was
recently proposed and explored to be a significant molecular descriptor. Our aim is to investigate
the NI index from a spectral standpoint, for which a suitable matrix is proposed. The matrix is
symmetric since it is generated from the edge connection information of undirected graphs. A novel
graph energy is introduced based on the eigenvalues of that matrix. The usefulness of the energy
as a molecular structural descriptor is analyzed by investigating predictive potential and isomer
discrimination ability. Fundamental mathematical properties of the present spectrum and energy are
investigated. The spectrum of the bipartite class of graphs is identified to be symmetric about the
origin of the real line. Bounds of the spectral radius and the energy are explained by identifying the
respective extremal graphs.
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1. Introduction

Throughout this paper, we consider finite, simple, and undirected graphs. Let G be a
graph of order n and size m whose node and edge sets are V(G) and E(G), respectively.
If two nodes vi, vj are linked by an edge, then we represent it as vivj ∈ E(G). By NG(vi)
we mean the set of vertices connected to vi (i.e., neighbors of vi). Clearly, the degree of
a node vi, denoted as di is equal to |NG(vi)|. Let δi = ∑

vivj∈E(G)
dj. We refer to δi as the

neighborhood degree sum of vi.
Topological indices are numerical quantities derived from the molecular graph that

remain invariant for isomorphic graphs. Hundreds of topological indices have been
proposed and researched in the literature of mathematical chemistry due to their extensive
applications in structure–property and structure–activity modeling, beginning in 1947
when the distance-based Wiener index was found to model the boiling point of paraffin [1].
The journey of degree-based indices was started through Zagreb indices [2] to provide
quantitative measures of molecular branching, which led to a significant variety of such
useful indices [3]. The goal of designing a novel descriptor is to obtain higher accuracy in
modeling molecular properties than previously available descriptors. Due to significant
impact in describing various features of molecule, researchers are paying close attention to
neighborhood degree sum-based descriptors [4–9]. Their application potential in predicting
the physico-chemical properties of molecule and isomer discrimination are investigated
in [10–12]. The neighborhood inverse sum indeg (NI) index is one such descriptor, which
appeared in 2019 [13] but was established as an effective structural descriptor in 2020 [12].
Its formulation is as follows:
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NI(G) = ∑
vivj∈E(G)

δiδj

δi + δj
.

Spectral graph theory [14] is an attractive research area that finds the relation between
the combinatorial properties of graphs and the algebraic properties of associated matrices,
as well as applications of those connections. More broadly, it searches for the link between
the discrete universe and the continuous one by employing geometric, analytic, and alge-
braic techniques. For a graph G, the conventional adjacency matrix, denoted as A(G), is
one of the effective tools in this domain. The (i, j)-element of A(G) is 1 when vivj ∈ E(G),
and 0 elsewhere. Its characteristic polynomial is ΨA(G, λ) = det(λIn − A(G)), where In is
the identity matrix. Since A(G) is real and symmetric, one can arrange its eigenvalues as
λ1 ≥ λ2 ≥ · · · ≥ λn. The multiset {λ1, λ2, . . . , λn} is known as the A-spectrum of G, which
is referred to as Sp(A(G)). Gutman initiated an excellent research direction based on the A-
spectrum in 1978 when he introduced graph energy [15], which was gradually recognized,
and now it occupies a massive area in mathematical chemistry and algebraic graph theory.
Initially, it was found to explain the total π-electron energy, and it was later established
as a significant molecular structure descriptor [16–18]. The energy E(G) is the sum of
absolute A-eigenvalues of G. A significant amount of research has been conducted on this
idea [16]. Following the potential applications of the A-spectrum, numerous topological
indices were investigated from a spectral perspective by modifying the classical adjacency
matrix accordingly [19–29]. Zhou and Trinajstić [30] introduced the matrix corresponding
to the sum-connectivity index and studied associated energy in 2010. In 2015, Rodriguez
and Sigarreta [31,32] investigated the spectral properties of the geometric–arithmetic index.
Mondal et al. [33] presented chemical significance of some eigenvalue-based indices. In
2018, Rad et al. [34] introduced the Zagreb energy and derived its crucial bounds with
characterizing extremal graphs. The spectral behavior of the Sombor index was recently
reported in [35]. The spectral properties of inverse sum indeg (ISI) index were recently

studied [36,37] for which the ISI matrix was defined, whose (i, j)-element is
didj

di+dj
when

vivj ∈ E(G), and 0 otherwise. Usually, the inverse sum indeg energy (EISI) is defined as
the sum of absolute eigenvalues of the ISI matrix. Interesting mathematical features of EISI
were explored by Hafeez and Farooq [38]. Recently, Ye and Li [39] identified equienergetic
graphs with respect to EISI . The major goal of the present work is to study the NI index in
a spectral approach. Our main tool for such investigation is an appropriate matrix, named
NI-matrix, denoted by ANI(G), whose (i, j)-entry is as follows:

aij =


δiδj

δi+δj
i f vivj ∈ E(G),

0 otherwise.

The NI-characteristic polynomial of G is expressed as ΨNI(G, ρ) = det(ρIn− ANI(G)).
Let {ρ1, ρ2, . . . , ρn} be the complete list of roots of ΨNI(G, ρ) = 0. Since ANI(G) is real
and symmetric, ρi are also real and we can arrange them in non-increasing order as
ρ1 ≥ ρ2 ≥ · · · ≥ ρn. The collection {ρ1, ρ2, . . . , ρn} is termed as NI-spectrum of G, and is
represented by Sp(ANI(G)). We call ρ1 the NI-spectral radius of G. In accordance with
the general concepts by which the energy idea is adapted to different graph-theoretical
matrices, the neighborhood inverse sum indeg energy (ENI) is defined as

ENI(G) =
n

∑
i=1
|ρi|.

The main focus of this research is to explore the chemical significance of the ENI
energy and to demonstrate crucial mathematical attributes of the NI-spectral radius and
ENI energy. The NI-spectrum is observed to be symmetric about the origin for the bipartite
graph. We will now describe some terms and symbols that will be utilized all through
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the paper. For minimum and maximum degrees, we use δ and ∆, respectively. If du = r
∀u ∈ V(G) and for some natural number r, then G is known as r-regular. To represent
the path, cycle, star and complete graphs having n nodes, we consider Pn, Cn, Sn and
Kn, respectively. Let G be bipartite with the partition of the node set as V(G) = V1 ∪ V2.
If |V1| = α, |V2| = β and all nodes belonging to the same node set have equal degree,
then G is known as (α, β)-semiregular bipartite. We use Kp,q to represent the complete
bipartite graph whose vertices are partitioned into two sets having p, q nodes. To represent
strongly regular graph of order n, we consider Gs(n, r, σ, τ). It is an r regular graph

having the following property: if vivj ∈ E
(

Gs(n, r, σ, τ)
)

, then |NG(vi) ∩ NG(vj)| = σ,

else |NG(vi) ∩ NG(vj)| = τ.
We can construct the remaining portion of the report in the following manner. The fol-

lowing section explains the pseudocode that can be used to expedite the computation. The
contributions of ENI and EISI as molecular structural descriptors are examined in Section 3.
In Section 4, crucial bounds for the NI-spectral radius are evaluated by recognizing the
graphs for which the bound attains. In Section 5, the bounds of ENI energy are computed.
With some decisive remarks, the paper is concluded in Section 6.

