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Abstract: Complex dynamic services and heterogeneous network environments make the asymmet-
rical control a curial issue to handle on the Internet. With the advent of the Internet of Things (IoT)
and the fifth generation (5G), the emerging network applications lead to the explosive growth of
mobile traffic while bringing forward more challenging service requirements to future radio access
networks. Therefore, how to effectively allocate limited heterogeneous network resources to improve
content delivery for massive application services to ensure network quality of service (QoS) becomes
particularly urgent in heterogeneous network environments. To cope with the explosive mobile
traffic caused by emerging Internet services, this paper designs an intelligent optimization strategy
based on deep reinforcement learning (DRL) for resource allocation in heterogeneous cloud-edge-end
collaboration environments. Meanwhile, the asymmetrical control problem caused by complex dy-
namic services and heterogeneous network environments is discussed and overcome by distributed
cooperation among cloud-edge-end nodes in the system. Specifically, the multi-layer heterogeneous
resource allocation problem is formulated as a maximal traffic offloading model, where content
caching and request aggregation mechanisms are utilized. A novel DRL policy is proposed to im-
prove content distribution by making cache replacement and task scheduling for arriving content
requests in accordance with the information about users’ history requests, in-network cache capacity,
available link bandwidth and topology structure. The performance of our proposed solution and its
similar counterparts are analyzed in different network conditions.

Keywords: resource allocation; cloud-edge-end cooperation networks; deep reinforcement learning;
in-network caching; request aggregation

1. Introduction

The emerging network applications (e.g., HD streaming media transmission, multi-
player online cloud games) have led to the explosive growth of mobile traffic while bringing
forward more challenging service requirements to future radio access networks, such as
low-latency content delivery, efficient task offloading, massive user access, asymmetrical
control and so on [1,2]. It is difficult for mobile cloud computing (MCC) to tackle these
challenges due to the centralized service paradigm [3]. Therefore, how to effectively al-
locate limited heterogeneous network resources to improve content delivery for massive
application services to ensure network quality of service (QoS) becomes particularly urgent
in next-generation wireless networks [4,5].

With the advent of the Internet of Things (IoT) and the fifth generation (5G), mobile
edge computing (MEC) has attracted great attention as a rising paradigm by integrating
computational resources and caching capacities of the mobile edge networks [6]. MEC
provides an ultra-low latency and high bandwidth network service environment to meet
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the significant service requirements by pushing network functions towards access net-
works [7,8]. Li et al. [9] designed a collaborative multi-tier framework in mobile edge
networks to offload duplicated traffic from mobile users. Moreover, Li et al. [10] proposed
a hierarchical edge-end cooperation strategy to reduce the central network traffic pressure
and transmission delay. Wang et al. [11] presented a scalable edge computing architecture
in heterogeneous vehicular networks to promote content distribution. To meet the rich
flexibility of different mobile users’ demands, Chen et al. [12] proposed a comprehensive
framework consisting of a resource-efficient computation offloading mechanism for the
users and a joint communication and computation resource allocation mechanism for the
network operator. In [13], the resource allocation and computation offloading of a cloud-
MEC collaborative were studied and a game-theoretic collaborative computation offloading
scheme was proposed to minimize users’ energy consumption while satisfying the users’
computation execution time constraint. The application of artificial intelligence (AI) to MEC
can further improve network performance due to the enhanced data processing capabilities,
especially in time-varying and complicated environments [14–16]. Li et al. [17] presented a
heterogeneous MEC network based on reinforcement learning (RL) to optimize resource al-
location in the wireless system. Khoramnejad et al. [18] discussed a DRL-based joint traffic
offloading and resource management scheme to promote content delivery in MEC-assisted
networks. Xu et al. [19] integrated collaborative caching and DRL to build an intelligent
edge caching framework to reduce redundant content and transmission delay. Wu et al. [20]
presented a computation offload scheme for dynamic resource allocation based on DRL to
optimize computing performance and energy consumption in MEC systems.

Given that the limited computing and resource capacity of edge servers make MEC
difficult to efficiently improve content delivery and support the multiple network re-
quirements, in this article, we present a DRL-driven intelligent optimization scheme for
resource allocation, where content caching and request aggregation mechanisms are con-
sidered in cloud-edge-end cooperation networks. Meanwhile, the asymmetrical control
problem caused by complex dynamic services and heterogeneous network environments
is discussed and overcome by distributed cooperation among cloud-edge-end nodes in
the system.

