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1. Introduction

Motivated by some facility location problems, Brešar, Henning and Rall [1–3] initiated
the study of the t-rainbow domination problem. The problem has been proven to be
NP hard, even for bipartite graphs or a chordal graphs [2]. This variation of the general
domination problem has already received a lot of attention from many researchers. The
considerable interest in domination problems [4] is based on various practical applications
on the one hand, and on expected (and usually proven) intractability on general graphs
on the other hand.

In [5], three-rainbow domination of generalized Petersen graphs P(6k, k) has been
extensively studied. Here, we continue this avenue of research to P(ck, k) for general c.

The rest of the paper is organized as follows. Definitions and some previously known
relevant facts are recalled in the Preliminaries section. Section 3 briefly summarizes related
previous work. Our main results are summarized in Section 4, which is followed by a long
section providing proof. The last section provides some ideas for future work.

2. Preliminaries
2.1. Generalized Petersen Graphs

Let G = (V(G), E(G)) be a simple graph. As usual, denote with V = V(G) a set of
vertices and with E = E(G) a set of edges. Edges in simple undirected graphs are pairs of
vertices, e = {u, v} ∈ E(G). (We often shorten this to uv instead of {u, v}). In such case,
we say that vertices u and v are neighbors. The set of all neighbors of a given vertex is
its neighborhood. The number of its neighbors is called the degree of a vertex. A graph is
three-regular or cubic if all vertices in V(G) are of the degree three. Graph H is an induced
subgraph of graph G if and only if V(H) ⊆ V(G) and for any pair of vertices u, v ∈ V(H),
{u, v} ∈ E(G) implies {u, v} ∈ E(H). As usual, the closed interval of integers is denoted
by [i, j] = {k ∈ N | i ≤ k ≤ j}.

For n ≥ 3 and k, 1 ≤ k ≤ n− 1, the generalized Petersen graph P(n, k) is a graph
on 2n vertices with V(P(n, k)) = {vi, ui | 0 ≤ i ≤ n − 1} and edges E(P(n, k)) =
{uiui+1, uivi, vivi+k | 0 ≤ i ≤ n − 1, }, where all subscripts are taken as modulo n.
This standard notation was introduced by Watkins [6] (see Figure 1). For convenience,
throughout the paper, all subscripts will be taken modulo n. Clearly, the set of vertices
U = {ui | 0 ≤ i ≤ n− 1} induces a cycle that is called the outer cycle, and when n = ck,
the set of vertices V = {vi | 0 ≤ i ≤ n− 1} induces k cycles called the inner cycles.
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Figure 1. A generalized Petersen graph P(n, k) (left) and another way of drawing P(ck, k) (right).

For later use, we introduce some more notation, which is convenient for study of
graphs P(ck, k). For i = 1, 2, . . . , c we define

Vi = {v(i−1)k, v(i−1)k+1, v(i−1)k+2, . . . , vik−1},

Ui = {u(i−1)k, u(i−1)k+1, u(i−1)k+2, . . . , uik−1},

V =
c⋃

i=1

Vi, U =
c⋃

i=1

Ui, V(P(ck, k)) = V ∪U.

Note that the subgraphs induced on Ui are paths, sections of the outer cycle, and
that every set Vi has a nonempty intersection with each of the inner cycles. The vertices of
the inner cycles are denoted by InnK = {vjk+K | j = 0, 1, 2, . . . , c− 1}, K ∈ [0, k− 1], and
OutK = {ujk+K | j = 0, 1, 2, . . . , c− 1} is the set of neighbors of InnK.

It is known that the generalized Petersen graphs P(n, k) are three-regular unless k = n
2 ,

and that are highly symmetric [6,7]. Petersen graphs P(n, k) and P(n, n− k) are isomorphic,
so it is natural to restrict our attention only to P(n, k) with n ≥ 3 and k, 1 ≤ k < n

2 . It is
convenient to implicitly make use of another symmetrical feature of Petersen graphs. The
mapping which maps vi 7→ vi+1 and ui 7→ ui+1 is well known to be an automorphism,
from which it follows that any rotation along the long cycle is an automorphism.

2.2. Rainbow Domination and Singleton Rainbow Domination

Starting with a given graph G and a positive integer t, the aim is to assign a subset of
the set {1, 2, · · · , t} of colors to every vertex of G, such that each vertex with an empty set
assigned has all t colors in its neighborhood. Such an assignment of a graph G is called
a t-rainbow dominating function (in short, tRD function, tRDF) of the graph. The weight
of assignment g, a tRD function of a graph G, equals the value w(g) = ∑v∈V(G) w(g(v)),
where w(g(v)) is the number of colors assigned to vertex v. We also say that G is tRD-
colored (or simply, colored) by g. A vertex is said to be tRD-dominated if either: (1) It is
assigned a nonempty set of colors. (2) It has all colors in its neighborhood. If g(v) 6= ∅,
a vertex v is said to be colored, and is not colored or uncolored otherwise. The minimum
weight over all tRD functions of G is called the t-rainbow domination number γrt(G). A
special case in which vertices are colored by sets with one color at most is of particular
interest. Such functions are called singleton tRD functions (StRD functions, StRDF), and
the minimal weight obtained when considering only StRD functions is called the singleton
t-rainbow domination number, and is denoted by γ̃rt (see [5]).
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Directly from definitions we have, for any graph G and any t,

γrt(G) ≤ γ̃rt(G). (1)

As we are mainly going to work with singleton RDF, we introduce a shorter notation.
For a S3RDF f , we write f (v) = 0 if v is assigned the empty set, and f (v) = i, i = 1, 2, 3,
means that v is colored by the color set {i}.