2. Computational Methodology

A MATLAB code is developed to compute the energy in an efficient manner, the
algorithm for that is described here (see Algorithm 1). In MATLAB, the declaration of
variables is not needed. We used S and Γ to contain the ISI and NI matrices, respectively.
To store the degree and neighborhood degree sum of nodes, d, and NDS are considered,
respectively. The ISI and NI spectrum are stored in e1 and e2, respectively.

Algorithm 1 Computational procedure of ISI-spectrum, NI-spectrum, EISI and ENI energies.

Input: Edge connection of G = (V, E) and order of G.
Output: ISI-spectrum, NI-spectrum, EISI and ENI energy.
Step 1. Start.
Step 2. Read Edge connection of G, |V|.
Step 3. Set S, AN , Γ to zero matrix of order |V|.
Step 4. A← Adjacency matrix of G
Step 5. d← vertex degree of G
Step 6. Construct S:
for i = 1 to |V| do

for j = 1 to |V| do
if A(i, j) = 1 then

S(i, j)← d(i)d(j)
d(i)+d(j)

end if
end for

end for
Step 7. e1 ← eigenvalues of S
Step 8. EISI ← summation of absolute e1
Step 9. Construct AN :
for i = 1 to |V| do

for j = 1 to |V| do
if i = j then

AN(i, j)← −d(i)2

else if A(i, j) = 1 then
AN(i, j)← d(i) + d(j)

end if
end for

end for
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Algorithm 1 Cont.

Step 10. NDS← row sum of AN
Step 11. Construct Γ:
for i = 1 to |V| do

for j = 1 to |V| do
if A(i, j) = 1 then

Γ(i, j)← NDS(i)NDS(j)
NDS(i)+NDS(j)

end if
end for

end for
Step 12. e2 ← eigenvalues of Γ
Step 13. ENI ← summation of absolute e2
Step 14. Stop.

To examine the predictive capability of the energies, linear regression models are
built. The statistical parameters are generated by MATLAB and excel statistical functions.
The graphical representations are made using the MATLAB plotting library. The external
validation of derived models is performed using Python sklearn and the Pandas library on
Jupiter notebook IDE.

3. Significance as Structural Descriptor

A great variety of graph energy variants have been proposed in the literature to
date [16,21,30–32,34]. The majority of these were introduced haphazardly, with no moti-
vation or attempt to apply the novel energy in chemistry (or anywhere else). The present
work is a happy exception to this trend. The inverse sum indeg energy was first presented
by Zangi et al. [37] and some mathematical study of that energy was later performed
in [36,38]. However, no attention was paid to investigating the role of EISI as a regulator of
molecular properties. Here, we aim to examine the acceptability of EISI , ENI energies as
potential structural descriptors. To assess the chemical significance of a graph invariant,
the invariant should always be correlated with the experimental properties of a benchmark
data set. We perform regression analysis considering two types of data sets: octane isomers
and benzenoid hydrocarbons. The theoretical values of the energies for chemical com-
pounds are computed by means of in-house MATLAB code. The experimental properties
of octanes [11,40,41] are correlated with EISI and ENI energies. Unfortunately, no notable
correlation is found for both energies. To enhance the skill of these energies in modeling
physico-chemical properties, we devise a linear model:

EISI + kENI , (1)

where k is the fitting parameter running from−20 to 20. Surprisingly, a major improvement
is found when the model (1) is correlated with different properties of octanes. We propose
to investigate the following model:

Y = I(±2Se) + J(±2Se)Md. (2)

In the above model, Y, I, Se, J and Md denote property, intercept, standard error of
coefficients, slope, and molecular descriptor, respectively. In addition to the model (2), we
intend to examine some more parameters, such as the correlation coefficient (r), standard
error of the model (SE), the F-test (F), and the significance F (SF). The regression equations
for model (1) by the relation (2) are as follows:

DHVAP = 6.2093(±0.3938) + 0.6714(±0.0899)(EISI − 0.2ENI), (3)

r2 = 0.9329, SE = 0.1023, F = 222.7995, SF = 8.22× 10−11.
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Acentric f actor = 0.4389(±0.012) + 0.0408(±0.0045)(EISI − 0.6ENI), (4)

r2 = 0.9534, SE = 0.0079, F = 326.9797, SF = 4.5× 10−12.

S = 118.3899(±1.8907) + 5.1383(±0.7118)(EISI − 0.6ENI), (5)

r2 = 0.9287, SE = 1.2433, F = 208.4465, SF = 1.35× 10−10.

HVAP = 45.6946(±3.6149) + 3.8715(±0.5944)(EISI − 0.1ENI), (6)

r2 = 0.9138, SE = 0.6131, F = 169.6805, SF = 6.21× 10−10.

bp = 20.0287(±20.5721) + 12.0411(±2.6399)(EISI + 0ENI), (7)

r2 = 0.8387, SE = 2.532, F = 83.215, SF = 9.71× 10−8.

CT = 67.7833(±68.0764) + 17.1578(±5.2607)(EISI + 0.3ENI), (8)

r2 = 0.7267, SE = 5.2473, F = 42.5488, SF = 7.02× 10−6.

Ramane et al. [42] explored the linear dependence of π-electron energy (Eπ) on some
degree-based descriptors for benzenoid hydrocarbons. We correlated the EISI and ENI
energies with the same attribute for the same set of hydrocarbons. Now in view of (2), the
following models are generated for benzenoid hydrocarbons:

Eπ = 2.1229(±0.8591) + 0.7831(±0.0248)EISI , (9)

r2 = 0.993, SE = 0.6037, F = 3975.569, SF = 1× 10−31.

Eπ = 3.6909(±1.0089) + 0.2959(±0.0117)ENI , (10)

r2 = 0.9892, SE = 0.7496, F = 2568.963, SF = 4.31× 10−29.

We have correlated the EISI and ENI energies with bp for the set of benzenoid hydro-
carbons used by Ramane and Yalnaik [43] also for distance-based descriptors. In view of
Equation (2), the following models for bp are obtained.

bp = 36.1728(±23.5537) + 13.3853(±0.6798)EISI , (11)

r2 = 0.9879, SE = 11.2788, F = 1550.857, SF = 1.11× 10−19.

bp = 75.0229(±38.2081) + 4.9291(±0.4425)ENI , (12)

r2 = 0.9631, SE = 19.6865, F = 496.2889, SF = 4.45× 10−15.

When we go through the models (3)–(12), several interesting remarks can be drawn.
The lower the Se values, the more certain one can be about the regression model. The models
(3), (4), (6), (9) and (10) have very small SE. The models (9) and (10) have remarkably good
F-values. A model is considered statistically reliable when the SF value is less than 0.05.
Each of the models yields SF that is considerably lower than 0.05. The variations of absolute
correlation coefficients (|r|) of the model (1) for varying k are depicted in Figures 1–3. The
solid blue line represents the variation of |r| values with k. The dashed red and green lines
indicate the |r| values of EISI and ENI , respectively, for respective properties.

From Figures 1–3, it is apparent that the individual contributions of EISI and ENI
in predicting different physico-chemical properties are not satisfactory, but their linear
combination (1) reaches a sharp maximum for standard enthalpy of vaporization (DHVAP),
acentric factor (AF), entropy (S), enthalpy of vaporization (HVAP) and heat capacity at T
constant (CT) at k = −0.2,−0.6,−0.6,−0.1, 0.3, respectively. For bp, the red line touches
the maximum point of the blue line at k = 0. Correlation of Eπ with EISI and ENI for
benzenoid hydrocarbons is shown in Figure 4. The |r| for both of them are significantly
high, in fact, quite close to the optimal value.
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(a) (b)

Figure 1. Plotting of |r| versus k for (a) DHVAP and (b) AF of octanes.

