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Abstract: One of the current directions in the development of the modern theory of oscillations is the
elaboration of effective methods for analyzing the stability of solutions of dynamical systems. The aim
of the work is to develop a new asymptotic method for studying the nonlinear monotonic stability
of the amplitude of plane oscillations in a dynamic system of equations with one fast phase. The
method is based on the use of the method of variation of an arbitrary constant, the averaging method,
and the classical method of mathematical research of the function of one independent variable. It
is assumed that the resulting approximate analytical function is defined and twice continuously
differentiable on the entire considered interval of change of the independent variable. It describes the
nonlinear and monotonic evolution of the oscillation amplitude on the entire considered interval of
change of the independent variable. In the paper, this method is applied to the problem of nonlinear
monotonic aerodynamic damping of the amplitude of oscillations of the angle of attack during the
descent of a symmetric spacecraft in the atmosphere of Mars. The method presented in this paper
made it possible to find all characteristic cases of nonlinear monotonic stability and instability of the
oscillation amplitude of the angle of attack. In addition, one should speak of a symmetrical quantity
of different cases of stability and instability, located on different sides of the zero value of the first
average derivative of the angle of attack.

Keywords: nonlinear stability; angle of attack; symmetric spacecraft; amplitude of oscillation;
atmosphere; asymptotic analysis

1. Introduction

In modern engineering, symmetrical designs and other types of dampers and ab-
sorbers are widespread. In particular, the article [1] considered the amplitude—frequency
dependence of a nonlinear symmetrical panel absorber fixed on a flexible wall. In this
study, a weighted residual elliptic integral method was applied to solve this problem,
which includes the nonlinear multimode governing equations of two flexible panels, in
combination with a cavity. The aim of the work [2] was to study the non-linear dynamics of
a supporting symmetrical structure of pipeline supports, covered with a damping element
using elastic-porous metal rubber. In this work, a dynamic model of a symmetrical pipeline
system based on an impulse response matrix was created to reliably describe its non-linear
behavior, for example, during energy dissipation.

Another well-known work [3] proposed a numerical method for predicting damping
in gears with ring dampers. The nonlinear damping when friction is taken into account
is expressed as equivalent mechanical damping as a function of vibration stress. In the
work [4], the periodically distributed masses are supported on the plate by coupling
springs and dampers. The study [5] was devoted to obtaining approximate solutions of the
controlled mass-damper-spring model by the harmonic balance method. The stability of
the solutions was tested using the Floquet theory.
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The study [6] proposed a negative-speed cubic feedback controller to suppress non-
trivial subharmonic resonance oscillations of the 1:3 order of the mass-damper-spring
system. Based on the averaging method, the equation of motion of the system was approxi-
mately solved and its stability was checked. In the paper [7], the primary structure and the
damper were proposed for consideration as an analytical and an experimental substructure,
respectively. The general approach is to model the analytical substructure using the finite
element method. In addition, the effects on the frame structure of a fluid damper, a particle
damper, and a particle-tuned mass damper were virtually explored. In [8], a new model of
double friction between a shaft and a dry friction damper with several stages of helicopter
tail rotors was proposed. The dynamics of multiple vibration suppression, as well as static
and dynamic misalignment, were studied to illustrate the accuracy of the results obtained
using the model.

The paper [9] proposed an adaptive landing system for a reusable launch vehicle with
semi-active control units. The landing system under consideration can adjust the damping
forces of the shock absorbers of the struts by means of semi-actively adjustable currents
according to practical landing conditions.

The article [10] demonstrated an innovative approach to planning the trajectories of
mechanical systems using time-reversal symmetry. Two case studies were also presented:
a mass-spring-damper pendulum and an inverted pendulum on a bogie. The proposed
solution makes it possible to compensate for the influence of relationships that violate
temporal symmetry using a special proposed measure.

The paper [11] analyzed the entropy of the mechanical system mass-spring-damper in
accordance with the definition of a consonant fractional operator. The authors determined
the optimal values of the parameters of the mechanical system to obtain the highest response
efficiency.

The work [12] proposed an equivalent method for numerically predicting the damping
of an annular damper under axial vibration in the aircraft gas turbine engines. Using the
method, the significant influence of the design parameters of the annular damper on the
frictional damping in gears under axial vibration was studied.