The major contributions of this article are summarized as follows.

• We formulate the optimal resource allocation problem as a maximal traffic offloading
model in heterogeneous cloud-edge-end cooperation environments, where content
caching and request aggregation mechanisms are utilized to ameliorate the situation
of network content redundant transmission.

• We propose a novel DRL policy to improve content distribution by making cache
replacement and task scheduling rely on the information about users’ history requests,
in-network cache capacity, available link bandwidth and topology structure.

• We evaluate the performances of the proposed solution compared with conventional
and baseline solutions in different network environments. The simulation results
prove the effectiveness of the proposed mechanism and strategy.

The remainder of this article is organized as follows. We describe the system model
and formulate the optimization problem in Section 2. Section 3 discusses a new DRL-
driven cache replacement and task scheduling scheme. Finally, performance evaluations
are conducted and analyzed in Section 4, and conclusions are given in Section 5.

2. System Model

In this section, we introduce the system models of cloud-edge-end cooperation envi-
ronments and content popularity, and design a maximal traffic offloading model to describe
resource allocation. The notations for key model parameters for this paper are summarized
in Table 1.
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Table 1. Notations for key model parameters.

Symbols Notations

Vim, Vim Number and set of MCs accessed to the ith BS
Vi, Vi Number and set of adjacent BSs of BS i
B, B Number and set of BSs in the system
F, F Number and set of different network contents

C Maximal cache size of the MC or BS
Qi Maximal queue capacity of node i
lij Network link from node i to node j
Lij Maximal bandwidth about link lij
sk File size of content k
Xk

i Boolean variable indicating whether content k is cached at node i
Pk

i Boolean variable indicating whether content k is in the queue of node i
Yim,in Boolean variable indicating whether there is an indirect link between MC m and MC n accessed to BS i

Zi,j Boolean variable indicating whether there is a direct link between BS i and BS j
λk Request arrival rate about content k

2.1. Network Model

A multi-layer cloud-edge-end cooperation network includes mobile clients (MCs),
base stations (BSs) and content providers (CPs) as shown in Figure 1. In this architecture,
all the contents that MCs are interested in are stored in CPs, and MCs and BSs have limited
caching capacity. We try to explore the potential of this network and present the basic
properties of various nodes by abstracting system topology as a directed graph G = (V ,L).
Notably, the sets of network nodes and links are denoted by V and L, respectively.

Cloud  Computing

Center

Figure 1. Network topology model of of multi-layer cloud-edge-end environments.

In the hierarchical network model, the ith BS is followed by Vim MCs. The maximal
cache size and request queue length of the ith BS are denoted by Ci and Qi, respectively.
Similarly, the maximal storage capacity and request queue length of the mth MC at the ith
BS are represented by Cim and Qim. We assume that each link is two-directional connected,
where the maximal fronthaul and backhaul bandwidths from node i to node j are denoted
by Lij and Lji, respectively, and the network link between node i and node j is expressed by
lij. Yim,in is a boolean variable indicating whether there is an indirect network link between
MC m and n accessed to BS i. Yim,in = 1 means that the indirect network link between
MC m and n accessed to BS i exists, and 0 otherwise. Zi,j is a boolean variable indicating
whether there is a direct network link between BS i and BS j. Zi,j = 1 means that the direct
link lij exists, and 0 otherwise.
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2.2. Content Popularity Model
In our hypothesis, there are F different kinds of network contents in the cloud-edge-

end environments. The required cache space of the kth content in the file set F is denoted
by sk. Xk

i is a boolean variable indicating whether content k is cached at node i. Xk
i = 1

means that node i caches content k, and 0 otherwise. Pk
i is a boolean variable indicating

whether content k is in the queue of node i. Pk
i = 1 means that the queuing system of

node i has content k, and 0 otherwise. We use the Zipf distribution model to describe
content popularity and assume the popular content in descending order from 1 to F [21].
The request probability of the kth content, represented by pk, can be shown as

pk =
r−α

k

∑F
i=1(r

−α
i )

, ∀k ∈ F , (1)

where the rank of content k is denoted by rk and skewness factor is expressed by α. A larger
value of α means that more popular contents are requested by MCs in the system.