For later reference, let us recall the general lower bound,

γrt(P(n, k)) ≥ n . (2)

2.3. Graph Covers

For basic information on covering graphs, we refer to [8]. Here, we first recall the
notion of the covering graph following the approach used in [9]. Let G = (V1, E1) and
H = (V2, E2) be two graphs, and let p : V2 → V1 be a surjection. A map p from H to G is
called a covering map if, for each v ∈ V2, the restriction of p to the neighborhood of v ∈ V2
is a bijection onto the neighborhood of p(v) in G. In other words, the surjection p maps
edges incident to v one-to-one onto edges incident to p(v).

A graph H is a covering graph of G (or a lift), if there exists a covering map from graph
H to graph G. Let H be a lift of G with a covering map p. If p has a property that for every
vertex v from V(G), its fiber p−1(v) has exactly h vertices, then we say that the graph H is a
h-lift of G.

For example, the cycle C120 is a two-lift of C60, considering the surjection p(vi) =
vi mod 60. Furthermore, C120 is also a 30-lift of C4, etc.

For later reference, we observe that a t-rainbow dominating set of covering graphs can
be obtained by the inverse of the covering projection. This fact is formally stated and used
below in the proof of Theorem 1. First, recall that P(c0hk, k) is a h-lift of P(c0k, k).

Proposition 1. Let k ≥ 1, c0 ≥ 3, and h ≥ 2. Petersen graph P((hc0)k, k) is a h-lift of P(c0k, k).

Proof. Consider the surjection p : V(P((hc0)k, k)) → V(P(c0k, k)) defined by p(vi) =
vi mod (c0k), and p(ui) = ui mod (c0k).

Using the previously defined notation, we note that the function p that maps ui 7→
ui mod ck and vi 7→ vi mod ck defines a projection from V(P((ch)k, k)) to V(P(ck, k)) and is a
covering map from P((ch)k, k) to P(ck, k). Furthermore, p also maps the inner cycle Vi of
P((ch)k, k) to Vi of P(ck, k) and the outer cycle U of P((ch)k, k) to U of P(ck, k).

The following theorem relates the rainbow domination numbers of a graph and its
h-lift. For completeness, we sketch the proof below.

Theorem 1. Let graph H be a h-lift of graph G. Then, γrt(H) ≤ hγrt(G) and γ̃rt(H) ≤ hγ̃rt(G).

Proof. Consider the surjection p : V(H) → V(G). Assume f is a t-rainbow domination
function of G. Hence, f assigns a subset f (v) ⊆ {1, 2, . . . , t} to every v ∈ V(G). For
v ∈ V(H), define g(v) = f (p(v)). In other words, all vertices of fiber p−1(v) are assigned
the same value, f (v). Since, by definition, p maps neighborhoods to neighborhoods, g is
a t-rainbow domination function of H. Obviously, w(p−1(v)) = w( f (v)); hence, if f is a
singleton t-rainbow domination function of G, then g is a singleton t-rainbow domination
function of H. As w(g) = hw( f ), the statement of proposition follows.

2.4. Two Constructions

We now recall the construction from [10] that transforms P(ck, k) to P((c− 1)k, k) by
deleting some vertices (with incident edges) and adding some new edges. It is shown
in [10] that the construction indeed is isomorphic to P((c− 1)k, k).
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Construction 1.

• Start with P(ck, k).
• Delete vertices

Vc = {v(c−1)k, v(c−1)k+1, v(c−1)k+2, . . . vck−1} and
Uc = {u(c−1)k, u(c−1)k+1, u(c−1)k+2, . . . uck−1}
and delete all edges incident to these vertices.

• Add edges {v(c−2)kv0, v(c−2)k+1v1, v(c−2)k+2v2, . . . v(c−1)k−1vk−1}} on the inner cycles
and edge {u(c−1)k−1u0} on the outer cycle.

Proposition 2 ([10]). Construction 1 on P(ck, k) results in the graph P((c− 1)k, k).

Repeated Construction 1 obviously results in graphs P((c− 2)k, k), P((c− 3)k, k), etc.

The next construction transforms P(ck, k) to P(c(k− 1), k− 1).

Construction 2.

• Start with P(ck, k). Choose K ∈ {0, 1, . . . , k− 1}. Delete the vertices OutK = {ujk+K | j =
0, 1, 2, . . . , c − 1} and vertices of the corresponding inner cycle InnK = {vjk+K | j =
0, 1, 2, . . . , c− 1}, and delete all edges incident to these vertices.

• Add edges ujk+K−1ujk+K+1 for j = 0, 1, 2, . . . , c− 1.

Proposition 3 ([10]). Construction 2 on P(ck, k) results in the graph that is isomorphic to P(c(k−
1), k− 1).

3. Related Previous Work

Various results on k-rainbow domination have already been provided in the early
papers [1–3]. The problem is well known to be NP hard for general graphs. In [11], the
authors provide an exact algorithm and a faster heuristic algorithm to calculate the three-
rainbow domination number. Therefore, in general, three-rainbow domination numbers
for small or moderate-size graphs can be computed, but it is very hard or intractable to
handle large graphs. Because of the hardness of the general problem, it is interesting to
study the complexity of the problem on restricted domains (c.f. trees) and to consider
particular graph classes. For example, it is known that the problem is NP hard even when
restricted to chordal graphs and to bipartite graphs, and there is a linear time algorithm for
the k-domination problem on trees [12].

The special cases, two-rainbow and three-rainbow domination, have been studied
often in recent years. In particular, the rainbow domination numbers γr2 and γr3 of several
graph classes were established; see [13–17] and the references therein. In particular, k-
rainbow domination number of the Cartesian product of cycles, Cn�Cm, for k ≥ 4 is
considered in [18]. Among other things, based on the results in [19], it is shown that
γrk(Cn�Cm) = mn for k ≥ 8. In [20], exact values of the three-rainbow domination number
of C3�Cm and C4�Cm and bounds on γr3(Cn�Cm) for n ≥ 5 are given. In [21], sharp
upper bounds on the k-rainbow domination number γrk for all values of k are proved. Even
more, the problem with minimum degree restrictions on the graph has been considered.