(a) (b)

Figure 2. Plotting of |r| versus k for (a) S and (b) HVAP of octanes.

(a) (b)

Figure 3. Plotting of |r| versus k for (a) bp and (b) CT of octanes.
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Figure 4. Correlation of EISI and ENI with Eπ for 30 benzenoid hydrocarbons.

The correlation of EISI and ENI with bp for benzenoid hydrocarbons is shown in
Figure 5. The efficacy of both of them is remarkable in predicting bp, outperforming the
distance-based invariants reported on [43].

Figure 5. Correlation of EISI and ENI with bp for 21 benzenoid hydrocarbons.

Our models performed well in terms of accuracy; however, external validation is
essential to truly evaluate the predictability of models. For this, we consider the nonane
isomers of 35 compounds. Since the model (1) yields the best performance in describing
the acentric factor of octanes, we decide to perform external validation for AF. The
experimental values of AF are collected from the chemical database [44]. Using the Python
sklearn library, the data collection is randomly split into training (80%) and test (20%)
sets. The training set produces the following model (13) fitting parameters, which reveal
significant predictive potential. The linear fitting of model (13) is depicted in Figure 6a.

Acentric f actor = 0.4983(±0.0218) + 0.0449(±0.0068)(EISI − 0.6ENI), (13)

r2 = 0.8693, SE = 0.0142, F = 172.8753, SF = 5.39× 10−13.

The accuracy of the model (13) is found to be 90% for the test set, which assures that our
model is in good agreement with the experimental data. The relation between experimental
and predicted acentric factors is shown graphically in Figure 6b. The correlation of EISI
and ENI with the boiling point of benzenoid hydrocarbons are found to be quite strong;
however, when examined with external data, no meaningful outcome is observed.
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(a) (b)

Figure 6. (a) Linear fitting of AF with the model (1) for training set; (b) correlation between experi-
mental and predicted AF.

The ultimate focus of a molecular descriptor is to estimate structure–property/structure–
activity relationships. However, in order to encrypt as many structural characteristics of
a molecule as possible, one well-descriptor should distinctively categorize each graph.
The majority of descriptors have the disadvantage of producing the same descriptor for
different isomers. Such a flaw is called degeneracy. The measure of degeneracy [45], known
as sensitivity, is defined as

Sd =
N − Nd

N
.

If C is the collection of all considered isomers, then N = |C|. By Nd, we mean that
the descriptor is incapable of discriminating Nd elements belonging to C. A descriptor’s
potential to discriminate between isomers is directly proportional to Sd. The Sd of some
mostly used descriptors are reported in [10] that ranges from 0.333 to 0.889. The EISI and
ENI energies, on the other hand, exhibit very good isomer discriminatory strength, having
SD = 1. Consequently, the present energies perform better than existing descriptors in
isomer discrimination. To examine how EISI and ENI are independent, correlation among
EISI , ENI , E, Laplacian energy (LE) and the Estrada index (EE) is obtained in Table 1. It
yields that ENI is independent among five invariants reported in Table 1, as |r| for ENI is
remarkably lower than others.

Table 1. Correlation coefficients among EISI , ENI , E, LE and EE.

EISI EN I E LE EE

EISI 1
ENI −0.258 1

E 0.988 −0.2736 1
LE −0.7641 0.7729 −0.785 1
EE −0.8041 0.7705 −0.8036 0.9386 1

4. Bounds for N I-Spectral Radius

Consider Np as the p-th spectral moment of ANI = ANI(G), for a graph G, i.e.,

Np =
n
∑

i=1
(ρi)

p, where p ∈ N. It is clear that Np = Tr(Ap
NI). For convenience, the NI value

of an edge vivj is formulated as

NIG(vivj) =
δiδj

δi + δj
.
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After performing some straightforward derivations on the entries of ANI , we obtain
the following result:

Lemma 1. For a graph G with n nodes, we have

(i) N0 = n,
(ii) N1 = 0,
(iii) N2 = 2 ∑

vivj∈E(G)

NIG(vivj)
2,

(iv) N3 = 2 ∑
vivj∈E(G)

(
NIG(vivj) ∑

vivk ,vkvj∈E(G)

NIG(vivk)NIG(vkvj)

)
,

(v) N4 = ∑
vi∈V(G)

(
∑

vj∈V(G)

vivj∈E(G)

NIG(vivj)
2

)2

+ ∑
vi 6=vj

(
∑

vk∈V(G)
vivk ,vkvj∈E(G)

NIG(vivk)NIG(vkvj)

)2

.

Proof. Results (i), (ii) and (iii) directly follow from the construction of ANI . We prove parts
(iv) and (v). For i 6= j, we have(

A2
NI

)
ij

= ∑
vk∈V(G)

NIG(vivk)NIG(vkvj) = ∑
vk∈V(G)

vivk ,vkvj∈E(G)

NIG(vivk)NIG(vkvj).

Note that,(
A3

NI

)
ii

= ∑
vj∈V(G)

NIG(vivj)

(
A2

NI

)
ji

= ∑
vj∈V(G)

vivj∈E(G)

(
NIG(vivk) ∑

vk∈V(G)
vivk ,vkvj∈E(G)

NIG(vivk)NIG(vkvj)

)
.

Thus, we obtain

N3 = ∑
vi∈V(G)

(
A3

NI

)
ii

= ∑
vi∈V(G)

(
∑

vj∈V(G)

vivj∈E(G)

(
NIG(vivk) ∑

vk∈V(G)
vivk ,vkvj∈E(G)

NIG(vivk)NIG(vkvj)

))

= 2 ∑
vivj∈E(G)

(
NIG(vivj) ∑

vivk ,vkvj∈E(G)

NIG(vivk)NIG(vkvj)

)

Hence, part (iv) is done.
Now, we have

N4 = ∑
vi ,vj∈V(G)

((
A2

NI

)
ij

)2

= ∑
i=j

((
A2

NI

)
ij

)2

+ ∑
i 6=j

((
A2

NI

)
ij

)2

= ∑
vi∈V(G)

(
∑

vj∈V(G)

vivj∈E(G)

NIG(vivj)
2

)2

+ ∑
vi 6=vj

(
∑

vk∈V(G)
vivk ,vkvj∈E(G)

NIG(vivk)NIG(vkvj)

)2

.

This completes the proof.
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Lemma 2 ([46]). If M is an n× n symmetric matrix with s× s leading submatrix Ms, then

µn−i+1(M) ≤ µs−i+1(Ms) ≤ µs−i+1(M) (14)

where i = 1, 2, . . . , s and µi(M) is the i-th largest eigenvalue of M.

Consider a r-regular graph G. Then ANI(G) = r2

2 A(G) and λ1(G) = r. Thus,
ρ1(G) = r2

2 λ1(G) = r3

2 and ρi(G) = r2

2 λi(G) for i = 2, 3, . . . , n. In particular, G ∼= Kn.

Then ρ1(G) = (n−1)3

2 and ρi(G) = − (n−1)2

2 for i = 2, 3, . . . , n as λi(G) = −1.

Lemma 3. For a graph G with n nodes, we have ρ2 = ρ3 = · · · = ρn if G ∼= Kn or G ∼= Kn.