2.3. Problem Formulation

In this part, we analyze the optimal resource allocation problem by maximizing
offloaded traffic in cloud-edge-end cooperation network environments. However, as shown
in [12,22,23], the optimal resource allocation problem with large-scale concurrent requests
based on cloud-edge-end cooperation network environments is NP-hard even without
considering the mobile behaviors of network users. From the perspective of engineering,
we delve into the request processing of a single request to maximize its traffic offloading
with real-time network resource constraints, thus transforming the optimal overall network
resources allocation into maximizing offloaded traffic of each request [24]. Meanwhile,
the formulated problem is a Mixed-Integer Non-linear Programming (MINLP) problem,
which is NP-hard. To tackle this problem, we decompose it into simpler subproblems for
reaching optimal in-network cache status and determining a suitable scheduling algorithm,
respectively [25]. Then, the offloaded traffic is modeled under different request processing
ways in the following discussions.

For a request task sent from the mth MC of BS i to obtain kth content, the caused local
offloaded traffic is written as

f k
im = (Xk

im + Pk
im − Xk

imPk
im)λ

k
imsk, (2)

where λk
im is the arrival rate about content request k of the mth MC at BS i.

If the request task for kth content is not satisfied by the mth MC of BS i, the offloaded
traffic at the ith BS is expressed as

f k
i = (Xk

i + Pk
i − Xk

i Pk
i )λ

k
imsk. (3)

If the request task for kth content is not satisfied at the ith BS, it will be routed to the
nth indirect MC of the ith BS. The offloaded traffic at the nth MC of BS i is written as

f k
in = (Xk

in + Pk
in − Xk

inPk
in)Yim,inλk

imsk, (4)

where Vim is the set of MCs at the ith BS.
If the request task for kth content is not satisfied at BS i and its accessed MCs, it will be

routed to the neighboring BSs. The offloaded traffic of the neighboring BSs about BS i to
process the content request k is written as

f k
j = (Xk

j + Pk
j − Xk

j Pk
j )Zi,jλ

k
imsk, (5)

where Vi is the set of the neighboring BSs about BS i.
Generally speaking, for a MC, if the required content is cached at the local terminal or

the same request task is aggregated in the MC’s queue, the request will be processed by the
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local MC. Otherwise, the request task will be routed to the local direct BS, local indirect
MCs, neighboring BSs and cloud servers on the basis of static cooperative routing (SCR) as
shown in Algorithm 1 [9].

Therefore, the offloaded traffic caused by the request task for kth content sent from the
mth MC of BS i, denoted by f k

i,m, can be written as in Equation (6) (on the top of the next
page). Based on Equation (6), the maximal offloaded traffic in heterogeneous cloud-edge-
end cooperation environments can be formulated as Equation (7), where optimal caching
status and routing decisions are made to promote content delivery.

f k
i,m = f k

im +

(
1−

f k
im

λk
imsk

) f k
i +

(
1−

f k
i

λk
imsk

) ∑
n∈Vim\m

f k
in + ∏

n∈Vim\m

(
1−

f k
in

λk
imsk

)
∑

j∈Vi

f k
j

 (6)

max
Xk ,Pk

∑
i∈B

∑
m∈Vim

∑
k∈F

f k
i,m

s.t. C1 : ∑
k∈F

Xk
imsk ≤ Cim, ∀m ∈ Vim, i ∈ B

C2 : ∑
k∈F

Xk
i sk ≤ Ci, ∀i ∈ B

C3 : ∑
k∈F

Pk
im ≤ Qim, ∀m ∈ Vim, i ∈ B

C4 : ∑
k∈F

Pk
i ≤ Qi, ∀i ∈ B

C5 : ∑
k∈F

Xk
i λk

imsk ≤ Lim, ∀m ∈ Vim, i ∈ B

C6 : ∑
k∈F

Xk
inYim,inλk

imsk ≤ min(Lni, Lim),

∀m, n ∈ Vim, i ∈ B
C7 : ∑

k∈F
Xk

j Zi,jλ
k
imsk ≤ min(Lji, Lim), ∀j ∈ Vi, i ∈ B

C8 : ∑
j∈Vi

Xk
j Zi,j ≤ 1, ∀i ∈ B, k ∈ F (7)

where B is the set of BSs in the system.
In the constraints, C1 − C2 represent that the amount of contents cached in MCs and

BSs cannot exceed their maximal cache capacities Cim and Ci. C3 − C4 indicate that the
number of content requests served by MCs and BSs cannot exceed their maximal queue
lengths Qim and Qi. Moreover, C5 means that the traffic on the link between MC m and its
accessed BS i cannot exceed its maximal available bandwidth. C6 means that the traffic on
link lni and link lim cannot exceed their maximal available bandwidths. C7 indicates that
the traffic on link lji and link lim cannot exceed their maximal available bandwidths. C8
means that the complementary cache mechanism is used to increase cache hit rate in the
neighboring BSs.
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Algorithm 1: Static Cooperative Routing Process for a Content Request
Input: Network topology G, content request k, the network environment

parameters
Output: Routing path

1 if the imth MC receives the content request k then
2 Satisfy the request if Xk

im = 1||Pk
im = 1.