In particular, it was shown that for every connected graph G of order n ≥ 5, γr3(G) ≤ 8n
9

.
In [22], the authors prove that for every connected graph G of order n ≥ 8 with degree

δ(G) ≥ 2, γr3(G) ≤ 5n
6

.
In the past, generalized Petersen graphs have been studied extensively, in many cases

as counterexamples to conjectures or as very interesting examples in research of various
graph invariants. Often, subfamilies of generalized Petersen graphs are considered. Popular
examples are graphs P(n, k) with fixed (and usually small) k, and P(ck, k), for fixed c and
arbitrary k (hence, infinitely many n = ck). In [23], authors derived the exact values of
γrt(P(n, 1)) for any t ≥ 8 and t = 4. They also proved that γrt(P(2k, k)) = 4k for t ≥ 6.
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The three-rainbow domination numbers of some special classes of graphs, such as paths,
cycles and the generalized Petersen graphs P(n, k), were investigated in [24]. The authors
determined the three-rainbow domination number of P(n, k) for some cases and provided
the upper bounds for P(n, 2), n ≥ 5, and P(n, 3), n ≥ 30. The general lower bound for the
three-rainbow domination number was established, γr3(P(n, k)) ≥ n, and it was proved
that in case k ≡ 1(mod6), n ≡ 0(mod6) and n > 2k ≥ 6, equality holds, γr3(P(n, k)) = n.
In addition, it was determined that for n ≥ 6, γr3(P(n, 1)) = n + α, where α = 0 for
n ≡ 0(mod6), α = 1 for n ≡ 1, 2, 3, 5(mod6), and α = 2 for n ≡ 4(mod6). The upper
bound γr3(P(n, 2)) ≤ d 6n

5 e for n ≥ 5 is provided. It follows that γr3(P(6k, k)) ≥ 6k for each
k ≥ 1, γr3(P(6k, k)) = 6k if k ≡ 1(mod6), and 12 ≤ γr3(P(12, 2)) ≤ 15.

The next theorem is a result of particular importance for the present work. Bounds for
three-rainbow domination of generalized Petersen graphs P(6k, k) from [5] are summarized
in the next theorem and are the starting point for generalization to P(ck, k), which is
explored further here.

Theorem 2 ([5]). For three-rainbow domination number γr3 and singleton three-rainbow domina-
tion number γ̃r3 of generalized Petersen graphs P(6k, k) it holds:

• If k ≡ 1, 5 (mod6), then γr3(P(6k, k)) = γ̃r3(P(6k, k)) = 6k;
• If k ≡ 0 (mod2), then 6k < γr3(P(6k, k)) ≤ γ̃r3(P(6k, k)) = 6k + 3;
• If k ≡ 3 (mod6), then 6k < γr3(P(6k, k)) ≤ γ̃r3(P(6k, k)) ≤ 6k + 6.

For a later reference, we also recall two facts from [5], stated as Lemma 1 and 2. The
first fact implies that under a certain assumption, any RDF must be a singleton RDF. The
second lemma gives a lower bound for the weight of a singleton 3RDF on a path and on a
cycle, which are useful facts for later consideration.

Lemma 1 ([5]). Let G = P(n, k). If γr3(G) = n = |V(G)|
2 , then γrt(G) = γ̃rt(G), and any

minimal assignment is a singleton 3RD function.

Lemma 2 ([5]). Let f be a singleton 3RD function of a three-regular graph G.

• Let P be an induced path of length ` on vertices {v0, v1, . . . , v`} in G. Assume that one of the

vertices v0 and v` is uncolored and the other is assigned a color. Then, w( f (P)) ≥
⌈
`+1

2

⌉
.

• Let C be a cycle of length `. Then, w( f (C)) ≥
⌈
`
2

⌉
.

4. Summary of Our Results

We first recall that some generalized Petersen graphs are covering graphs of some
other generalized Petersen graphs (Proposition 1). Our first result relates the rainbow
domination numbers of a graph and its h-lift (Theorem 1).

Below, we provide bounds for the three-rainbow domination and singleton three-
rainbow domination of generalized Petersen graphs P(ck, k). The results are summarized
in Theorems 3–5.

Theorem 3. Let c ≡ 0 (mod6). Then, for three-rainbow domination number γr3 and singleton
three-rainbow domination number γ̃r3 of generalized Petersen graphs P(ck, k) it holds:

• If k ≡ 1, 5 (mod6), then γr3(P(ck, k)) = γ̃r3(P(ck, k)) = ck;
• If k ≡ 0 (mod2), then ck < γr3(P(ck, k)) ≤ γ̃r3(P(ck, k)) = c(k + 1

2 );
• If k ≡ 3 (mod6), then ck < γr3(P(ck, k)) ≤ γ̃r3(P(ck, k)) ≤ c(k + 1).

Proof. First, assume k ≡ 1, 5 (mod6). Then, for c = 6i, γr3(P(ck, k)) = γ̃r3(P(ck, k)) = ck
holds by Proposition 4.

If k ≡ 0 (mod2), then the statement γr3(P(ck, k)) ≤ γ̃r3(P(ck, k)) = c(k + 1
2 ) holds by

Proposition 10 and Proposition 5.
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Finally, when k ≡ 3 (mod6), we have ck < γr3(P(ck, k)) ≤ γ̃r3(P(ck, k)) ≤ c(k + 1)
by Lemma 5 and Proposition 9.