In the process of modeling and studying the laws of functioning of dampers and
absorbers, various methods are used to analyze the stability of solutions of the differential
equations. It is known that the modern theory of differential equations contains the
concepts of strong and weak stability of solutions. The introduction of these concepts
makes it possible to effectively classify various types of stability of solutions. Moreover,
when solving some types of equations in mathematical physics, the concepts of strong and
weak resonances are used, particularly in the works [13-15].

In a general case, one can speak separately about the external and internal stability
of resonances in dynamical systems modeling the perturbed motion of rigid bodies. The
internal stability of resonances is considered, for example, in works [16,17]. In these
studies, the stability of oscillations of mechanical coupled oscillators was analyzed in a
small neighborhood of the resonances. The external stability characterizes the ability of
resonances to be attractors that attract the trajectories of the system from non-resonant
regions to an asymptotically small resonance region. It should be noted that a significant
number of works have been devoted to the analysis of the evolution of slow variables and
the study of the external stability of various dynamical systems with fast and slow variables
in the non-resonant case. In particular, the article [18] studied the condition of the external
stability of the resonance during the descent of a spacecraft with a small asymmetry at
small angles of attack in the Martian atmosphere.

Note, that in [19] the problem of stabilization with a fixed time was considered for
a class of the indefinite nonlinear systems of the second order. At the same time, a new
approach has been developed that can be used to obtain a feedback controller, together
with the corresponding Lyapunov function. In this case, it is possible to make the closed
dynamical system stable at a fixed point in time.
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The aim of this work is to develop a new asymptotic method for analyzing the
nonlinear monotonic stability of the amplitude of plane oscillations in a dynamic system of
original differential equations containing one fast and several slow variables. Dynamical
systems are often used in practice to simulate the motion of solid bodies with geometric
symmetry.

The method formulated in the paper is based on the analysis of the signs of the first
and second derivatives of the desired approximate analytical function. In this case, it is as-
sumed that the resulting approximate analytical function is defined and twice continuously
differentiable over the entire considered interval of variation of the independent variable.
In addition, this approximate analytical function describes the nonlinear and monotonic
evolution of the oscillation amplitude over the entire interval of the independent variable.
In this work, the concepts of weak or strong stability are replaced by more traditional
concepts from a mathematical point of view, namely, when the decreasing curve considered
in the analysis of nonlinear monotonic stability is convex upwards or downwards.

As a result of applying the method under consideration, it is required to obtain all
characteristic cases of nonlinear monotonic stability of oscillations as well as all characteris-
tic cases of nonlinear monotonic instability of oscillations of the amplitude of oscillations.
It should be noted that, for definiteness, it is assumed that the investigated approximate
analytical function has no more than one inflection point over the entire interval of the
independent variable.

In this paper, the formulated method is used to study stability in the problem of
nonlinear monotonic aerodynamic damping of the amplitude of plane oscillations of the
angle of attack during an uncontrolled descent of a symmetrical spacecraft of the segmental-
conical shape in the atmosphere of Mars. As an example, Figure 1 shows the Schiaparelli, a
spacecraft designed to descend into the atmosphere of Mars [20].

Figure 1. The descent spacecraft “Schiaparelli”.

2. Nonlinear Monotone Stability Analysis Method

The task of the planar motion of the symmetrical spacecraft relative to the center of
mass in the Martian atmosphere is considered. In this case, the initial angular speed is
equatorial (wy(0) = 0) and it is directed normally to the plane of the angle of attack. In
addition, the spacecraft speed vector does not change its direction noticeably during the
interval under consideration. The equation of in-plane motion of the spacecraft relative to
the center of mass [21] after a number of simplifications has the form:

@ v e 1 ¢ M

d?o . [C}?(vqs] de  m,qSL

Here « is the angle of attack, ¢ is the designation of a small dimensionless parameter,
m is the mass of the spacecraft, V is the velocity of the center of mass of the spacecraft, L is
the length of the spacecraft, S is the largest area of the transverse section of the spacecraft,
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I is the moments of the inertia of the spacecraft relative to the principal axes Y and Z

X

(I =Ly = 1), q is the dynamic pressure (q = pTVZ), p is the atmosphere density, cg,

the known values of aerodynamic coefficients.