Proof. For G ∼= Kn, we obtain ρ1 = ρ2 = · · · = ρn = 0. For G ∼= Kn, we obtain ρ2 =
ρ3 = · · · = ρn = − 1

2 (n− 1)2. Otherwise, G � Kn and G � Kn. Since G � Kn, then G has

at least one edge and hence ρ1 > 0 and ρn < 0 as
n
∑

i=1
ρi = 0. Again since G � Kn, then

there are at least two vertices in G that are not adjacent. Without loss of generality, one
can assume that v1 is not adjacent to v2. Let ANI(G)2 be the leading 2× 2 submatrix of
ANI(G) corresponding to the vertices v1 and v2. Then µ1(ANI(G)2) = µ2(ANI(G)2) = 0.
By Lemma 2, we obtain

ρ2(G) ≥ µ2(ANI(G)2) = 0,

a contradiction, as ρ2 = ρ3 = · · · = ρn < 0.

The necessary and sufficient condition for a graph to be bipartite is that its A-spectrum
is symmetric about the origin [47]. As a consequence, we can state the following result.

Theorem 1. A graph G is bipartite if its NI-spectrum is symmetric about the origin on the real line.

Theorem 2. For a graph G of order n with neighborhood inverse sum indeg index NI, we obtain

2 NI(G)

n
≤ ρ1(G) ≤

√(
1− 1

n

)
N2,

where N2 is given by Lemma 1 (iii). The right equality occurs if G ∼= Kn or G ∼= Kn. If G is
regular, then the left equality holds.

Proof. Lower Bound: Let us consider e = (1, 1, . . . , 1)t ∈ Rn. Then by the Rayleigh–Ritz
principle, we obtain

ρ1(G) = max
x∈Rn

{
xt ANI(G) x

xt x
: x 6= 0

}
≥ et ANI(G) e

et e
=

2NI(G)

n
.

Suppose that G is a r-regular graph. Then, 2m = nr and hence NI(G) = r2

2 m = n r3

4 .
We have ANI(G) = r2

2 A(G). Since λ1(G) = r, we obtain

ρ1(G) =
r2

2
λ1(G) =

r3

2
=

2NI(G)

n
.

Upper Bound: Since
n
∑

i=1
ρi = 0, by the Cauchy–Schwarz inequality, we obtain

ρ2
1 =

(
−

n

∑
i=2

ρi

)2

≤ (n− 1)
n

∑
i=2

ρ2
i ,
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that is,

n ρ2
1 ≤ (n− 1)

n

∑
i=1

ρ2
i = (n− 1) N2,

from which the required result follows. The equality appears if ρ2 = ρ3 = · · · = ρn, i.e., if
G ∼= Kn or G ∼= Kn, by Lemma 3.

Corollary 1. For a graph G of n nodes with maximum degree ∆ and the neighborhood inverse sum
indeg index NI, we obtain

ρ1(G) ≤
√

(n− 1)∆2 NI(G)

n
,

where equality occurs if G ∼= Kn or G ∼= Kn.

Proof. For any edge vivj ∈ E(G), we obtain

δi δj

δi + δj
≤

max{δi, δj}
2

≤ ∆2

2
(15)

with equality if and only if δi = δj = ∆2, that is, if and only if dk = ∆ for all vk ∈
NG(vi) ∪ NG(vj). Using the above result, we obtain

N2 = 2 ∑
vivj∈E(G)

(
δi δj

δi + δj

)2

≤ ∆2 ∑
vivj∈E(G)

δi δj

δi + δj
= ∆2 NI(G).

With this result with the upper bound in Theorem 2, we obtain the desired result.
Moreover, the equality occurs if G ∼= Kn or G ∼= Kn, by Theorem 2.

Corollary 2. For a graph G with n nodes, m edges and maximum degree ∆, we have

ρ1(G) ≤
√

m (n− 1)∆4

2n

with equality if G ∼= Kn or G ∼= Kn.

Proof. By (15), we obtain NI(G) ≤ m ∆2

2 and from Corollary 1, we obtain the desired result.
The equality appears if G ∼= Kn or G ∼= Kn.

Corollary 3. For a graph G with n nodes and m edges, we have

ρ1(G) ≤
√

m (n− 1)5

2n

where equality appears if G ∼= Kn or G ∼= Kn.

Corollary 4. For a graph G with n nodes, we obtain

ρ1(G) ≤ (n− 1)3

2

where equality holds if G ∼= Kn.

Corollary 5. Let G be a graph of order n. Then

ρ1(G) ≤

√√√√(1− 1
n

)[
m
2

(
2m− (n− 1) δ

)2

+
1
2

(
2m− (n− 1) δ

)
(δ− 1) M1(G) +

1
2
(δ− 1)2 M2(G)

]
(16)
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where equality appears if G ∼= Kn or G ∼= Kn.

Proof. Since
δi δj

δi + δj
≤ 1

4
(δi + δj),

we obtain

N2 = 2 ∑
vivj∈E(G)

(
δi δj

δi + δj

)2

≤ 1
2 ∑

vivj∈E(G)

δi δj.

Since δi ≤ 2m− di − (n− di − 1) δ = 2m− (n− 1) δ + (δ− 1) di, from the above result,
we obtain

N2 ≤
1
2 ∑

vivj∈E(G)

[
2m− (n− 1) δ + (δ− 1) di

] [
2m− (n− 1) δ + (δ− 1) dj

]

=
m
2

(
2m− (n− 1) δ

)2

+
1
2

(
2m− (n− 1) δ

)
(δ− 1) ∑

vivj∈E(G)

(di + dj) +
1
2
(δ− 1)2 ∑

vivj∈E(G)

di dj

=
m
2

(
2m− (n− 1) δ

)2

+
1
2

(
2m− (n− 1) δ

)
(δ− 1) M1(G) +

1
2
(δ− 1)2 M2(G). (17)

For G ∼= Kn, both sides of (16) are zero and hence the equality holds. For G ∼= Kn,

one can easily check that both sides of (16) are (n−1)3

2 and hence the equality is satisfied.
Otherwise, G � Kn and G � Kn. Now, the upper bound in Theorem 2 yields

ρ1(G) <

√(
1− 1

n

)
N2.

Using the above result with (17), we obtain the strict inequality in (16). This completes
the proof of the result.

Lemma 4 ([48]). If B is a symmetric n× n matrix with spectral radius µ1 then for any x ∈ Rn

(x 6= 0),
xT Bx ≤ µ1xTx

with equality holding if x is an eigenvector of B corresponding to the largest eigenvalue µ1.

Theorem 3. For a graph G with maximum and minimum degrees ∆ and δ, respectively, we have

λ1 δ2

2
≤ ρ1 ≤

λ1 ∆2

2

where both equalities hold if G is regular.

Proof. Let x = (x1, x2, . . . , xn)t be a unit eigenvector corresponding to λ1 of A(G). Then

A(G)x = λ1x, that is, λ1 = xt A(G)x = 2 ∑
vivj∈E(G)

xixj. (18)

For any vivj ∈ E(G), we obtain
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NIG(vivj) =
δi δj

δi + δj
≥

min{δi, δj}
2

≥ δ2

2

where equality occurs if δi = δj = δ2, that is, if dk = δ for all vk ∈ NG(vi) ∪ NG(vj). Using
this result with Lemma 4, we obtain

ρ1 ≥ xt ANI(G) x = 2 ∑
vivj∈E(G)

NIG(vivj) xixj ≥ δ2 ∑
uv∈E(G)

xixj =
λ1 δ2

2

by (18). Moreover, the above equality occurs if G is a regular graph.
Let y = (y1, y2, . . . , yn)t be a unit eigenvector corresponding to ρ1 of ANI(G). Then by

Lemma 4, we obtain

ρ1 = yt ANI(G) y = 2 ∑
vivj∈E(G)

NIG(vivj) yiyj ≤ ∆2 ∑
vivj∈E(G)

yiyj =
∆2

2

(
yt A(G)y

)
≤ λ1 ∆2

2
,

by (15). Moreover, the above equality holds if G is regular.