Theorem 4. Let c be odd. Then, for three-rainbow domination number γr3 and singleton three-
rainbow domination number γ̃r3 of generalized Petersen graphs P(ck, k) we have:

• If k ≡ 1, 5 (mod6), then ck < γr3(P(ck, k)) ≤ γ̃r3(P(ck, k)) = ck + d k
2e;

• If k ≡ 0 (mod2), then ck < γr3(P(ck, k)) ≤ γ̃r3(P(ck, k)) ≤ ck + b c
2c+

k
2 ;

• If k ≡ 3 (mod6), then ck < γr3(P(ck, k)) ≤ γ̃r3(P(ck, k)) ≤ c(k + 1) + d k−2
2 e.

Proof. The leftmost strict inequalities follow from Proposition 5.
In the cases in which k ≡ 1 (mod6), and k ≡ 5 (mod6), γ̃r3(P(ck, k)) = ck + d k

2e
follows from Propositions 6 and 8.

When k ≡ 0 (mod2), γ̃r3(P(ck, k)) ≤ ck + b c
2c+

k
2 follows from Proposition 11.

If k ≡ 3 (mod6), then γ̃r3(P(ck, k)) ≤ c(k + 1) + d k−2
2 e by Proposition 9.

Theorem 5. Let c be even, and c 6≡ 0 (mod6). Then, for three-rainbow domination number
γr3 and singleton three-rainbow domination number γ̃r3 of generalized Petersen graphs P(ck, k)
we have:

• If k ≡ 1, 5 (mod6), then ck < γr3(P(ck, k)) ≤ γ̃r3(P(ck, k)) ≤ ck + k + 1;
• If k ≡ 0 (mod2), then ck < γr3(P(ck, k)) ≤ γ̃r3(P(ck, k)) ≤ ck + c

2 + k;
• If k ≡ 3 (mod6), then ck < γr3(P(ck, k)) ≤ γ̃r3(P(ck, k)) ≤ ck + c + k− 2.

Proof. The leftmost strict inequalities follow from Proposition 5.
If k ≡ 1, 5 (mod6), γ̃r3(P(ck, k)) ≤ ck + k + 1 follows from Propositions 7 and 8.
When k ≡ 0 (mod2), then γ̃r3(P(ck, k)) ≤ ck + c

2 + k follows from Proposition 12.
If k ≡ 3 (mod6), then we have γ̃r3(P(ck, k)) ≤ c(k + 1) + k− 2 by Proposition 9.

5. Proofs

In the next subsections, we analyze special cases, starting from the simplest, k ≡
1, 5 (mod6), in which exact values for the cases c ≡ 0 (mod6) can be found. For other c,
constructions giving the upper bounds are provided. In the second and third subsection,
other k are considered. The propositions are summarized in the main result, Theorems 3–5.

5.1. Case k ≡ 1, 5 (mod6) and c ≡ 0 (mod6)

Theorem 1, the construction given in [5] and the general lower bound (2) imply the
next proposition.

Proposition 4. For c ≡ 0 (mod6), and k ≡ 1, 5 (mod6), we have γ̃r3(P(ck, k)) = γr3(P(ck,
k)) = ck.

Proof. Follows directly from definitions and Theorems 1 and 2. As c ≡ 0 (mod6), we can
write c = 6h. Recall that γ̃r3(P(6k, k)) = γr3(P(6k, k)) = 6k, γ̃r3(P(ck, k)) ≥ γr3(P(ck, k)) ≥
ck, and γ̃r3(P(6hk, k)) = hγ̃r3(P(6k, k)) = 6hk = ck.

In the sequel, we will define several S3RDFs based on the S3RDF for P(6hk, k). There-
fore, we now give explicit definition of a 3RDF of weight ck for P(ck, k), c = 6h. It is
obtained by lifting the S3RDF for P(6k, k) from [5]. Let us define the generic function F,
defined on integers as follows.

F(uj) =


1, j ≡ 2 (mod6)
2, j ≡ 4 (mod6)
3, j ≡ 0 (mod6)
0, j ≡ 1 (mod2)

.
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The values of F on the inner cycles are determined by the rule that F must be a 3RDF.
It is easy to check that we must have

F(vj) =


1, j ≡ 5 (mod6)
2, j ≡ 1 (mod6)
3, j ≡ 3 (mod6)
0, j ≡ 0 (mod2)

.

We know [5] that F restricted to indices j ∈ [0, 6k− 1] gives a 3RDF for P(6k, k) which,
recalling the general lower bound, implies γ̃r3(P(6k, k)) = 6k when k ≡ 1, 5 (mod6). See
Tables 1–3, recalled from [5]. The assignment is extended by lifting, using Theorem 1, to
P(6hk, k).

Table 1. A 3RD coloring of Ui for P(6k, k).

f (u0) f (u1) . . . f (ui) . . . f (uk−1) f (uk) f (uk+1) . . .
f (uk) f (uk+1) . . . f (uk+i) . . . f (u2k−1) f (u2k) f (u2k+1) . . .
f (u2k) f (u2k+1) . . . f (u2k+i) . . . f (u3k−1) f (u3k) f (u3k+1) . . .
f (u3k) f (u3k+1) . . . f (u3k+i) . . . f (u4k−1) f (u4k) f (u4k+1) . . .
f (u4k) f (u4k+1) . . . f (u4k+i) . . . f (u5k−1) f (u5k) f (u5k+1) . . .
f (u5k) f (u5k+1) . . . f (u5k+i) . . . f (u6k−1) f (u6k) = f (u0) f (u1) . . .

Table 2. A 3RDF of Ui on P(42, 7).

