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Abstract: The article is devoted to the noncommutative integration of a diffusion partial differential
equation (PDE). Its generalizations are also studied. This is motivated by the fact that many existing
approaches for solutions of PDEs are based on evolutionary operators obtained as solutions of the
corresponding stochastic PDEs. However, this is restricted to PDEs of an order not higher than 2 over
the real or complex field. This article is aimed at extending such approaches to PDEs of an order
higher than 2. For this purpose, measures and random functions having values in modules over
complexified Cayley–Dickson algebras are investigated. Noncommutative integrals of hypercomplex
random functions are investigated. By using them, the noncommutative integration of the generalized
diffusion PDE is scrutinized. Possibilities are indicated for a subsequent solution of higher-order
PDEs using their decompositions and noncommutative integration.
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1. Introduction

For the studies and analysis of dynamical systems and inverse problems, random
functions are frequently used. They play a very important role in the integration of partial
differential equations (PDEs), diffusion-type PDEs (for example, [1–4]). For these purposes,
matrix or operator measures are studied and used [1–3,5,6]. In [1,6], real and complex
measures, stochastic PDEs, and their applications to solutions of second-order PDEs were
described over real and complex fields. In [2,5], random functions, stochastic processes,
Markov processes, and stochastic PDEs are described, and their applications to solutions
of PDEs using evolutionary operators, generators of their semigroups are given. In [3,4],
these themes are also provided, but the emphasis is on Feynman-type integrals, and their
convergence in suitable domains of function spaces.

However, there are restrictions for these approaches because they work for partial
differential operators (PDOs) of an order not higher than 2. Indeed, they are based on
complex modifications of Gaussian measures. Nevertheless, if a characteristic function φ(t)
of a measure has the form φ(t) = exp(Q(t)) where Q(t) is a polynomial, then its degree is
not higher than 2 according to the Marcinkievich theorem (Chapter II, §12 in [7]).

On the other side, hypercomplex numbers open new opportunities in these areas.
For example, Dirac used the complexified quaternion algebra HC for the solution of the
Klein–Gordon hyperbolic PDE of second order with constant coefficients [8]. This is
important in spin quantum mechanics, because U(2) ⊂ H. It was proved in [9] that, in
many variants, it is possible to reduce a PDE problem of a higher order to a subsequent
solution of PDEs of an order not higher than 2 with hypercomplex coefficients. In general,
the complex field is insufficient for this purpose.

On the other hand, algebras of hypercomplex numbers, in particular, the Cayley–
Dickson algebras Ar over the real field R are natural generalizations of the complex field,
where A2 = H is the quaternion skew field, A3 = O denotes the octonion algebra, A0 = R,
A1 = C denotes the complex field. Then, each subsequent algebra Ar+1 is obtained from
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the preceding algebraAr with the doubling procedure using the doubling generator [10–12]
(see also Appendix A).

They are widely applied in PDEs, noncommutative analysis, mathematical physics,
quantum field theory, hydrodynamics, industrial and computational mathematics, and
noncommutative geometry [8,13–21].

This article is motivated by the fact that many existing approaches for solutions of
PDEs are based on evolutionary operators obtained as solutions of the corresponding
stochastic PDEs. However, this is restricted to PDEs of an order not higher than 2 over a
real or complex field. This article is aimed at extending such approaches to PDEs of an
order higher than 2.

Previously, measures with values in the complexified Cayley–Dickson algebra Ar,C
were studied in [22]. They appear naturally with a solution of a second-order hyperbolic
PDE with Cayley–Dickson coefficients. In this work, the results and notation of [22] are used.
They are recalled in Appendix B. Relations between different forms of the diffusion PDE
(such as backward Kolmogorov, Fokker-Planck-Kolmogorov, and stochastic) are discussed.