Corollary 6. For a graph G with maximum and minimum degrees ∆ and δ, respectively, we have

δ3

2
≤ ρ1 ≤

∆3

2

where both equalities hold if G is regular.

Proof. Since δ ≤ λ1(G) ≤ ∆, from Theorem 3, we obtain the desired result. Moreover, both
equalities hold if G is regular.

Corollary 7. If G is a graph with maximum degree ∆ and minimum degree δ, then we have

m δ2

n
≤ ρ1 ≤

∆2
√

2m− n + 1
2

where left-hand equality occurs if G is regular, and right-hand equality appears if G ∼= Sn or
G ∼= Kn.

Proof. We have λ1 ≥ 2m/n [49]. Using this in Theorem 3, we get a lower bound. The left
equality occurs if G is regular.

Again note that λ1 ≤
√

2m− n + 1, where equality occurs if G ∼= Sn or G ∼= Kn [50].
Using this in Theorem 3, we obtain an upper bound. Moreover, the right equality appears
if G ∼= Sn or G ∼= Kn.

If t is the number of distinct eigenvalues of adjacency matrix and d is the diameter of a
graph G, then t ≥ d + 1 [51]. As a consequence, we can state the following result.

Lemma 5. Let d be the diameter of G. Then the number of distinct eigenvalues of ANI(G) is at
least d + 1.

Lemma 6 ([52]). Let M be a k× k non-negative irreducible symmetric matrix possessing exactly
two distinct eigenvalues. Then M = sst + rIk, where s is a column vector containing positive
elements and r ∈ R.

Theorem 4. For a graph G having n (≥2) nodes, we obtain

ρ1 − ρn ≤ ρ1 +
√
N2 − ρ2

1, (19)
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where equality appears if G ∼= Kn or G is complete bipartite with possibly isolated nodes.

Proof. Lemma 1 yields ρ2
1 + ρ2

n ≤ N2, that is, ρn ≤
√
N2 − ρ2

1, which implies that ρ1− ρn ≤

ρ1 +
√
N2 − ρ2

1. It is obvious to say that the equality occurs for an empty graph. Let
G be non-empty, and the equality holds. Thus, ANI(G) contains exactly two non-zero
eigenvalues, ρ1 and ρn. It implies that G has exactly one component, say G

′
of order p (≥2).

Let {
ρ1, 0, . . . , 0︸ ︷︷ ︸

p−2

, ρn

}
.

be the spectrum of ANI(G
′
). If p < n, then remaining components are isolated nodes. Let

G
′

be not a bipartite graph. When p is equal to 2, G
′

is complete bipartite. When p = 3,

Sp (ANI(K3)) =

{
4,−2,−2

}
,

which is a contradiction. Thus, p is greater or equal to 4. Apparently, ANI(G
′
)2 is irre-

ducible and

Sp (ANI(G
′
)2) =

{
ρ2

1, ρ2
1, 0, . . . , 0︸ ︷︷ ︸

p−2

}
.

Thus from Lemma 6, we have ANI(G
′
) = sst + rIp, where s is a column vector

containing positive elements and r ∈ R. We must have an orthogonal matrix M for which
Mt(sst + rIp)M = diag (ρ2

1, 0, 0, . . . , 0, ρ2
1), as ANI(G

′
) is orthogonally diagonalizable. Let

Mts = (u1, u2, . . . , up)t = u. Then, uut = diag (ρ2
1 − r,−r,−r, . . . ,−r, ρ2

1 − r). Now,

rank (uut) ≤ min

{
rank(u), rank(ut)

}
= 1, which implies r = 0, ρ1 = 0, a contradiction.

Consequently, G
′

is bipartite. Lemma 5 assures that the diameter of G
′

is ≤ 2, i.e., G
′

is
complete bipartite when p ≥ 2. Thus, G is complete bipartite with possibly isolated vertices.

For the converse part, we have the spectrum of Kp,q as follows

Sp (ANI(Kp,q)) =

{
pq
√

pq
2

, 0, . . . , 0︸ ︷︷ ︸
p+q−2

, −
pq
√

pq
2

}
.

Thus, ρ2 = ρ3 = · · · = ρn−1, that is, the equality in (19) occurs.

Lemma 7. For a connected graph G, ρ2 = ρ3 = · · · = ρn−1 if G is complete or complete bipartite.

Proof. Suppose that ρ2 = ρ3 = · · · = ρn−1. We have to prove that G ∼= Kn or G ∼=
Kp,q (p + q = n, p ≥ q). For G ∼= Kn, ρ2 = ρ3 = · · · = ρn−1 = − (n−1)2

2 holds. For
G ∼= Kp,q (p + q = n, p ≥ q), ρ2 = ρ3 = · · · = ρn−1 = 0 holds. Otherwise, G � Kn and
G � Kp,q (p + q = n, p ≥ q). Since G � Kn, then employing the same logic as that of
the proof of Lemma 3, we can write ρ2(G) ≥ 0. First we assume that ρ2(G) > 0. Then
ρi(G) > 0 for all i = 1, 2, . . . , n− 1. Since ρ1(G) ≥ |ρi(G)| (i = 1, . . . , n), we immediately
have N1 > 0, a contradiction. Next we assume that ρ2(G) = 0. Consequently, ρi(G) = 0
for all i = 2, . . . , n− 1. Since N1 = 0, we must have ρ1(G) = −ρn(G). Thus, G is bipartite
and ANI(G) has exactly three distinct eigenvalues. Lemma 5 yields that the diameter of G
is at most 2, and hence it is complete bipartite, a contradiction. This completes the proof of
the theorem.
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Theorem 5. For a connected graph G having n (≥2) nodes, we have

ρ1 − ρn ≤
n

n− 1
ρ1 +

√
n− 2
n− 1

N2 −
n2 − 2n
(n− 1)2 ρ2

1. (20)

The equality appears if G is complete or complete bipartite.

Proof. As a consequence of Lemma 1, we have

N2 − ρ2
1 − ρ2

n =
n−1

∑
i=2

ρ2
i .

Now the Cauchy–Schwartz inequality gives

N2 − ρ2
1 − ρ2

n ≥

(
ρ1 + ρn

)2

n− 2
, (21)

where equality appears if ρ2 = ρ3 = · · · = ρn−1. From (21), one can deduce that

(n− 1)ρ2
n + 2ρ1ρn + (n− 1)ρ2

1 −N2(n− 2) ≤ 0. (22)

Now equality in (22) yields ρn = − ρ1
n−1 ±

√
n−2
n−1N2 − n2−2n

(n−1)2 ρ2
1, which in combination

with (22) and Lemma 7 imply that

ρ1 − ρn ≤
n

n− 1
ρ1 +

√
n− 2
n− 1

N2 −
n2 − 2n
(n− 1)2 ρ2

1,

where equality occurs if G is complete or complete bipartite.

Corollary 8. For a graph G having n (≥2) nodes and maximum degree ∆, we obtain

ρ1 − ρn ≤
∆2

2(n− 1)

(
n∆ +

√
n(n− 2)(n− 1− ∆)∆

)
. (23)

The equality appears if G ∼= Kn.