0 3 0 2 0 1 0

1 0 3 0 2 0 1

0 1 0 3 0 2 0

2 0 1 0 3 0 2

0 2 0 1 0 3 0

3 0 2 0 1 0 3

Table 3. A 3RDF of Ui on P(30, 5).

0 3 0 2 0

1 0 3 0 2

0 1 0 3 0

2 0 1 0 3

0 2 0 1 0

3 0 2 0 1

5.2. Lower Bounds for γ̃r3(P(ck, k))

First, we prove a property of any 3RD function f of P(n, k) with | f (P(n, k))| = n.
Recall that, according to Lemma 1, | f (P(n, k))| = n implies that f must be a singleton 3RDF.

Lemma 3. Assume γr3(P(ck, k)) = ck and let f be a 3RD function of minimal weight | f (P(ck,
k))| = ck. Then, exactly one-half of the vertices on the outer cycle {u0, u1, . . . uck−1} are colored.
WLOG, assume that these are vertices with even indices. Then, the following holds: (1) f (ui) = 0,
for all odd i, (2) f (ui+6) = f (ui), i ∈ [0, ck − 1], and (3) f (u0), f (u2), f (u4) are pairwise
different. Consequently, n = ck ≡ 0 (mod6).

In other words, the lemma says that the vertices on the outer cycle are colored follow-
ing the pattern R− 0− B− 0− G− 0− · · · − R− 0− B− 0− G− 0, where R, B, G are the
three colors.
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Proof. Recall that according to Lemma 1, any minimal 3RDF must be a singleton 3RDF, and
hence that γr3(P(ck, k)) = γ̃r3(P(ck, k)) = ck. Furthermore, since its weight is ck, exactly
half of the vertices are unweighted. It is not possible to have two adjacent unweighted
vertices, because the graph is three-regular, and so there would be at least one color missing
in the neighborhood of some unweighted vertex. Hence, we may assume that on the outer
cycle, exactly one-half of the vertices—WLOG, those with odd indices—are unweighted.
Another simple, but useful observation is that vertices with two consecutive even indices
must be colored differently, because if f (u0) = f (u2), u1 would not have all three colors in
the neighborhood.

We wish to prove (1), (2) and (3).
Assume that f is a singleton 3RDF with | f (P(ck, k))| = ck and that (3) does not

hold, for example, that f (u0) = R, f (u2) = B, f (u4) = R. Then, it follows that for the
third neighbor of u1, we have f (v1) = G and, similarly, f (v3) = G. We also know that
f (vk) 6= R, since v0 already has one neighbor, u0, colored by R. Similarly, f (v4+k) 6= R,
and f (v2+k) 6= B. Thus, we know that f (u1+k) = B, or f (u3+k) = B. As f (v1) = G and
f (v3) = G, we know that f (u1+k) 6= G, or f (u3+k) 6= G. Hence, { f (u1+k), f (u3+k)} =
{R, B}. Consequently, for the third neighbor of u2+k, we have f (v2+k) = G.

The same reasoning leads us to the conclusion that f (v2−k) = G. Then, however,
vertex v2 has two neighbors colored by G, and f is not a singleton 3RDF.

In the argument above, we started with local pattern R− 0− B− 0− R. The case
R− 0− R, i.e., when two consecutive colors on the outer cycle are identical, clearly does
not extend to a S3RDF assignment. This proves statement (3), that f (u0), f (u2), f (u4)
are pairwise different. As, by the same argument, f (u2), f (u4), and f (u6) are pairwise
different, we conclude that f (u0) = f (u6). Similarly, f (u2) = f (u8) and f (u4) = f (u10).
By induction, f (ui+6) = f (ui) using, obviously, f (ui) = 0 for odd i. Hence (1) and (2) also
hold and the proof is complete.

Lemma 4. Assume γr3(P(ck, k)) = ck. Let f be a 3RD function of minimal weight, | f (P(n, k))| =
n. Then, exactly one half of the vertices on any inner cycle are colored and the coloring follows the
pattern R− 0− B− 0− G− 0− · · · − R− 0− B− 0− G− 0. Consequently, c ≡ 0 (mod6),
and k must be odd.

Proof. Recall that the pattern on the outer cycle is given by Lemma 3. If k is even, there are
inner cycles that have no colored neighbors, and this implies that any S3RDF must assign
colors to all vertices of the inner cycle. Hence, k must be odd. To complete the proof, just
observe that the coloring of the outer cycle exactly determines the colors of inner cycles.
More precisely, if f (ui) = 0, then its neigbors are colored by different colors, and the color
of vi is defined uniquely because f (vi) 6∈ { f (ui−1), f (ui+1)}.

For later reference, we explicitly write the following proposition.

Proposition 5. If c 6≡ 0 (mod6) then γr3(P(ck, k)) > ck.

Proof. Follows directly from Lemma 4.

Another case in which the general lower bound cannot be attained is given by the
next Lemma.

Lemma 5. Let c ≡ 0 (mod6), c ≥ 1. If k ≡ 3 (mod6), then γ̃r3(P(ck, k)) ≥ γr3(P(ck, k)) > ck.

Proof. Let k = 6`+ 3, c = 6i, and assume that γr3(P(ck, k)) = ck. As γr3(P(ck, k)) = ck,
we know that γ̃r3(P(ck, k)) = ck. Consider the outer cycle and an inner cycle, say U0.
According to Lemma 3, exactly one half of the vertices on the outer cycle are colored,
and it follows the pattern given above. Analogous reasoning as in the proof of Lemma 3
implies that one-half of the vertices on U0 are colored and again, the coloring follows the
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same pattern, maybe in the other direction. WLOG, we can assume that f (u0) = R. Now,
distinguish two cases.