In Equation (1), we neglect the change in the value cg; at the intervals of the change in
the independent variable t. In addition, decomposition is applicable. In addition, we will
further apply the first approximate expression m, ~ mJ«. It should be noted that taking
into account the second and subsequent approximations in this expression will lead to a
significant complication of the problem being solved and is not considered in this paper.
As a result, we obtain from Equation (1) a linear differential equation of the second order in
the homogenous form with variable coefficients, as follows:

m, are

d?« do

— +efi— Zx = 0. 2

ar + efy ar +wa=0 2)
Here w? = ’— mg IqSL ’, f1 = c;‘n;gs. Traditionally, the initial values of the angle of attack

o(0) and the derivative of the attack de(0) /dt are set at the point of entry of the spacecraft
into the atmosphere.

Given the change in the variable w, = do/dt, we will write Equation (2) in the form
of an equation system

da
at = We, 3)
d(,Uo( o do 2

Note that the system of Equations (3) and (4) is completely equivalent to Equation (2).
If the aerodynamic damping in Equation (2) is absent (from the point of view of oscillation
theory, this can be formally denoted as ¢ = 0), and then we get an equation
d’«

PTea w?a = 0. (5)

Equation (5) has a private solution
o = Acos . (6)

Here A is the constant amplitude of oscillations, ¢ is the phase of oscillations,
@ = @p+ wt, w is the constant frequency of oscillations (in case without damping),
@ is the constant initial phase of oscillations.

By performing differentiation « by the variable t taking into account (6), we obtain

_da

= a - —Awsin @. (7)

W

To find a solution to the perturbed Equation (2), we apply the method of variation

of an arbitrary constant. According to this method, we will replace variables «, w with

variables A, ¢ in the perturbed system (3) and (4). Note that the solution of Equation (2)

describes oscillatory motions, since the influence of perturbations is small. As a result, we
obtain the differential equations for new variables A, ¢.

Next, the substitution of expressions (6) and (7) should be performed in the system of

Equations (3) and (4). Taking into account the variability of the values A and ¢, we obtain

dA de . .

s Ccos @ — Aa sin@ = —Awsin @, (8)
dA d
asincanAd—(tp cos @ = Aw cos @ — eAf; sin @. 9)
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Further, from the solutions of the system (8) and (9) we find

dA .
Fre —eAfqsin? o, (10)

d
di(tp = w — &f+ sin @ cos @. (11)

The system of Equations (10) and (11) is equivalent to Equation (2). From the system
of Equations (10) and (11) it follows that the amplitude A(t) is the slow variable, and the
phase @(t) is the fast variable.

It should be noted that in the analysis of the stability of oscillations, the study of the
behavior of the amplitude of oscillations A(t) is of the greatest interest. However, the direct
use of Equation (10) to achieve this goal is difficult due to the dependence of the right side
of this equation on the rapid variable ¢(t). To exclude from the right side of Equation (10)
the fast variable ¢ (t), we apply a well-known method of averaging equations systems with
one fast variable [22,23]. We will apply this method outside the resonant region, which
has the order w = o(¢). In the first approximation of the method of averaging, we get

27 _
<%> = —e% [ Afiqsin® pde = —e%. To simplify the subsequent expressions, we will
0

not indicate the average value and its derivatives line on top, corresponding to the average
values. Therefore, the average equation for the amplitude of oscillations has the form

dA fq
T —£7A. (12)
Thus, we will analyze the behavior not of the amplitude itself, but its average value.
According to the method of averaging, the amplitude and its averaged value differs by a
small value that has order e.
Equation (12) is a linear differential equation of the first order with a variable coefficient.
The solution of this equation can be found using the method of separating variables. As a
result, we get

t
A=A exp(—/ %dt). (13)
0

Here A is the initial value of the amplitude A at the entry into the atmosphere (t = 0).
Note that the initial conditions are the values of the spacecraft motion variables at the point
of entry into the Martian atmosphere (when the spacecraft reaches an altitude of 110 km).

Further, it is assumed that the average amplitude is a monotonous and twice differen-
tiated function determined on the entire unreasonable interval of values.

We find the first and second derivatives of the average amplitude of the angle of attack.
Calculating the first and second derivatives of Expression (13), we obtain

t
dA A1 [fq
a - 2 ol / 2 4t (9
0
t
d?A [ Agdfy | A 2 fq
WP ey ee [ Gy, (1)
0

Here, the right parts of Equations (14) and (15) are monotonic and continuous in the
considered non-resonant region.