Proof. In view of (20), construct a function f (x) = n
n−1 x +

√
n−2
n−1N2 − n2−2n

(n−1)2 x2. Now,
we obtain

f
′
(x) =

n
n− 1

− (n2 − 2n)x
(n− 1)

√
(n− 1)(n− 2)N2 − (n2 − 2n)x2

.

One can easily check that f (x) is an increasing function. Note that x ≤ ∆3

2 with
equality if G is complete. Consequently, f (x) ≤ f (∆3

2 ), where equality occurs if G ∼= Kn.
Therefore, we obtain

ρ1 − ρn ≤
n∆3

2(n− 1)
+

√
n− 2
n− 1

N2 −
(n2 − 2n)∆6

4(n− 1)2 . (24)

Moreover, it is clear thatN2 ≤ n∆5

4 with equality holds if G ∼= Kn. Applying this fact on
(24), the desired result follows immediately, where the equality occurs if G is complete.
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5. On NI Energy

We start this section with some simple properties of ENI that follows immediately
from the definition of ANI and ENI . Then we will move for establishing some upper and
lower bounds of ENI .

Lemma 8 ([51]). For a connected Gs(n, r, σ, τ), we have

Sp (A(Gs(n, r, σ, τ))) =

{
r, β1, . . . , β1︸ ︷︷ ︸

m1

, β2, . . . , β2︸ ︷︷ ︸
m2

}
,

where,

β1 =
σ− τ +

√
(σ− τ)2 + 4(r− τ)

2
, β2 =

σ− τ −
√
(σ− τ)2 + 4(r− τ)

2
,

m1 =
1
2

(
n− 1− 2r + (n− 1)(σ− τ)√

(σ− τ)2 + 4(r− τ)

)
, m2 =

1
2

(
n− 1 +

2r + (n− 1)(σ− τ)√
(σ− τ)2 + 4(r− τ)

)
.

Theorem 6. For a graph G of order n ≥ 3 with no isolated nodes, we have

(i) ENI(G) = r2

2 E(G), when G is r-regular. Particularly, ENI(Kn) = (n− 1)3 and ENI(Cn) =

4
n−1
∑

j=0

∣∣∣ cos
(

2π j
n

)∣∣∣. When G is connected Gs(n, r, σ, τ), we have

ENI(G) =
r2

2

(
r +

2(n− 1)(r− τ)− r(σ− τ)√
(σ− τ)2 + 4(r− τ)

)
.

(ii) ENI(G) =
αβ

2
E(G), when G is (α, β)-semiregular bipartite. Particularly, ENI(Kp,q) =

pq
√

pq, where p + q = n. Additionally, we have ENI(Sn) = (n− 1)
√

n− 1.

Proof. (i) Let G be r-regular. Then, we have ANI(G) = r2

2 A(G). Consequently, ρi =
r2

2 λi

(1 ≤ i ≤ n), which implies that ENI(G) = r2

2 E(G). For Kn, r = (n − 1) and E(Kn) =
2(n − 1), which gives ENI(Kn) = (n − 1)3. Additionally, Cn is regular of degree 2 and

E(Cn) =
n−1
∑

j=0

∣∣∣2 cos
(

2π j
n

)∣∣∣, which yields the NI energy of Cn. When G is connected

Gs(n, r, σ, τ), then in view of Lemma 8, we immediately obtain ρ1 = r3

2 , ρ2 = ρ3 = . . . =
ρm1+1 = r2

2 β1, ρm1+2 = ρm1+3 = · · · = ρn = r2

2 β2, from which the desired NI energy
follows from Lemma 8.

(ii) Note that ANI(G) =
rs
2

A(G) and ρi =
rs
2

λi, i = 1, 2, . . . , n, when G is (α, β)-semi-

regular bipartite. Thus, ENI(G) =
αβ

2
E(G). In particular, E(Kp,q) = 2

√
pq, which yields

ENI(Kp,q) = pq
√

pq. As Sn ∼= K1,n−1, we have ENI(Sn) = (n− 1)
√

n− 1.

Let FA(k) be the family of all non-complete connected strongly regular graph with
two non-trivial adjacency eigenvalues both with absolute value k and FNI(k) be the family
of all non-complete connected strongly regular graph with two non-trivial NI-eigenvalues
both with absolute value k.

Lemma 9 ([53]). If G is a graph with n nodes and m edges with n ≤ 2m, then

E(G) ≤ 2m
n

+

√√√√(n− 1)

[
2m−

(
2m
n

)2
]
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where equality appears if G ∼= Kn or G ∼= n
2 K2 (n is even) or G ∈ FA

(√(
2m−

( 2m
n
)2
)

/(n− 1)

)
.

Lemma 10. Let G be a r-regular graph of order n. Then

ENI(G) ≤ r2

2

[
r +

√
(n− 1) r (n− r)

]
,

where equality occurs if G ∼= Kn or G ∼= n
2 K2 (n is even) or G ∈ FNI

(
r2

2

√
r(n− r)/(n− 1)

)
.

Proof. By Theorem 6 and Lemma 9, we obtain

ENI(G) =
r2

2
E(G) ≤ r2

2

[
r +

√
(n− 1) r (n− r)

]
.

Moreover, the equality appears if G ∼= Kn or G ∼= n
2 K2 (n is even) or G ∈ FNI(

r2

2

√
r(n− r)/(n− 1)

)
, by Lemma 9.

Theorem 7. Let G be a graph of order n. Then

ENI(G) ≤ 2 NI(G)

n
+

√√√√(n− 1) NI(G)

[
∆2 − 4 NI(G)

n2

]
, (25)

where equality occurs if G ∼= Kn or G ∼= n
2 K2 (n is even) or G ∼= Kn or G ∈ FNI(

r2

2

√
r(n− r)/(n− 1)

)
.

Proof. Since
δi δj

δi + δj
≤ 1

2
∆2, we obtain N2 ≤ ∆2 NI(G) where equality appears if G is

regular. By the Cauchy–Schwarz inequality, we obtain

ENI(G) =
n

∑
i=1
|ρi| ≤ ρ1 +

√√√√(n− 1)
n−1

∑
i=1

ρ2
i (26)

= ρ1 +

√
(n− 1)

[
N2 − ρ2

1

]

≤ ρ1 +

√√√√(n− 1)

[
∆2 NI(G)− ρ2

1

]
. (27)

Let us consider a function

g(x) = x +
√

n− 1
√

∆2 NI(G)− x2 for x ≥ 2 NI(G)

n
.

One can easily check that g(x) is a decreasing function on x and hence
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g(x) ≤ 2 NI(G)

n
+

√√√√(n− 1)

[
∆2 NI(G)− 4 NI(G)2

n2

]
.

Since ρ1 ≥ 2 NI(G)
n , we obtain

ENI(G) ≤ 2 NI(G)

n
+

√√√√(n− 1) NI(G)

[
∆2 − 4 NI(G)

n2

]
.

Let the equality be satisfied in (25). From the equality in (27), G is regular. Consider G
to be r-regular. If n > 2m, then r = 0 and hence G ∼= Kn. Otherwise, n ≤ 2m. Now,

ENI(G) =
2 NI(G)

n
+
√

n− 1

√√√√NI(G)

[
∆2 − 4 NI(G)

n2

]
=

r2

2

[
r +

√
(n− 1) r (n− r)

]

as NI(G) = r2 m
2 = n r3

4 (m is the number of edges). By Lemma 10, G ∼= n
2 K2 (n is even)

or G ∼= Kn or G ∈ FNI

(
r2

2

√
r(n− r)/(n− 1)

)
. From the equality in (26), we obtain

|ρ2| = |ρ3| = · · · = |ρn|, which satisfies the above-mentioned graphs.
Conversely, let G ∼= Kn. Thus we have

ENI(G) = 0 =
2 NI(G)

n
+

√√√√(n− 1) NI(G)

[
∆2 − 4 NI(G)

n2

]
.