3 else
4 if the link bandwidths and queue capacities are enough for content request k then
5 Route to the ith BS and satisfy it if Xk

i = 1||Pk
i = 1.

6 If not yet satisfied, check the following options:
1. Route to the inth indirect MC and satisfy it if Xk

in = 1||Pk
in = 1.

2. Route to the jth neighboring BS and satisfy it if Xk
j = 1||Pk

j = 1.

3. Download the content from the cloud.

7 else
8 Request packet loss
9 end

10 end
11 Generate the routing path.

The maximal offloaded traffic model (Equation (7)) in heterogeneous cloud-edge-end
cooperation environments is an MINLP problem, which is decomposed into the subprob-
lem of reaching optimal in-network cache status and determining a suitable scheduling
algorithm. Generally, the enumeration cache placement and traversal routing algorithm
can be applied to solve this problem, which leads to an optimal solution. However, this
solution brings high computational complexity and computational time [13]. A DRL-driven
intelligent scheme with low computation complexity is presented to analyze the maximal
offloaded traffic model (Equation (7)) in the next section. Moreover, it can be used to
obtain a optimal solution compared with the scheme with the common cache replacement
strategies and traversal routing algorithm SCR in Section 4.

3. DRL-Based Caching Replacement and Task Scheduling
3.1. The DRL Framework

In the previous section, it was assumed that the optimal caching status and routing
decisions are already made in cloud-edge-end environments to obtain the optimal resource
allocation. The maximal offloaded traffic can be reached optimally by exploring all network
nodes and making cache placement by way of enumeration. Nevertheless, the complexity
of the exhaustive search method is high, and it is impossible to output real-time decisions
in practical scenarios [26–28]. In recent years, the superiority of RL has been widely verified
in obtaining the optimal action decisions based on the current situation, it becomes compu-
tationally prohibitive for decision-making in large-scale environments [29,30]. DRL, as a
advanced combination of RL with deep learning (DL), can solve the curse of dimension by
using the deep neural network (DNN) and automatically learn the feature representations
from the raw collected data with high dimension network [31]. As a branch of DRL, Deep Q
Network (DQN) is a typical model-free method that is apt for finding the optimal solution
in complex unknown environments. In detail, DQN can efficiently handle the complex
coupling relationships among constraint conditions, scheduling objectives and environ-
mental parameters of cloud-edge-end network to obtain the optimal decision with an
acceptable time. Motivated by this, in this section, we propose a new DQN policy to make
optimal caching replacement and task scheduling on the basis of bygone users’ request
behavior and available resources. Moreover, the proposed DQN solution can efficiently
solve the asymmetrical control problem when satisfying the complex dynamic services in
the heterogeneous network environments.



Symmetry 2022, 14, 2120 7 of 15

As shown in Figure 2, there are two DNNs in DQN, including the evaluation network
and the target network. The role of evaluation network is to output action value Q(st, at; ω)
by inputting state st at a time slot t. To avoid the decision algorithm falling into a local
optimal value, we can obtain the action by ε-greedy policy,

at =

{
arg max

at
Q(st, at; ω) with probability of ε

randomly select an action otherwise
(8)

where ω is the weights of the evaluation network. In our DQN policy, the back-propagation
(BP) and gradient descent algorithms are adopted to update the parameters of the eval-
uation network. The target network, which is reset as evaluation network every K
steps to promote the stability and convergence of algorithm, provides the target Q value
max
aj+1

Q′(sj+1, aj+1; ω−). The loss function can be calculated as

L(ω) = E
[(

rj + γ max
aj+1

Q′(sj+1, aj+1; ω−)−Q(sj, aj; ω)
)2
]

(9)

where ω− is the weights of the target network and rj is the reward value, which is provided
by an experience replay.