Let us analyze the nonlinear monotonic stability of the change in the average amplitude
of the oscillations of the angle of attack.
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Definition 1. The nonlinear monotonic stability of the average amplitude of oscillations is a change
in the amplitude of oscillations such that, according to Equations (14) and (15), the following condi-
tions are simultaneously satisfied throughout the considered interval of variation of the independent

variable: ‘fj—f <O;‘§T§ > Oor%—’? < O;Cj—é < 0.

In the course of this analysis, we will apply expressions for the first (14) and second
derivative (15). Since the initial amplitude is Ag > 0, then when the condition {4 > 0
is satisfied from Equation (14), we obtain that % < 0. Therefore, the amplitude of the
angle of attack decreases at f; > 0. The sign of the second derivative (15) under the
condition f-; > 0 is completely determined by the sign of the expression in square brackets
fp=— % % + % (f1)%. The following theorem about the nonlinear monotonic stability
of the average oscillation amplitude A(t) is true.

Theorem 1. If the following conditions are satisfied: (1.1.) the initial amplitude is a positive
Ay > 0; (1.2.) the smooth function f.1(t) in the Equations (13)-(15) is positive over the entire
interval values of independent variable (f1 > 0); (1.3.) the smooth function A(t) has at most one
inflection point over the entire interval values of independent variable, then there are four different
cases of nonlinear monotonic stability of average oscillation amplitude A(t) over the entire interval
values of independent variable.

Proof of Theorem 1. Let us consider all characteristic cases of nonlinear monotonic stability.

Case 1. When Ay > 0, f4 > 0 and f, > 0, we obtain the case of monotonic nonlin-
earity of stability of the oscillation amplitude, which leads to a monotonic decrease in the
amplitude A(t) with unchangeable downward convexity.

Case 2. When Ay > 0,f1 > 0 and f.» < 0, we obtain the case of monotonic nonlin-
earity of stability of the oscillation amplitude, which leads to a monotonic decrease in the
amplitude A(t) with unchangeable upward convexity.

Cases 1 and 2 describe nonlinear monotonic stability of the oscillation amplitude A(t)
in the absence of inflection points. It is obvious that there are no other cases of nonlinear
monotonic stability A(t) on average without the implementation of inflection points.

Next, consider the cases of implementation of nonlinear monotonic stability A(t) on
average with the formation of only one inflection point over the entire interval of change of
the independent variable. Obviously, there are only two cases.

Case 3. In the initial interval, there is a monotonous decrease in the amplitude A(t)
(at f1 > 0, Ag > 0) with unchangeable downward convexity (at f, > 0). Further, one
inflection point of the curve A(t) is formed (at f-;(t) = 0). Subsequently, the monotonous
decrease in amplitude A(t) (at f4 > 0) occurs with unchangeable upward convexity (at
fo < 0).

Case 4. In the initial interval, there is a monotonous decrease in the amplitude A(t) (at
fq >0, Ag > 0) with unchangeable upward convexity (at f, < 0). Further, one inflection
point of the curve A(t) is formed (f(t) = 0). Subsequently, the monotonic decrease in
amplitude A(t) (at f; > 0) occurs with unchangeable downward convexity (at f, > 0).
Thus, when conditions 1.1-1.3 are satisfied, there are only four cases of nonlinear monotonic
stability of the average oscillation amplitude A(t). Obviously, there are no other cases of
monotonic nonlinear stability of the average oscillation amplitude A(t). The theorem is
proved. U

Remark 1. If there are several inflection points of the curve A(t), then the classification of stability
cases should be extended. Moreover, using the considered method, it is not difficult to obtain all the
extended classification cases of nonlinear monotonic stability of the average oscillation amplitude
A(t).

Next, we analyze the nonlinear monotonic instability of the change in the amplitude
of the average oscillations of the angle of attack.
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Definition 2. The nonlinear monotonic instability of the average amplitude of oscillations A(t)
is a change in the amplitude of oscillations such that, according to Equations (14) and (15), the
following conditions are simultaneously satisfied throughout the considered interval of variation of

the independent variable: C}i—? > 0; Cg—t‘? > 0 or %—? > 0; Gll% <0.
The following theorem about of the nonlinear monotonic instability of the average
oscillation amplitude A(t) is true.