This article is devoted to dynamical systems such as hypercomplex generalized diffu-
sion PDEs. For this purpose, measures and random functions having values in modules
over the complexified Cayley–Dickson algebras are investigated. An integration of gen-
eralized diffusion processes is investigated. For their study, hypercomplex transition
measures are used. Noncommutative integrals of hypercomplex random functions are
studied. The existence of novel random functions and Markov processes over hypercom-
plex numbers is studied in Theorem 1, Corollary 1. Integrals of hypercomplex random
functions and operators acting on them are investigated in Theorems 2–5. Properties of
hypercomplex stochastic integrals are described in Propositions 1–3. In Theorem 6, their
stochastic continuity is investigated. Necessary specific novel definitions are given. No-
tation is described in detail. Lemmas 1–5 are given in order to prove the theorems and
propositions. These lemmas concern estimates of hypercomplex stochastic integrals, which
was not performed before. In Theorems 7 and 8, and Corollary 2, solutions of general-
ized diffusion PDEs with hypercomplex random functions and operators are scrutinized.
Ordered products of appearing operators are studied. Generators of semigroups of
evolutionary operators are also studied for the generalized diffusion PDE in its stochastic
form over the complexified Cayley–Dickson algebra. The stochastic Cauchy problem
related with the generalized diffusion PDE is investigated for modules over complexified
Cayley–Dickson algebras. Basics of hypercomplex numbers and measures are recalled
in Appendices A and B (Formulas (A1)–(A40)). This opens new possibilities for a subse-
quent solution of higher-order PDEs using their decompositions and noncommutative
integration, which is also discussed in the conclusion.

The main results of this work were obtained for the first time. The noncommutative
integration developed in this paper permits to subsequently analyze and integrate PDEs
of orders higher than 2 of different types, including parabolic, elliptic, and hyperbolic.
The obtained results open new opportunities for subsequent studies of PDEs and their
solutions regarding inverse problems.

2. Generalized Diffusion PDEs

Definition 1. Suppose that Λ is an additive group contained in R. Suppose also that T is a
subset in Λ containing a point t0. Let Xt = X be a locally R-convex space that is also a two-sided
Ar,C-module for each t ∈ T, where 2 ≤ r < ∞. Then,

(X̃T , Ũ) := ∏
t∈T

(Xt,Ut)

for the product of measurable spaces, where Ut is the Borel σ-algebra of Xt, Ũ is an algebra of
cylindrical subsets of X̃T generated by projections π̃q : X̃T → Xq, where Xq := l ∏t∈q Xt is a left-
ordered direct product, q ⊂ T is a finite subset of T, X{t} = Xt, Xt1,...,tn+1 = Xtn+1 × (Xt1,...,tn)
for each t1 < . . . < tn+1 in T.
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Function P(t1, x1, t2, A) with values in the complexified Cayley–Dickson algebra Ar,C for
each t1 < t2 ∈ T, x1 ∈ Xt1 , A ∈ Ut2 is called a transitional measure if it satisfies the following
conditions:

the set function νx1,t1,t2(A) := P(t1, x1, t2, A) is a measure on (Xt2 ,Ut2); (1)

the function αt1,t2,A(x1) := P(t1, x1, t2, A) of the variable x1 is Ut1 -measurable, that is,

α−1
t1,t2,A(B(Ar,C)) ⊂ Ut1 ; (2)

P(t1, x1, t2, A) =
∫

Xz
P(t, y, t2, A)P(t1, x1, t, dy) for each t1 < t < t2 ∈ T (3)

so that P(t, y, t2, A) as the function by y is in L1((Xt,Ut), νx1,t1,t,Ar,C). A transition measure
P(t1, x1, t2, A) is called unital if

P(t1, x1, t2, Xt2) = 1 for each t1 < t2 ∈ T. (4)

Then, for each finite set q = (t0, t1, . . . , tn+1) of points in T, such that t0 < t1 < . . . < tn+1;
there is defined a measure in Xg

µ
q
x0(D) =

∫
D

l

n+1

∏
k=1

P(tk−1, xk−1, tk, dxk), D ∈ Ug := l ∏
t∈g

Ut, (5)

where g = q \ {t0}, variables x1, . . . , xn+1 are such that (x1, . . . , xn+1) ∈ D, x0 ∈ Xt0 is fixed.
Let the transitional measure P(t, x1, t2, dx2) be unital. Then, for the product D = D2 ×

(Xtj × D1), where D1 ∈ l ∏
j−1
i=1 Uti , D2 ∈ l ∏n+1

i=j+1 Uti , the equality

µ
q
x0(D) =

∫
D2×D1

[
l

n+1

∏
k=j+1

P(tk−1, xk−1, tk, dxk)

]

×
[[ ∫

Xtj

P(tj−1, xj−1, tj, dxj)

[
l

j−1

∏
k=1

P(tk−1, xk−1, tk, dxk)

]]
= µr

x0
(D2 × D1) (6)

is fulfilled, where r = q \ {tj}. Equation (6) implies that

[µ
q
x0 ]

π
q
v = µv

x0
(7)

for each v < q, where finite sets are ordered by inclusion: v < q if and only if v ⊂ q, where
π

q
w : Xg → Xw is the natural projection, g = q \ {t0}, w = v \ {t0}.