Experience 

Memory

Experience Replay

Cloud Center

Environment

w
-update     every 

K steps  Loss

Function

gradient descent

arg max ( , ; )
t

t t
a

Q s a w

s
t

Sampling

Evaluation 

Network

Target 

Network

Figure 2. The framework of Deep Q Network in our system.

3.2. DQN-Based Caching Replacement and Task Scheduling

In our model, the network state space st at time t consists of network topology G, the node
number nt that current request arrives at, caching status set Xnt = (X1

nt , X2
nt , . . . , XF

nt), request
queuing status set Pnt = (P1

nt , P2
nt , . . . , PF

nt) and maximal transmission bandwidth set Lnt ,i
and Li,nt , which can be written as st = {G, nt, Xnt , Pnt , Lnt ,i, Li,nt , ∀nt, i ∈ V}. The pur-
pose of the action at at time t is to update the caching state Xnt and choose the node
number of next hop nt+1 in the training stage, which can be denoted by
at = {Xnt , nt+1, ∀nt, nt+1 ∈ V}.

To obtain the optimal caching status and request routing, an efficient reward function
is designed in our DRL model, which integrates environmental feedback signals with the
optimization objective. In the process of routing, the inverse of a link bandwidth will be
sent to the agent as feedback signals to promote load balance of network traffic. The agent
will receive a reward signal depending on network traffic and content popularity when
the request is satisfied. If the request is met at the edge of network (e.g., local MC, local
BS, local indirect MCs and neighboring BSs), the agent will receive more reward to reduce
content transmission latency. If the request packet is lost in the routing process, the agent
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cannot obtain a reward. Therefore, the corresponding reward of the solving process is
defined as

rt =


1

Lnt ,nt+1

if request k is not satisfied at nt+1

f k
i,m · pk · δ if request k is satisfied at nt+1

(10)

where δ is a decay factor indicating the influence of the type of network node on the
current reward. Hence, the desired purpose of our DQN solution is to obtain the optimal
caching status and task scheduling scheme based on current network environments through
maximizing the expected accumulated reward rt. The training process of DQN-based
caching replacement and task scheduling is given in Algorithm 2.

Algorithm 2: Training process of DQN-Based Caching Replacement and Task
Scheduling

1 Initialize experience replay memory D.
2 Initialize the evaluation network Q with weights ω.
3 Initialize the target network Q′ with weights ω−.
4 for episode=1 to ne do
5 Reset the cloud-edge-end cooperation environments.
6 for request=1 to nr do
7 Receive a request task and observe state st.
8 With probability ε select a random action at; otherwise, select

at = arg max
at

Q(st, at; ω).

9 Execute at in emulator and observe immediate reward rt and next state
st+1.

10 Package (st, at, rt, st+1) and store it into D.
11 Select samples (sj, aj, rj, sj+1) from D randomly and feed into the DNNs.
12 Then, the weights of evaluation network are optimized by using BP and

gradient descent algorithms with respect to the network parameter ω to
minimize the loss

13 E
[(

rj + γ max
aj+1

Q′(sj+1, aj+1; ω−)−Q(sj, aj; ω)
)2
]
.

14 Reset the network weights ω− of Q′ after every k steps via ω− ← ω.
15 end
16 Make caching replacement on the basis of bygone users’ request behavior.
17 end

3.3. Complexity Analysis

In this part, the complexity of DQN-based caching replacement and task scheduling
is analyzed. According to the process of Algorithm 2, we assume that the operation time
of initializing experience replay and DNNs is denoted by t0 and the operation time of
resetting network environments is represented by t1. Moreover, the program operation
time of task scheduling and caching replacement are expressed by t2 and t3, respectively.
Thus, the execution time of DQN algorithm can be written as

TDQN = t0 + (t1 + t2 × nr + t3)× ne (11)

= t0 + (t1 + t3)× ne + t2 × nr × ne

= (t1 + t3)× ne + t2 × nr × ne

= t2 × nr × ne

= nr × ne
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where nr is the number of user requests in each episode and ne is the number of episodes.
As shown in Equation (11), the values of nr and ne have a great influence on the execution
time. We can ignore the influence of the constant term and the coefficient when nr and ne
are very large; thus, the time complexity of this algorithm is calculated as O(nrne).

4. Simulation and Results

In this section, we evaluate the performance of the proposed DRL-based intelligent
optimization strategy in cloud-edge-end networks and discuss the obtained results with
different strategies.