• First, assume i is odd. As the neighbors of v0 on the inner cycle Inn0 are colored by B
and G, and since the length of cycle Inn0 is c, for the opposite vertex of v0, v ck

2
= v3ik

we have f (v3ik) = R because 3ik ≡ 3 (mod6). Furthermore, the pattern on the outer
cycle gives f (u3ik−k) = R. Hence, vertex v3ik−k has two neighbors colored by R, and
so f is not a 3RDF. Contradiction.

• Second, assume i is even. In this case, f (u ck
2
) = f (u3ik) = R. Then, the two neighbors

of v3ik, vertices v3ik−k and v3ik+k are not colored by R. Now, consider u3ik−k. The
pattern on the outer cycle implies that its two neighbors, u3ik−k−1 and u3ik−k+1, are
colored by B and G. Recall that the third neighbor, v3ik−k, is also not colored by R.
Hence, there is no neighbor of u3ik−k with color R, and therefore f is not a 3RDF. Again,
this is a contradiction.

In both cases, the reasoning leads to contradiction, and we conclude that there is no
S3RDF of weight ck.

5.3. Case k ≡ 1, 5 (mod6), General c

Now, let us assume that k ≡ 5 (mod6).

Proposition 6. Let k ≡ 5 (mod6) and c be odd. Then γr3(P(ck, k)) ≤ γ̃r3(P(ck, k)) ≤ ck + d k
2e.

Proof. Observe that the Petersen graph P(ck, k) is obtained by one, three or five applications
of Construction 1 starting from P(Ck, k), where C = 6d c

6e. The 3RDF of P(Ck, k) is given
by F, restricted to P(ck, k). Define f (uj) = F(uj) for j ∈ [0, ck − 1], f (vj) = F(vj) for
j ∈ [0, ck− 1− k], and f (vj) = F(vj) + F(vj−k) for j ∈ [ck− k, ck− 1]. In other words, we
only alter the function F on the last row. More precisely, exactly the vertices in Vc with
F(vj) = 0 are given the color that is provided by its neighbor in Vc+1 in 3RDF of P(Ck, k)
(see Figure 2). We also observe that, by definition, f is a singleton 3RDF. There are d k

2e such
vertices. Note that all other vertices are already dominated by F.

We continue with the case c even (and k ≡ 5 (mod6)). Now F, restricted to P(ck, k),
does not properly dominate vertices vj for even j in the set [0, k− 1] ∪ [c(k− 1), ck− 1] (in
the first and in the last row). Furthermore, the vertex uck−1 does not have all three colors
in the neighborhood. We know that F(u0) = 3, F(uck−2) 6= 2, and F(vck−1) 6= 2.

Proposition 7. Let k ≡ 5 (mod6) and c even, c 6≡ 0 (mod6). Then

γr3(P(ck, k)) ≤ γ̃r3(P(ck, k)) ≤ ck + k + 1 .

Proof. Define f (uj) = F(uj) for j ∈ [0, ck − 1], f (vj) = F(vj) for j ∈ [k, ck − 1]. Fur-
thermore, for the first and the last row, set f (vj) = F(vj) + F(vj−k) for j ∈ [0, k], and
f (vj) = F(vj) + F(vj+k) for j ∈ [(c− 1)k, ck− 1].

Observe that uck−1 is the only vertex that is left not properly dominated. By coloring
uck−1 with any (!) color, we obtain a singleton 3RDF of weight w( f ) = ck + k + 1.

Analogous reasoning applies to the case k ≡ 1 (mod6), and the results, which are
analogues to Propositions 6 and 7 are stated in the next proposition.
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Figure 2. Case c odd and k ≡ 5 (mod6). The outer cycle vertices, U, of P(Ck, k) and construction of
P((C− 1)k, k) are C = 6i. We emphasize the vertices of U that are deleted (one row).

Proposition 8. Let k ≡ 1 (mod6), k ≥ 7. If c is odd, then

γr3(P(ck, k)) ≤ γ̃r3(P(ck, k)) ≤ ck + d k
2
e .

If c is even, c 6≡ 0 (mod6), then

γr3(P(ck, k)) ≤ γ̃r3(P(ck, k)) ≤ ck + k + 1 .

Proof. (sketch) The proof is analogous to the proofs of Proposition 6 and Proposition 7,
using Construction 1. Start with the 3RDF for P(ck, k), c = 6h, based on Table 2. Apply
Construction 1 and then define the 3RDF of P(ck, k) in a similar way to the proof of
Proposition 6 for c odd and in the proof of Proposition 7 for c even, c 6≡ 0 (mod6). We omit
the details.

5.4. Case k ≡ 3 (mod6)

Let us continue with the 3RDF for case c = 6 and k = 9, given in [5]. Here, we draw
the graph—more precisely, the outer cycle—and some vertices on the inner cycles, with the
values of the 3RDF. We also indicate the changes necessary to obtain a 3RDF for c = 5 and
k = 9. (see Figure 3). On Figure 4, the assignment is extended to cases with c ≡ 5 (mod6)
in a natural way, which was already used previously.
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Figure 3. The outer cycle vertices, U, of P(6k, k) for k = 9 and construction of P(54, 9). We emphasize
the vertices that are deleted (one row). Coloring of some vertices on inner cycles is indicated.
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Figure 4. The outer cycle vertices, U, of P(Ck, k) and construction of P(ck, k). We emphasize the
vertices that are deleted (one row), c ≡ 5 (mod6) and k ≡ 3 (mod6) and the row of vertices whose
neighbors are possibly altered.