Let G ∼= n
2 K2 (n is even). Then we have ∆ = 1 and NI(G) = n

4 . Thus

ENI(G) =
n
2
=

2 NI(G)

n
+

√√√√(n− 1) NI(G)

[
∆2 − 4 NI(G)

n2

]
.

Let G ∼= Kn. Then ∆ = n− 1 and NI(G) = n (n−1)3

4 . Hence

ENI(G) = (n− 1)3 =
2 NI(G)

n
+

√√√√(n− 1) NI(G)

[
∆2 − 4 NI(G)

n2

]
.

Let G ∈ FNI

(
r2

2

√
r(n− r)/(n− 1)

)
(where r is the degree of the vertices of strongly

regular graph). Then ρ1 = r3

2 and |ρ2| = |ρ3| = · · · = |ρn| = r2

2

√
r(n− r)/(n− 1). Hence

ENI(G) =
r3

2
+

r2 (n− 1)
2

√
r(n− r)/(n− 1) =

2 NI(G)

n
+

√√√√(n− 1) NI(G)

[
∆2 − 4 NI(G)

n2

]
.

Corollary 9. For a graph G with n nodes, we obtain

ENI(G) ≤ ∆2 n
4

(
√

n + 1), (28)
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where equality appears if G ∼= Kn or G ∼= K4 or G ∈ FNI

(
r2

2

√
r(n− r)/(n− 1)

)
, where

2r = n +
√

n and r is the degree of the vertices of a strongly regular graph.

Proof. Let us consider a function

f (x) =
2 x
n

+

√√√√(n− 1) x

[
∆2 − 4 x

n2

]
.

Then

f ′(x) =
2
n
+

√
n− 1

(
∆2 − 8x

n2

)

2

√√√√x

[
∆2 − 4 x

n2

] .

One can easily check that f (x) is an increasing function on x ≤ ∆2 n(n +
√

n)
8

and a

decreasing function on x ≥ ∆2 n(n +
√

n)
8

as

f ′(x) ≥ 0⇔ 2
n
≥

√
n− 1

(
8x
n2 − ∆2

)

2

√√√√x

[
∆2 − 4 x

n2

]

⇔ 16 x

[
∆2 − 4 x

n2

]
≥ n2 (n− 1)

(
8x
n2 − ∆2

)2

⇔ 64x2 − 16∆2n2x + ∆4n3(n− 1) ≤ 0

⇔ x ≤ ∆2n (n +
√

n)
8

.

Using the above result in (25), we obtain

ENI(G) ≤ 2 NI(G)

n
+

√√√√(n− 1) NI(G)

[
∆2 − 4 NI(G)

n2

]

= f

(
NI(G)

)

≤ f
(

∆2n (n +
√

n)
8

)

=
∆2 (n +

√
n)

4
+

√√√√(n− 1)
∆2n (n +

√
n)

8

[
∆2 − ∆2 (n +

√
n)

2n

]

=
∆2 n

4
(
√

n + 1).
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The equality occurs in (28) if NI(G) =
∆2n (n +

√
n)

8
, and G ∼= Kn or G ∼= n

2 K2

(n is even) or G ∼= Kn or G ∈ FNI

(
r2

2

√
r(n− r)/(n− 1)

)
(where r is the degree

of the vertices of strongly regular graph), that is, if G ∼= Kn or G ∼= K4 or G ∈

FNI

(
r2

2

√
r(n− r)/(n− 1)

)
, where 2r = n +

√
n and r is the degree of the vertices

of strongly regular graph.

Remark 1. G ∈ FNI

(
r2

2

√
r(n− r)/(n− 1)

)
, where 2r = n +

√
n and r is the degree of the

vertices of strongly regular graph. Then the graph G exists, for example, G ∼= srg(16, 10, 6, 6) or
G ∼= srg(36, 21, 12, 12).

Lemma 11 ([54]). Let a1, a2, . . . , aN and b1, b2, . . . , bN be real numbers for which there exist real
constants r and R so that for each i, i = 1, 2, . . . , N holds r ai ≤ bi ≤ R ai. Then

N

∑
i=1

b2
i + r R

N

∑
i=1

a2
i ≤ (r + R)

N

∑
i=1

ai bi, (29)

where equality occurs if for at least one i, 1 ≤ i ≤ N holds r ai = bi = R ai.

For the proof of the following theorem, we assume that |ρ1| ≥ |ρ2| ≥ · · · ≥ |ρn|. Here,
we give a lower bound on ENI(G) in terms of ∆, δ, NI and the second largest eigenvalue in
magnitude |ρ2|.

Theorem 8. If G is a graph containing n nodes and at least one edge, we obtain

ENI(G) ≥ 1
4 |ρ2|

(
4δ2 NI(G)− ∆6

)
+

∆3

2
, (30)

where equality occurs if G ∼= n
2 K2 (n is even) or G ∼= Kn or G ∈ FNI

(
r2

2

√
r (n−r)

n−1

)
.

Proof. Setting N = n − 1, ai = 1, bi = |ρi+1| (1 ≤ i ≤ n − 1) with R = |ρ2|, r = |ρn|,
from (30), we obtain

n

∑
i=2
|ρi| ≥

(n− 1) |ρ2| |ρn|+
n
∑

i=2
ρ2

i

|ρ2|+ |ρn|
=

(n− 1) |ρ2| |ρn|+ N2 − ρ2
1

|ρ2|+ |ρn|
(31)

as N2 =
n
∑

i=1
ρ2

i . Moreover, the above equality is satisfied if |ρ2| = |ρ3| = · · · = |ρn|.

Claim 1.
(n− 1) |ρ2| |ρn|+ N2 − ρ2

1
|ρ2|+ |ρn|

≥
N2 − ρ2

1
|ρ2|

, (32)

where equality appears if |ρn| = 0 or |ρ2| = |ρ3| = · · · = |ρn|.

Proof of Claim 1. For |ρn| = 0, the equality holds in (32). For |ρ2| = |ρ3| = · · · = |ρn|,
we have

(n− 1) |ρ2| |ρn|+ N2 − ρ2
1 = (n− 1) ρ2

2 + N2 − ρ2
1 = 2 (N2 − ρ2

1)
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and hence
(n− 1) |ρ2| |ρn|+ N2 − ρ2

1
|ρ2|+ |ρn|

=
N2 − ρ2

1
|ρ2|

,

the equality holds in (32).
Otherwise, |ρ2| 6= |ρn| and |ρn| 6= 0. Since |ρ2| ≥ |ρ3| ≥ · · · ≥ |ρn|, we obtain

(n− 1) ρ2
2 >

n

∑
i=2

ρ2
i ,

that is,
(n− 1) ρ2

2 |ρn| >
(

N2 − ρ2
1

)
|ρn|,

that is,
(n− 1) ρ2

2 |ρn|+
(

N2 − ρ2
1

)
|ρ2| >

(
N2 − ρ2

1

)
|ρ2|+

(
N2 − ρ2

1

)
|ρn|,

the inequality in (32) strictly holds. This proves the Claim 1.
Since

δi δj

δi + δj
≥ 1

2
min{δi, δj},

we have
δi δj

δi + δj
≥ δ2

2
.

