

Correction: Popov, V.L. An Approximate Solution for the Contact Problem of Profiles Slightly Deviating from Axial Symmetry. *Symmetry* 2022, *14*, 390

Valentin L. Popov ^{1,2}

Correction

- ¹ Department of System Dynamics and Friction Physics, Technische Universität Berlin, 10623 Berlin, Germany; v.popov@tu-berlin.de
- ² National Research Tomsk State University, 634050 Tomsk, Russia

Text Correction

There were misprints in Equations (40), (65), (66), and (67) in the original publication [1]. The correct Equation (40) of the original publication is:

$$p(r,\varphi) = \frac{E^*}{\pi} \int_{r}^{a(\varphi)} \frac{\widetilde{a}(\varphi)}{\sqrt{\widetilde{a}(\varphi)^2 - r^2}} \frac{1}{\widetilde{a_0}} \frac{\mathrm{d}g_0(\widetilde{a_0})}{\mathrm{d}\widetilde{a}(\varphi)} \mathrm{d}\widetilde{a}(\varphi) = \frac{2}{\pi} E^* \left(2d \cdot \overline{\psi}\right)^{1/2} \sqrt{1 - \left(\frac{r}{a(\varphi)}\right)^2} \quad (40)$$

The correct form of Equations (65) of the original publication is:

$$\gamma(a) = a \int_{0}^{a} \frac{nr^{n-1}}{\sqrt{a^2 - r^2}} dr = \kappa_n a^n, \ \kappa_n = \int_{0}^{1} \frac{\zeta^{n-1} d\zeta}{\sqrt{1 - \zeta^2}} = \frac{\sqrt{\pi}}{2} \frac{n\Gamma(\frac{n}{2})}{\Gamma(\frac{n}{2} + \frac{1}{2})}$$
(65)

The correct form of Equations (66) of the original publication is:

$$\delta g_{\varphi}(a) = \kappa_n a^n \big(\psi(\varphi) - \overline{\psi} \big), \ \delta G_{\varphi}(a) = \kappa_n \frac{a^{n+1}}{n+1} \big(\psi(\varphi) - \overline{\psi} \big) \tag{66}$$

The correct form of Equation (67) of the original publication is:

$$a(\varphi) = a_0 \left(1 + \frac{n+2}{n(n+1)} \left(1 - \frac{\psi(\varphi)}{\overline{\psi}} \right) \right)$$
(67)

The author apologizes for any inconvenience caused and state that the scientific conclusions are unaffected. This correction was approved by the Academic Editor. The original publication has also been updated.

Reference

 Popov, V.L. An Approximate Solution for the Contact Problem of Profiles Slightly Deviating from Axial Symmetry. *Symmetry* 2022, 14, 390. [CrossRef]

Citation: Popov, V.L. Correction: Popov, V.L. An Approximate Solution for the Contact Problem of Profiles Slightly Deviating from Axial Symmetry. *Symmetry* 2022, *14*, 390. *Symmetry* 2022, *14*, 2108. https:// doi.org/10.3390/sym14102108

Received: 19 August 2022 Accepted: 30 September 2022 Published: 11 October 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).