4.1. Simulation Setting

To prove the effectiveness of the proposed strategy, we compare the performance
of three conventional existing solutions and two baseline approaches, referred to as
“LRFU+SCR”, “LFU+SCR”, “LRU+SCR” , “Popularity+SCR” and “NoCache+SCR” in dif-
ferent network environments. In “NoCache+SCR”, the cache is not deployed at MCs or BSs,
and all the contents are fetched from cloud servers. In “Popularity+SCR”, the multi-layer
cooperative caching is initially set based on the known content popularity distribution,
which can improve the caching and routing efficiency [32]. “LRFU+SCR”, “LFU+SCR” and
“LRU+SCR” utilize the most widely used three online caching replacements to promote
traffic offloading. In “LRU+SCR” and “LFU+SCR”, MCs and BSs make cache replacement
with the Least Recently Used (LRU) and the Least Frequently Used (LFU) replacement
strategies. In “LRFU+SCR”, MCs and BSs adjust their caching states with Least Recently
Frequently Used (LRFU) replacement strategy, which integrates the advantages of LRU and
LFU to improve cache hit rate [33]. The task scheduling algorithm of above comparison
schemes are made by SCR. In our proposed scheme, the caching replacement and schedul-
ing decisions are driven by DQN policy, which can realize optimal resource allocation in
accordance with bygone users’ request behavior and current environments. Meanwhile,
the request aggregations are considered to solve the problem of redundant transmission in
the simulation.

We use MATLAB and Python to implement a simulator that constructs the hierarchi-
cal cloud-edge-end network, in which the cloud is connected to six BSs and each BS is
connected to two MCs, as modeled in Section 2. Based on [21,24,34], we assume that the
skewness factor of Zipf distribution varies from 0.4 to 1.6 and cache capability of network
node is defined as a percentage from 0.1% to 1%, which represents the proportion of node
cache size and different network content number. All codes of conventional and baseline so-
lutions are written in MATLAB(9.9.0). To implement the DQN algorithm, two DNNs were
configured with the same settings, where each of them consisted of four fully connected
layers, two of which were hidden layers with 32 neurons, respectively. The activation
function we adopted for all hidden layers was the sigmoid for which the range was (0, 1).
The RMSprop optimizer method was used to learn the DNN weight with the given learning
rate. Besides, the coefficient of ε-greedy is set as 0.7, learning rate is chosen as 0.1 and
discount factor is defined as 0.9. We design that the reply memory size is 10,000 and batch
size is 32. The update interval of target network is set as 300 to promote the algorithm
convergence speed. All simulation results of our proposed scheme were obtained with
Tensorflow 2.0 on the Python 3.8 platform on a personal computer (AMD Ryzen 9 5900HX
with Radeon Graphics @3.3 GHz, 32 GB RAM).

4.2. Result Discussion

As shown in Figure 3, when caching capability increases, network nodes are able to
store more network contents, which enhances the ability of content delivery. In this process,
the DQN-based strategy shows superior performance and the performance gap between
the proposed solution and others is enlarged simultaneously. The main reason is that DQN
policy can make optimal routing decisions with current network environments and predict
future requests based on users’ request behavior to update the cache. Similarly, the gap
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between “Popularity+SCR” and online solutions increases due to the fact that network
nodes in online solutions prefer to store some short-term rather than long-term popular
network contents according to the users’ request behavior. “LRFU+SCR” is close to “Popu-
larity+SCR” and better than “LFU+SCR” and “LRU+SCR”. The reason is that “LRFU+SCR”
can adjust the caching contents by considering both the time and frequency characteristics
of network requests, which reduces the negative impact caused by short-term request
behavior and improves cache hit rate. With the increase in cache size, the performance of
“NoCache+SCR” remains constant because BSs and MCs can only offload mobile traffic
through the request aggregation mechanism.

As shown in Figure 4, when content popularity varies, more requests are sent by
MCs to obtain popular network files in the system, which greatly increases the number of
node cache hit and makes the performance of the models with in-network caching closer.
For “NoCache+SCR”, its performance has a significant improvement owing to request ag-
gregation mechanism. With the increase in content popularity, the DQN-based strategy can
converge fast and offload more mobile traffic than other solutions. In this process, frequent
caching replacement can be gradually avoided, which bridges the performance disparity
between the intelligent caching based on DQN and other online caching replacements.
As content popularity grows, the advantage of intelligent caching and scheduling gets
diminishing, which makes “Popularity+SCR” perform close to the proposed solution.