Theorem 2. If the following conditions are satisfied: (2.1.) the initial amplitude is a positive
Ay > 0;(2.2.) the smooth function £ (t) in the Equations (13)—(15) is negative over the entire
interval values of an independent variable (f1 < 0); (2.3.) the smooth function A(t) has at most one
inflection point over the entire interval values of independent variable, then there are four different
cases of nonlinear monotonic instability of the average oscillation amplitude A(t) over the entire
interval values of an independent variable.

Proof of Theorem 2. Let us consider all characteristic cases of nonlinear monotonic
instability.

Case 5. When Ay > 0, f1 < 0 and f., > 0, we obtain the case of monotonic nonlinear
instability of the amplitude A(t), leading to a monotonic increase in the given amplitude
with unchangeable downward convexity.

Case 6. When Ay > 0, f1 < 0 and f., < 0, we obtain the case of monotonic nonlinear
instability of the amplitude A(t), leading to a monotonic increase in this amplitude with
unchangeable upward convexity.

Cases 5 and 6 describe nonlinear monotonic instability A(t) in the absence of inflection
points. It is obvious that there are no other cases of nonlinear monotonic instability A(t) on
average without the implementation of inflection points.

Next, we write the cases of implementation of nonlinear monotonic instability A(t) on
average with the formation of only one inflection point over the entire interval of change of
the independent variable. Obviously, there are only two cases.

Case 7. In the initial interval, there is a monotonous increase in the amplitude A(t)
(at f1 < 0, Ag > 0) with unchangeable downward convexity (at f, > 0). Further, one
inflection point of the curve A(t) (f2(t) = 0) is formed. Subsequently, a monotonous
increase (at f1 < 0) in amplitude A(t) occurs with unchangeable upward convexity (at
fy <0).

Case 8. In the initial interval, there is a monotonous increase in the amplitude A(t) (at
fq <0, Ag > 0) with unchangeable upward convexity (at f, < 0). Further, one inflection
point of the curve A(t) (f(t) = 0) is formed. Further, a monotonous increase (at f; < 0) in
amplitude A(t) occurs with unchangeable downward convexity (at f-, > 0).

Thus, if the conditions 2.1-2.3 are satisfied, there are only four cases of nonlinear
monotonic instability of the average oscillation amplitude A(t). Obviously, there are no
other cases of monotonic nonlinear instability of the average oscillation amplitude A(t).
The theorem is proved. [

Remark 2. If there are several inflection points of the curve A(t), then the classification of instability
cases needs to be extended. Arguing in a similar way, one can obtain all the required cases of the
extended classification with a nonlinear monotonic instability of the oscillation amplitude A(t).

Remark 3. Therefore, the considered method allows finding all four cases of nonlinear monotonic
stability of the average amplitude of the angle of attack. In addition, this method also makes it
possible to find all four cases of nonlinear monotonic instability of the average amplitude of the angle
of attack, that differ from the corresponding cases of stability by the sign of the first derivative. In
this sense, one should talk about a symmetrical quantity (with respect to the zero magnitude of the
first average derivative ‘11—‘? = 0) in different cases of stability and instability.
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3. Numerical Results

Let us analyze the characteristic numerical results describing the nonlinear monotonic
stability and instability of the oscillations of the angle of attack (on average) during the
motion of a symmetrical spacecraft in the Martian atmosphere. In this case, we will apply
the expressions (13)-(15), which describe the change in the amplitude of oscillations, and
its average derivative of the first, as well as the second order.

Let the mass of the small descent spacecraft equal m = 40 kg, the length of the spacecraft
is 0.7 m. Let us introduce the notation ¢ = f1 /47t. The initial speed of the spacecraft is
V(0) = 3.54 kms~!. The initial value of the average density of the Martian atmosphere
is 1077 kgm 3. The principal central moments of inertia of the spacecraft are I = I, =
I, = 4.58 kgm?. The values of the aerodynamic coefficients Cyy, M are similar to the results
contained in the work [24].

Figures 2—4 show characteristic numerical results demonstrating the nonlinear mono-
tonic stability of the average oscillation amplitude, obtained when the condition f-; > 0
is true. In these figures, the blue line shows the change in the value of the average value
of the angle of attack, obtained from the numerical solution of Equation (12). In this case,
Figures 2—4 in the form of a solid red line show the change in the actual value of the

amplitude of the angle of attack, obtained from the numerical solution of Equations (10)
and (11).