ΥT denotes the family of all finite linearly ordered subsets q in T, such that t0 ∈ q ⊂ T,
v ≤ q ∈ ΥT , πq : X̃T → Xg is the natural projection, g = q \ {t0}. Hence, Conditions (4),
(5), (7) imply that: {µq

x0 ; π
q
v; ΥT} is the consistent family of measures that induces a cylindrical

distribution µ̃x0 on the measurable space (X̃T , Ũ) such that

µ̃x0(π
−1
q (D)) = µ

q
x0(D) (8)

for each D ∈ Ug.
The cylindrical distribution given by Formulas (1)–(5), (7) and (8) is called theAr,C-valued

Markov distribution with time t in T.

Remark 1. Let Xt = X for each t ∈ T, X̃t0,x0 := {x ∈ X̃T : x(t0) = x0}. Put π̄q : x 7→ xq for
each x = x(t) in X̃T , where xq is defined on q = (t0, . . . , tn+1) ∈ ΥT such that xq(t) = x(t) for
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each t ∈ q. To an arbitrary function F : X̃T → Al
r,C a function can be posed (SqF)(x) := F(xq) =

Fq(y0, . . . , yn), where yj = x(tj), Fq : Xq → Al
r,C, l ∈ N. Put

F := {F|F : X̃T → Al
r,C, SqF is Uq −measurable for each q ∈ ΥT}.

If F ∈ F, τ = t0 ∈ q, t0 < t1 < . . . < tn+1, then the integral

Jq(F) =
∫

Xq
(SqF)(x0, . . . , xn) l

n+1

∏
k=1

P(tk−1, xk−1, tk, dxk) (9)

can be defined whenever it converges.

Definition 2. A function F is called integrable relative to a Markov cylindrical distribution µx0 if
the limit

lim
q∈ΥT

Jq(F) =: J(F) (10)

along the generalized net by finite subsets q = (t0, . . . , tn+1) ∈ ΥT of T exists (see (9)). This limit
is called a functional integral relative to the Markov cylindrical distribution:

J(F) =
∫

X̃t0,x0

F(x)µx0(dx). (11)

Remark 2. Spatially homogeneous transition measure. Suppose that P(t, A) is an Ar,C-
valued measure on (X,U) for each t ∈ T such that A− x ∈ U for each A ∈ U and x ∈ X, where
A ∈ U, X is a locally R-convex space which is also a two-sided Ar,C-module, U is an algebra of
subsets of X. Suppose also that P is a spatially homogeneous transition measure:

P(t1, x1, t2, A) = P(t2 − t1, A− x1) (12)

for each A ∈ U, t1 < t2 ∈ T and t2 − t1 ∈ T and every x1 ∈ X, where P(t, A) also satisfies the
following condition:

P(t1 + t2, A) =
∫

X
P(t2, A− y)P(t1, dy) (13)

for each t1 < t2 and t1 + t2 in T.
Then,

φ(t1, x1, t2, y) :=
∫

X
P(t1, x1, t2, dx) exp(iy(x)) (14)

is the characteristic functional of transitional measure P(t1, x1, t2, dx) for each t1 < t2 ∈ T and
each x1 ∈ X, where X∗R notates the topologically dual space of all continuous R-linear real-valued
functionals y on X, y ∈ X∗R. Particularly for P satisfying Conditions (12) and (13) with t0 = 0
its characteristic functional φ satisfies the equalities:

φ(t1, x1, t2, y) = ψ(t2 − t1, y) exp(iy(x1)), (15)

where
ψ(t, y) :=

∫
X

P(t, dx) exp(iy(x)) and (16)

ψ(t1 + t2, y) = ψ(t2, y)ψ(t1, y) (17)

for each t1 < t2 ∈ T and t2 − t1 ∈ T and t1 + t2 ∈ T respectively and y ∈ X∗R, x1 ∈ X, since
Z(Ar,C) = C.