The above equality appears if δi = δj = δ2. Using this result, we obtain

N2 = 2 ∑
vivj∈E(G)

(
δi δj

δi + δj

)2

≥ δ2 ∑
vivj∈E(G)

δi δj

δi + δj
= δ2 NI(G), (33)

where equality appears if G is a regular graph. Using (32) in (31), we obtain

ENI(G) ≥ ρ1 +
N2 − ρ2

1
|ρ2|

(34)

with equality if |ρ2| = |ρ3| = · · · = |ρn|.
Let us consider a function

f (x) = x +
N2 − x2

|ρ2|
for |ρ2| ≤ x ≤ ∆3

2
.

Then
f ′(x) = 1− 2x

|ρ2|
< 0.

Thus f (x) is a strictly decreasing function on |ρ2| ≤ x ≤ ∆3

2 and hence

f (x) ≥ ∆3

2

(
1− ∆3

2 |ρ2|

)
+

N2

|ρ2|
.

Using this result with (33), from (34), we obtain

ENI(G) ≥ ∆3

2

(
1− ∆3

2 |ρ2|

)
+

N2

|ρ2|
≥ δ2 NI(G)

|ρ2|
+

∆3

2

(
1− ∆3

2 |ρ2|

)
.

The first part of the proof is done.
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Suppose that equality holds in (30). Then all inequalities in the above argument
must be equalities. From the above, we conclude that G is a r-regular graph, (say), and
|ρ2| = |ρ3| = · · · = |ρn|. Since ρi =

r2

2 λi (1 ≤ i ≤ n), we obtain

|λ2| = |λ3| = · · · = |λn| =

√
r (n− r)

n− 1

as
n
∑

i=1
λ2

i = 2m = nr (λi is the i-th eigenvalue of graph G). If m = (n
2), then G ∼= Kn.

Otherwise, m 6= (n
2). Then there exists two vertices v1 and v2 in G are not adjacent and

hence ρi > 0 for some i (2 ≤ i ≤ n). Since
n
∑

i=1
ρi = 0, we must have three distinct NI-

eigenvalues of graph G and hence three distinct adjacency eigenvalues of graph G. If G is

connected, then G is a strongly regular graph. Hence, G ∈ FNI

(
r2

2

√
r (n−r)

n−1

)
. Otherwise,

G is disconnected. Since there are no zero NI-eigenvalues in G, each connected component
in G contains at least two vertices. Since G is a r-regular graph with at least two connected
components, then |ρ1| = |ρ2| = r and hence |ρ1| = |ρ2| = · · · = |ρn| = r. If r = 1, then G ∼=
n
2 K2 (n is even). Otherwise, r ≥ 2. Then there are at least three vertices in each connected
component in G. Suppose G1 is a connected component in G with p (≥ 3) vertices. If
G1
∼= Kp, then |ρ1(G1)| 6= |ρ2(G1)|, a contradiction as ρ1(G1), ρ2(G1) ∈ Sp(ANI(G)).

Otherwise, G1 � Kp (p ≥ 3). Then the largest and the second-largest NI-eigenvalues are
not equal to ρ1(G1) = r > ρi(G1) for some i (2 ≤ i ≤ n), a contradiction.

Conversely, let G ∼= n
2 K2 (n is even). Then ∆ = δ = 1, |ρ2| = 1/2 and NI(G) =

n/4. Hence

ENI(G) =
n
2
=

1
4 |ρ2|

(
4δ2 NI(G)− ∆6

)
+

∆3

2
.

Let G ∼= Kn. Then ∆ = δ = n− 1, |ρ2| = (n− 1)2/2 and NI(G) = n (n− 1)3/4. Hence

ENI(G) = (n− 1)3 =
1

4 |ρ2|

(
4δ2 NI(G)− ∆6

)
+

∆3

2
.

Let G ∈ FNI

(
r2

2

√
r (n−r)

n−1

)
. Then ρ1 = r3

2 , |ρ2| = |ρ3| = · · · = |ρn| = r2

2√
r(n− r)/(n− 1). Moreover, δ = ∆ = r and NI(G) = nr3

4 . Hence

1
4 |ρ2|

(
4δ2 NI(G)− ∆6

)
+

∆3

2
=

√
n− 1

r (n− r)
1

2r2 (nr5 − r6) +
r3

2

=
r2

2

√
r (n− r) (n− 1) +

r3

2

= ENI(G).

This completes the proof of the theorem.

Since NI(G) ≥ mδ2

2
, from the above theorem, we obtain the following result.

Corollary 10. Let G be a graph of order n with at least one edge. Then

ENI(G) ≥ 1
4 |ρ2|

(
2 mδ4 − ∆6

)
+

∆3

2
(35)
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where equality appears if G ∼= n
2 K2 (n is even) or G ∼= Kn or G ∈ FNI

(
r2

2

√
r (n−r)

n−1

)
.

Corollary 11. Let G be a graph with n nodes and at least one edge. Then

ENI(G) ≥ m δ4

∆3 (36)

with equality if G ∼= n
2 K2 (n is even).

Proof. Since ρ1 ≥ |ρ2|, from (34), we obtain

ENI(G) ≥ N2

|ρ1|

with equality if ρ1 = |ρ2| = |ρ3| = · · · = |ρn|. Since ρ1 ≤ ∆3

2 , using (33), from the above
relation, we obtain

ENI(G) ≥ 2δ2 NI(G)

∆3 ≥ m δ4

∆3

as 2NI(G) ≥ m δ2. Moreover, the equality occurs if G is regular and ρ1 = |ρ2| = |ρ3| =
· · · = |ρn|, that is, if and only if each component is K2, that is, if G ∼= n

2 K2 (n is even).

6. Concluding Remarks

In this report, the spectral properties of NI index were studied by introducing a a
symmetric matrix. The chemical applicability of EISI and ENI was examined by octane and
benzenoid compounds. In the case of octanes, a linear model of two energies was devised,
which enhances the predictability of both energies. When benzenoid data sets are taken
into consideration, the energies sound good individually. In fact, their correlation is better
than some well-established descriptors in the case of modeling bp. External validation of
generated models was done, and model (1) appears to be effective for the acentric factor.
The isomer discrimination ability of these energies was found to be remarkable compared
to well-known descriptors. Both energies were demonstrated as effective molecular de-
scriptors, yet if we look at Table 1, then ENI seems to be more distinctive than EISI , which
strengthens the meaning of considering ENI as a molecular descriptor. The mathematical
study of the NI energy and NI-spectral radius was performed by finding the tight upper
and lower bounds in terms of graph order, graph size, maximum degree, and minimum
degree. Extremal graphs that attain the bounds were also identified. It was established that
among all graphs of order n, Kn possesses the maximum NI-spectral radius.

A considerable amount of graph energy variants have appeared in the literature.
However, very few of them investigated from the application point of view. The usefulness
of Sombor energy was investigated by creating regression models in the case of octanes and
benzenoid hydrocarbons [35]. Wang et al. [55] considered the same data sets to examine the
application potential of eccentricity-based energy. In addition to establishing ENI and EISI
in structure–property modeling, an external validation was also performed to accurately
analyze the constructed models, which was not considered in the former works. We split
the data into training and test sets for external validation by Python machine learning.
Another quality of a descriptor is to discriminate isomers. The present energies were found
to have remarkable isomer discrimination ability. This feature of descriptors was not taken
into account in the former works.

Future research directions on this concept could include deriving critical bounds
and identifying corresponding extremal graphs of the NI energy and NI-spectral radius
for important classes of graphs, such as tree, unicyclic, bicyclic, and tricyclic graphs,
among others.
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