0.3

—— Averaged value
— Actual valie

Amplitude (rad)

0.4

Time (s)

Figure 2. The evolution in the amplitude of the angle of attack at f.; > 0 and s = 2.4 m?.

These figures are obtained with different values of the maximum cross-sectional area
s. All three cases presented in Figures 2—4 demonstrate nonlinear monotonic stability at
small values of the average amplitude of oscillations of the angle of attack and differ only
in the convexity type. Therefore, these figures show the implementation of aerodynamic
damping of the angle of attack during the descent of a symmetrical spacecraft in the Martian
atmosphere. In particular, in Figure 2, the curve of the monotonic change in the amplitude
of oscillations is convex downwards. This numerical result corresponds to Case 1. In
Figure 3, the curve of monotonic decrease in the amplitude of oscillations changes the
character of the convexity from upward to downward convexity.

In this case, an inflection point is formed on the curve A(t). This numerical result is
similar to Case 4. In Figure 4, the curve of monotonic decrease in the oscillation amplitude
is convex upwards, which corresponds to Case 2. Thus, an increase in the maximum cross-
section of a small symmetrical spacecraft leads to an increase in aerodynamic damping.
In this case, the nonlinear monotonic stability of the amplitude of the angle of attack is
preserved. However, the nature of this resilience is changing.
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03 — Averaged value

—— Actual value

Amplitude (rad)

0.4

Time (s)

Figure 3. The evolution of the amplitude of the angle of attack for f; > 0 and s = 0.8 m?.

0.y —— Averaged value
— Actual value
— 0.2
<
=
0.5
0 100 200 300

Time (s)

Figure 4. The evolution of the amplitude of the angle of attack for f.; > 0 and s = 0.4m?.

Indeed, Figures 2—4 show that for different values of the area s, different characteristic
cases of stability are realized. In addition, with an increase in the area s, the damping of the
angle of attack of a symmetrical spacecraft accelerates.

Figures 5-7 show characteristic numerical results demonstrating the nonlinear mono-
tonic instability of the average oscillation amplitude. At the same time, the mass and length
of the spacecraft remained unchanged. In these figures, the solid blue line also shows the
change in the average value of the angle of attack, obtained from the numerical solution of
Equation (12). At the same time, in Figures 5-7, in the form of a solid red line, the change
in the actual value of the amplitude of the angle of attack, obtained from the numerical
solution of Equations (10) and (11), is also shown. These figures are also obtained for
different values of the maximum cross-sectional area s of a symmetrical spacecraft. Thus,
these figures show the implementation of aerodynamic anti-damping of the angle of attack
during the descent of the symmetrical spacecraft in the Martian atmosphere. The results
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of [25] were used to model the characteristics of the Martian atmosphere. At the same
time, in Figures 5-7, the curves of a monotonous increase in the amplitude of oscillations
are convex downwards. These numerical results correspond to Case 5. However, from a
technical point of view, Figures 5-7 show different situations. As expected, the stability of
the oscillation amplitude depends on the sign of the damping coefficient f.;. Namely, in
Figure 5, a monotonous increase in the amplitude of the oscillations of the angle of attack
to a value of 1.5 radians occurs during a time shorter than the interval of uncontrolled
movement of the spacecraft in the atmosphere. This interval of uncontrolled descent of the
spacecraft can be 4 min. In this case, the symmetrical spacecraft will be deployed to the
oncoming flow by the side unprotected from overheating, and overheating of the onboard
equipment may occur. In addition, large values of the angle of attack can contribute to
an accident associated with the entanglement of parachute lines that unfold after the end
of the uncontrolled descent stage. Figure 6 considers the case when the amplitude of the
angle of attack does not reach 1.5 radians during the entire four-minute time span of the un-
controlled descent of the spacecraft. Consequently, overheating of the onboard equipment
does not occur. However, a monotonous increase in the oscillation amplitude leads to the
departure of the angle of attack from the region of small values, not exceeding 0.3 radians.
It is known that for this reason, an emergency situation with the brake parachute system
can also be observed. Note that the considered model does not take into account the process
of deploying the parachute braking system. The case of monotonic nonlinear instability,
shown in Figure 7, is the most favorable from a practical point of view. In this case, of
course, the comparison is only with cases reflecting nonlinear instability.