Remark 3. If T is a T1 ∩ T3.5 topological space, we denote by C0
b(T, H) the Banach space of all

continuous bounded functions f : T → H supplied with the norm:

‖ f ‖C0 := sup
t∈T
‖ f (t)‖H < ∞, (18)
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where H is a Banach space over R that may also be a two-sided Ar,C-module. If T is compact, then
C0

b(T, H) is isomorphic with the space C0(T, H) of all continuous functions f : T → H.
For a set T and a complete locally R-convex space H that may also be a two-sidedAr,C-module,

consider product R-convex space HT := ∏t∈T Ht in the product topology, where Ht := H for each
t ∈ T.

Suppose that B is a separating algebra on the space either X := X(T, H) = Lq(T,B(T), λ, H)
or X := X(T, H) = C0

b(T, H) or on X = X(T, H) = HT , where λ : B(T) → [0, ∞) is a σ-
additive measure on the Borel σ-algebra B(T) on T, 1 ≤ q ≤ ∞. Consider a random variable
ξ : ω 7→ ξ(t, ω) with values in (X,B), where t ∈ T, ω ∈ Ω, (Ω,R, P) is a measure space with
an Ar,C-valued measure P, P : R → Ar,C.

Events S1, . . . , Sn are independent in total if P( l ∏n
k=1 Sk) = l ∏n

k=1 P(Sk). Subalgebras
Rk ⊂ R are independent if all collections of events Sk ∈ Rk are independent in total, where
k = 1, . . . , n, n ∈ N. To each collection of random variables ξγ on (Ω,R) with γ ∈ Υ is related
the minimal algebraRΥ ⊂ R for which all ξγ are measurable, where Υ is a set. Collections {ξγ :
γ ∈ Υl} are independent ifRΥl , where Υl ⊂ Υ for each l = 1, . . . , n, n ∈ N.

For X = C0
b(T, H) or X = HT define X(T, H; (t1, . . . , tn); (z1, . . . , zn)) as a closed subman-

ifold in X of all f : T → H, f ∈ X such that f (t1) = z1, . . . , f (tn) = zn, where t1, . . . , tn are
pairwise distinct points in T and z1, . . . , zn are points in H. For n = 1 and t0 ∈ T and z1 = 0, we
denote X0 := X0(T, H) := X(T, H; t0; 0).

Definition 3. Suppose that H is a real Banach space that may also be a two-sided Ar,C-module.
Consider a random function w(t, ω) with values in the space H as a random variable such that:

the random variable ω(t, ω)−ω(u, ω) has a distribution µFt,u , (19)

where µ is an Ar,C-valued measure on (X(T, H),B), µg(A) := µ(g−1(A)) for g : X → H such
that g−1(RH) ⊂ B and each A ∈ RH . Thereby, Ft,u a R-linear operator Ft,u : X → H is denoted,
which is prescribed by the following formula:

Ft,u(w) := w(t, ω)− w(u, ω)

for each u < t in T, whereRH is a separating algebra of H such that F−1
t,u (RH) ⊂ B for each u < t

in T, where T = [0, b] with 0 < b < ∞ or T = [0, ∞), Ω 6= ∅;

the vectors w(tm, ω)− w(tm−1, ω), . . . , w(t1, ω)− w(0, ω) and w(0, ω) (20)

are mutually independent for each chosen 0 < t1 < . . . < tm in T and each m ≥ 2, where ω ∈ Ω.
Then, {w(t) : t ∈ T} is the random function with independent increments, where w(t) is the

shortened notation of w(t, ω).
In addition,

w(0, ω) = 0. (21)

Remark 4. Random function w(t, ω) satisfying Conditions (19)–(21) in Definition 3 possesses a
Markovian property with transitional measure

P(u, x, t, A) = µFt,u(A− x) (see also (10)-(17)).
As usual, it is put for the expectation

EP f =
∫

Ω
f (ω)P(dω) = PL( f )

of a random variable f : Ω→ Ah
r,C whenever this integral exists, where P = P[r] is theAr,C-valued

measure on a measure space (Ω[r], [r]F ) shortly denoted by (Ω,F ), where f is (F ,B(Ah
r,C))-

measurable, h ∈ N, B(Ah
r,C) denotes the Borel σ-algebra onAh

r,C. If P is specified, it may be shortly
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written E instead of EP. If G is a sub-σ-algebra in the σ-algebra F and if there exists a random
variable g : Ω→ Ah

r,C such that g is (G,B(Ah
r,C))-measurable and∫

A
f (ω)P(dω) =

∫
A

g(ω)P(dω)

for each A ∈ G, then g is called the conditional expectation relative to G and denoted by g = E( f |G).
An operator J : An

r,C → Ah
r,C is called right Ar,C-linear in the weak sense if

J(xb + yc) = (Jx)b + (Jy)c (22)

for each x and y in Rn and b and c in Ar,C, where real field R is canonically embedded into the
complexified Cayley–Dickson algebra Ar,C as Ri0, i0 = 1. Over the algebra HC = A2,C, this
gives right linear operators J(xb + yc) = (Jx)b + (Jy)c for each x and y in An