Following similar arguments as before, we can prove

Proposition 9. Let k ≡ 3 (mod6). If c ≡ 0 (mod6), then

γr3(P(ck, k)) ≤ γ̃r3(P(ck, k)) ≤ ck + c = c(k + 1) .
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Furthermore, if c is odd, then γr3(P(ck, k)) ≤ γ̃r3(P(ck, k)) ≤ ck + c + d k−2
2 e , and if c is

even, c 6≡ 0 (mod6), then γr3(P(ck, k)) ≤ γ̃r3(P(ck, k)) ≤ ck + c + k− 2 .

Proof. First, consider the case c = 6h. (Recall the S3RDF for P(54, 9) [5]; also see the
coloring of the outer cycle on Figure 3 before deleting the fifth row.) To obtain a S3RDF
of weight 54 + 6 for P(90, 15), just repeat columns 1 to 6. By induction, this gives S3RDFs
for P(6(6i + 3), 6i + 3) of weight 6(6i + 3) + 6. In turn, by the covering graph argument
(Theorem 1) we obtain S3RDFs for P(6h(6i + 3), 6i + 3) of weight 6h(6i + 3) + 6h = ck + c.

Now, let c be odd. Recall the construction in the proof of Proposition 6. The analogous
argument in this case shows that γ̃r3(P(ck, k)) ≤ ck + c + d k−2

2 e. See Figure 3 for the case
c = 5.

For even c, c 6≡ 0 (mod6), the proof is analogous to the proof of Proposition 7.

5.5. Case k Even

First, we consider the lower bound for γ̃r3(P(ck, k)).

Lemma 6. Let k ≥ 2 be an even number, and c ≡ 0 (mod6), c ≥ 1. Then, γ̃r3(P(ck, k)) ≥
ck + c

2 .

Proof. An inner cycle together with the neighbors gives rise to subgraphs Hi, induced on
vertices Ii ∪Oi, where Oi = {ui, ui+k, ui+2k, ui+3k, ui+4k, . . . , ui+(c−1)k} and Ii = {vi, vi+k,
vi+2k, vi+3k, vi+4k, . . . , vi+(c−1)k}, for some i, 0 ≤ i ≤ k− 1. The subgraph H0, induced on
I0 ∪O0, is on Figure 5.

v0

vk

v2k
v3kv4k

v5k

v6k

v7k

v8k v9k
v10k

v11k

u0

uk

u2k

u3k

u4k
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u8k

u9k
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u11k

uk+1

uk+2

u2k−1

u3k+1u3k+2u4k−1

u5k+1
u5k+2

u6k−1

u7k+1
u7k+2

u8k−1

u9k+1
u9k+2

u10k−1

u11k+1

u11k+2

u12k−1

Figure 5. An inner cycle of P(12k, k) with neighbors on the outer cycle.

Consider Figure 5, and observe that there are exactly c paths on the outer cycle between
vertices of O0. All these paths have length k + 1. One-half of them, together with other
vertices of I0 ∪O0, form c

2 disjointed cycles of length k + 3. Denote the union of cycles (as
emphasized on Figure 5) by C0 (the index zero is chosen because u0 ∈ V(C0)).

Clearly, the intersection of subgraphs Ck−1 and C0 is a union of c
2 paths. One of them,

which we denote as P, is on vertices {uk, uk+1, . . . , u2k−1}. The union of Ck−1 and C0 consists
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of c
2 connected components. Consider one of them, for example the component including

P. According to Lemma 2, any S3RDF f has weight w( f (P)) ≥ k
2 , and if w( f (P)) = k

2 ,
at most one of the vertices uk+1 and u2k−1 is assigned a color. For the connected component
K, including P, we have w( f (K)) ≥ k

2 + 4 in this case. (This is because we need at least
two colors for each of the “handles” of K, i.e., the paths on vertices {uk, vk, v2k, u2k} and
{uk−1, vk−1, v2k−1, u2k−1}.) Otherwise, if both uk+1 and u2k−1 are assigned a color, then
w( f (P)) > k

2 , and w( f (K)) ≥ k
2 + 3. Therefore, for c

2 connected components, we need at
least c

2 (
k
2 + 3) colors.

The c
2 paths on the outer cycle that do not meet the union of Ck−1 and C0 have k− 2

vertices each. According to Lemma 2, k
2 or k

2 − 1 colors are needed, depending on whether
f assigns colors to the neighboring vertices on the outer cycle or not. It can be shown that
if f (w(K)) k

2 + 3 then both paths next to K are assigned at least k
2 colors. This implies that a

component and one of the paths together are assigned at least k + 3 colors.
Finally, we also have k− 2 inner cycles of length c and need to color at least half of the

vertices on each of them. In total, we need at least

c
2
(k + 3) + (k− 2)

c
2
= ck +

c
2

and hence, | f | ≥ ck + c
2 , as claimed.

Lemma 7. Let k > 2 be an even number, and c = 6i, i ≥ 1. Then, γ̃r3(P(ck, k)) ≤ ck + c
2 .

Proof. Recall the constructions that provide S3RDF of weight ck when k ≡ 1, 5 (mod6).
First, we give a construction that uses S3RDF for odd k and provides a S3RDF for

k + 1, of weight c(k + 1) + c
2 . Choose any pair of adjacent columns (two inner cycles and

the corresponding vertices on the outer cycle. Repeat these two columns and merge them.
The merging is the following operation: any two vertices on the outer cycle are merged into
one vertex, which inherits the colors of the original vertices. Observe that exactly one of
the original vertices has had a color, so the merged assignment is still a S3RDF. Delete one
of the inner cycles. Clearly, the weight of the new assignment is c(k + 1) + c

2 . This proves
the statement of lemma for cases k ≡ 1 + 1 = 2 (mod6). and k ≡ 5 + 1 = 0 (mod6).