—— Averaged value
—— Actual value

Amplitude (m)

Time (s)

Figure 5. The evolution of the amplitude of the angle of attack for f; < 0 and s = 1.2m?.

Indeed, in this case, the amplitude of the angle of attack changes insignificantly during
the entire four-minute time interval of the uncontrolled descent of the spacecraft in the
Martian atmosphere. For this reason, one should not expect both overheating of the internal
equipment and an emergency situation in the operation of the parachute system.

In general, it also follows from Figures 2—7 that the numerical results presented in
them are reliable. Indeed, in these figures, small fluctuations of the actual values of the
amplitude of the angle of attack relative to the average values of this amplitude are observed.
Therefore, these numerical results are in full agreement with the described method for
analyzing nonlinear monotonic stability.
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—— Averaged value
— Actual value

Amplitude (rad)

Time (s)

Figure 6. The evolution of the amplitude of the angle of attack for f4 < 0 and s = 0.35m?.

L5

—— Averaged value
— Actual value

Amplitude (rad)

Time (s)

Figure 7. The evolution of the amplitude of the angle of attack for f; < 0 and s = 0.25m?.

It is known that in [26], the influence of various combinations of geometric parameters
of a conical-shaped symmetrical spacecraft with spherical bluntness descending in the
Earth’s atmosphere on its stability in terms of the angle of attack was considered. It should
be noted that the numerical results obtained in this article do not contradict these known
results but develop them from the point of view of both the analysis of nonlinear monotonic
stability and the study of the nonlinear monotonic instability of the amplitude of the angle
of attack of a symmetrical spacecraft descending in the Martian atmosphere.

4. Discussion

The paper considers a new method for the asymptotic analysis of the nonlinear mono-
tonic stability of the amplitude of plane oscillations in one dynamical system. The presented
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method is based on the use of the method of variation of an arbitrary constant, the method
of averaging, and the method of mathematical study of the function of one independent
variable. In fact, this method is based on the analysis of the signs of the first and sec-
ond derivatives of the desired approximate analytical function. At the same time, it was
assumed that the resulting approximate analytical function, which describes the change
in the amplitude of oscillations in the considered dynamic system, is defined and twice
continuously differentiable over the entire interval of change in the independent variable.
Moreover, the obtained approximate analytical function describes the nonlinear and mono-
tonic evolution of the oscillation amplitude over the entire interval of the independent
variable. In the traditional problem statement, the problem of studying the stability of
a trivial solution to the original equation, in particular, requires obtaining an analytical
solution to this differential equation that describes the change in the angle of attack. The
application of this and other traditional approaches to the study of stability in this problem
is difficult due to the variability and nonlinearity of the aerodynamic coefficients included
in this equation. However, the use of the considered method makes it possible (without
solving the initial equation) to reveal the characteristic features of the nonlinear evolution
of the angle of attack amplitude, and to determine all cases of nonlinear monotonic stability
(instability) of the angle of attack amplitude caused by small aerodynamic damping (anti-
damping). Both, the four characteristic cases of nonlinear monotonic stability of oscillations
and the four characteristic cases of nonlinear monotonic instability of oscillations of the
oscillation amplitude, were found in the work. This number of characteristic cases is
precisely determined under the assumption that the investigated approximate analytical
function has no more than one inflection point over the entire range of the independent
variable. It should be noted that the described method can be extended to the cases of
realization of any finite number of inflection points. Naturally, in this case, the exact
number of characteristic cases obtained by this method will be more than considered in
the article. It should be noted that a symmetrical quantity of different cases of stability
and instability was obtained, which are located on opposite sides of the zero value of the
first average derivative of the angle of attack. Furthermore, this method can be used to
analyze the nonlinear monotonic stability of the average oscillation amplitude in dynamic
systems with one fast and several slow variables in the non-resonant case. In addition, it is
of both scientific and practical interest to generalize the method described in this work for
studying the monotonic nonlinear stability of average oscillations, as applied to dynamic
systems with two or more fast variables. These results are beyond the scope of this article
but may be considered in future publications. In this paper, the described method is directly
applied to the problem of nonlinear monotonic aerodynamic damping of the amplitude
of the oscillations of the angle of attack during the descent of a symmetrical spacecraft
in the atmosphere, which has a segmental-conical shape. The obtained numerical results
correspond to the characteristic cases described in the method. Moreover, these numerical
results do not contradict the known results.
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