Figure 3. Offloaded network traffic versus cache size.

Figure 4. Offloaded network traffic versus content popularity.
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As shown in Figure 5, the increasing number of different network contents indicates
that more unpopular contents are requested by network users, which deteriorates cache
hit rate of the solutions with limited storage capacity and efficiency of request aggrega-
tion in network nodes. When content diversity increases, the performance of in-network
caching solutions is significantly degraded while that of “NoCache+SCR” is slightly af-
fected. The reason is that most of the requests in “NoCache+SCR” can only be satisfied
in the cloud instead of by request aggregation. In this process, the DQN-based strategy
performs better than “Popularity+SCR” and other solutions. The reason is that DQN policy
can make better cache replacement and task scheduling to improve content delivery on the
basis of current cloud-edge-end environments.

Figure 5. Offloaded network traffic versus the number of different contents.

As shown in Figure 6, a larger request arrival rate indicates that more content requests
are sent in a slot, which improves popularity prediction in solutions with content caching
and request aggregation mechanisms. In this process, the problem of packet loss becomes
more serious due to the limited link bandwidth. When the request arrival rate increases,
offloading traffic of all the solutions is promoted with a slowing growth rate. When the
request arrival rate continues to grow and exceeds a certain value, the performance of
in-network caching solutions barely increases anymore. The reason is that more network
requests are lost and retransmitted in the routing process, which balances the influence
among packet loss and retransmission, cache hit rate and request aggregation. However,
the DQN-based strategy achieves the best performance among all solutions, because the
probability of packet loss can be relieved by optimally allocating network resources and
caching contents. The performance of “NoCache+SCR” is improved due to the growing
request aggregation.

The ability of network nodes to aggregate requests is mostly influenced by queue
capacity. When the request arrival rate of MCs is constant, as illustrated in Figure 7,
the offloading traffic of all solutions is promoted slowly with an increase in the maximum
queue length. Further, the performance of the DQN-based strategy is better than other
solutions since the effect of request aggregation and the packet loss of requests can be
greatly improved through intelligent task scheduling. When the queue length continues
to grow and exceeds a certain value, the offloading traffic of all the solutions is barely
increasing anymore, even beginning to decrease. This phenomenon shows that as queue
capacity increases, network performance tends to become saturated and the ability of
network nodes to aggregate requests barely improves, demonstrating that the average
queue length is steady at a given request arrival rate.
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Figure 6. Offloaded network traffic versus request arrival rate.

Figure 7. Offloaded network traffic versus queue length.

In the simulation, we set the learning rate as 0.1 in pursuit of a better convergence
effect and the number of training episodes is 300. As shown in Figure 8, we compare
the average reward of DQN policy in each episode under different caching capability of
network nodes. During the training episodes, the average reward can converge stably when
episode is about 40 and the success rate for meeting users’ requests by cloud-edge-end
cooperation is 75%, which demonstrates that DQN policy can quickly obtain the optimal
decision. Moreover, the average reward for each episode under different caching capability
was described by the traffic offloading. Hereby, a larger cache size indicates that more
popular contents can be stored in the cloud-edge-end environments, which improves
resource allocation and achieves more network reward.
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Figure 8. Reward versus cache size.

5. Conclusions

In this article, we presented a DRL-driven intelligent optimization strategy for resource
allocation in heterogeneous cloud-edge-end collaboration environments, where content
caching and request aggregation mechanisms are considered. We use a maximal traffic
offloading model to describe the issue of multi-layer heterogeneous resource allocation.
Then, a novel DRL policy was designed to improve content distribution and solve the
asymmetrical control problem by making cache replacement and task scheduling for
arriving content requests in accordance with the information about users’ history requests,
in-network cache capacity, available link bandwidth and topology structure. We evaluated
the performances of the proposed solution against both conventional and baseline solutions
in different network environments, The simulation results prove the effectiveness of the
proposed mechanism and strategy.

In future work, the mobile behaviors of network users and spectrum resource reuse
will be taken into consideration to make our proposed model more complete in practical
scenarios. The related multi-objective optimization (e.g., energy efficiency and response
latency) problems will be investigated and discussed to meet differentiated service re-
quirements of network users in cloud-edge-end cooperation networks. Moreover, full-
dimensional collaboration and sophisticated asymmetrical control will be investigated to
verify the system performance in more complicated environments.
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