The second construction uses S3RDF for odd k and provides a S3RDF for k − 1,
of weight c(k− 1) + c

2 . Choose any pair of adjacent columns (two inner cycles and merge
them (as above). Using analogous reasoning, as shown above, the weight of the new
assignment is c(k − 1) + c

2 . This proves the statement of lemma for cases k ≡ 1− 1 =
0 (mod6) and k ≡ 5− 1 = 4 (mod6).

The case k = 2 is considered as a special case.

Lemma 8. If c ≡ 0 (mod6), then γ̃r3(P(2c, c)) ≤ 5 c
2 = 2c + c

2 .

Proof. The idea is the following. Color one of the inner cycles (use the pattern 0-R-0-B-0-G).
This coloring forces the colors of one-fourth of the vertices on the outer cycle. However,
one-fourth of the vertices on the outer cycle already have one colored neighbor. Color the
other half of the vertices on the outer cycle so that the second fourth is properly colored.
Complete the coloring by assigning colors to one-half of the vertices on the second inner
cycle. We omit the details. See example P(12, 2) of Figure 6.

Combination of Lemmas 6–8 gives exact values of γ̃r3(P(ck, k)) in some cases.

Proposition 10. Let k be an even number, and c = 6i, i ≥ 1. Then, γ̃r3(P(ck, k)) = ck + c
2 .

Note that if we delete two columns, as in the proof above, we obtain γ̃r3(P(ck, k)) ≤
ck + c

2 + c
2 = c(k + 1) for the case k = 3 (mod6), as already shown by Proposition 9.
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Proposition 11. Let k be an even number, and c odd. Then γ̃r3(P(ck, k)) ≤ ck + b c
2c+

k
2 .

Proof. Sketch. Start with a S3RDF for P(ck, k) with c = 6i and k ≡ 1, 5 (mod6). Delete one,
three, or five lines (as in the proof of Proposition 6). Recall the merging operation from the
proof of Lemma 10.

G B G

R R

B R B

G G

R G R

B B

Figure 6. S3RDF proving P(12, 2) ≤ 5× 6
2 = 15.

Before stating the next proposition, recall that the case k even and c = 2 is not of
interest, because P(2k, k) is not a three regular simple graph.

Proposition 12. Let k be an even number, and c even, c 6= 6i, c > 2. Then, γ̃r3(P(ck, k)) ≤
ck + c

2 + k.

Proof. The proof is analogous to the proof of Proposition 12. However, we have to delete
an even number of rows (two or four) which adds k (instead of k

2 ) to the weight of the final
S3RDF. The details are left to the reader.

6. Conclusions and Ideas for Future Work

In this paper, we provide bounds for three-rainbow domination numbers of general-
ized Petersen graphs P(ck, k), for arbitrary c and k.

However, we believe that following the methods used here, it is very difficult or
impossible to obtain exact values of all cases. We wish to add that, in principle, all exact
values may be computed by another method, more precisely by application of an algebraic
method using path algebras that has been applied to several domination-type problems in
the past [25–27].

On the positive side, the present authors believe that the methods used in this paper
may be used to establish similar results, exact values for two-rainbow domination for some,
and close upper and lower bounds for all other families of generalized Petersen graphs
P(ck, k). This is a natural continuation of the work presented here.

As generalized Petersen graphs are three-regular, it is obvious that singleton rainbow
domination only makes sense for t-rainbow domination for t = 1, 2, 3. On the other hand,
it may be interesting to consider generalization of the bounds for t-rainbow domination of
generalized Petersen graphs P(ck, k) for larger t.

As another avenue of research that may be of interest, let us mention that for any
NP-hard problem, it is often possible to design an efficient algorithm for the problem.
For example, as there is a polynomial algorithm for rainbow domination on trees, it follows
from Courcelle’s theorem [28,29] that it can be solved in polynomial time on bounded tree-
width graphs, as pointed out by one of the reviewers. However, it may still be an interesting
task to explicitly elaborate an algorithm for rainbow domination on cactus graphs.



Symmetry 2022, 14, 2086 15 of 15

Author Contributions: Conceptualization, J.Ž; investigation, D.R.P. and J.Ž.; writing—original draft
preparation, J.Ž.; writing—review and editing, D.R.P. and J.Ž. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by Slovenian Research Agency, grant numbers: P2-0248, J2-2512.

Acknowledgments: The authors wish to thank the three anonymous reviewers for constructive
remarks. We also thank Simon Brezovnik for careful reading and commenting on an earlier version
of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Brešar, B.; Henning, M.A.; Rall, D.F. Paired-domination of Cartesian products of graphs and rainbow domination. Electron. Notes

Discret. Math. 2005, 22, 233–237. [CrossRef]
2. Brešar, B.; Šumenjak, T.K. On the 2-rainbow domination in graphs. Discret. Appl. Math. 2007, 155, 2394–2400. [CrossRef]
3. Brešar, B.; Henning, M.A.; Rall, D.F. Rainbow domination in graphs. Taiwan J. Math. 2008, 12, 213–225. [CrossRef]
4. Haynes, T.W.; Hedetniemi, S.T.; Slater, P.J. Fundamentals of Domination in Graphs; Marcel Dekker: New York, NY, USA, 1998.
5. Erveš, R.; Žerovnik, J. On 3-Rainbow Domination Number of Generalized Petersen Graphs P(6k,k). Symmetry 2021, 13, 1860.

[CrossRef]
6. Watkins, M.E. A theorem on Tait colorings with an application to the generalized Petersen graphs. J. Comb. Theory 1969, 6, 152–164.

[CrossRef]
7. Steimle, A.; Staton, W. The isomorphism classes of the generalized Petersen graphs. Discret. Math. 2009, 309, 231–237. [CrossRef]
8. Gross, J.L.; Tucker, T.W. Topological Graph Theory; Wiley-Interscience: New York, NY, USA, 1987.
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