2,C and b and c in
A2,C, since HC is associative. For brevity, we omitted “in the weak sense”. We notate such a set of
operators with Lr(An

r,C,Ah
r,C). Then

‖J‖ = sup
z 6=0; z∈An

r,C

‖Jz‖
‖z‖ ,

where z = (z1, . . . , zn), zj ∈ Ar,C for each j ∈ {1, . . . , n}, where

‖z‖2 =
n

∑
j=1
‖zj‖2,

‖a‖2 = 2|b|2 + 2|c|2 for each a = b + ic in Ar,C with b and c in Ar (see also Remark 2.1 of [22]).
In particular, it is useful to consider the following case: w = Jξ + p, where ξ is a R2n-

valued random variable on a measurable space (Ω[0], [0]F ) and with a probability measure P[0] :

[0]F → [0, 1], where p ∈ An
r,C, where R2n is embedded into An

r,C as i0Rn + i0iRn, where
J ∈ Lr(An

r,C,An
r,C). This means that ξ is ( [0]F ,B(R2n))-measurable, while w is ( [r]F ,B(An

r,C))-
measurable, where (Ω[r], [r]F ) is a measurable space, P[r] : [r]F → Ar,C is a measure.

Assume that there is an injection θ : (Ω[0], [0]F )→ (Ω[r], [r]F ) and P[0] has an extension
P = Pθ

[0] on (Ω[r], [r]F ) such that Pθ
[0](Ω[r] \ θ(Ω[0])) = 0, Pθ

[0](A) = P[0](θ−1(A ∩ θ(Ω[0]))

for each A ∈ [r]F and |P[r]|(Ω[r] \ θ(Ω[0])) = 0. Then, it may be the case that P and P[r] are
related by Formulas 2.4(2), 2.4(3) of [22] with the use of U = U[r] = J2 and U[0] = I using the
Ar,C-analytic extension. If f = F(w), where F : An

r,C → Ah
r,C is a Borel measurable function;

then, there exists a Borel measurable function G : R2n → Ah
r,C such that G(ξ) = f . Therefore, if

u : Ah
r,C → R is a Borel measurable function, using Formulas 2.4(2), 2.4(3) of [22] we put

Eu( f ) =
∫

Ω[0]

u(G(ξ(ω)))P[0](dω).

If ∫
A[0]

u(G(ξ(ω))P[0](dω) =
∫

A[0]

g(θ(ω))P[0](dω)

for each A ∈ G, where g : Ω[r] → R is (G,B(R))-measurable, A[0] = θ−1(A ∩ θ(Ω[0])),

[0]G = θ−1(G ∩ θ(Ω[0])), then g is called the conditional expectation of u( f ) relative to G and
denoted by E(u( f )|G) = g, since P(Ω[r] \ θ(Ω[0])) = 0 and |P[r]|(Ω[r] \ θ(Ω[0])) = 0, where G
is a σ-subalgebra in [r]F .

This convention is used if some other is not specified.
Let Lr,i(An

r,C,Ah
r,C) denote a family of all right Ar,C-linear operators J from An

r,C into Ah
r,C

fulfilling the condition
J(An

r ) ⊂ Ah
r . (23)
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Theorem 1. Suppose that either X = C0
b(T, H) or X = HT , where H = An

r,C with n ∈ N,
2 ≤ r < ∞, either T = [0, s] with 0 < s < ∞ or T = [0, ∞). Then, there exists a family Ψ
of pairwise inequivalent Markovian random functions with Ar,C-valued transition measures of
the type µUt,pt (see Definition 2.4 of [22]) on X of a cardinality card(Ψ) = c, where c = 2ℵ0 ,
0 < t ∈ T.

Proof. Naturally, the algebra An
r,C = ⊗n

j=1Ar,C, if considered to be a linear space over

R, also possesses a structure of the R-linear space isomorphic with R2r+1n. Therefore,
the Borel σ-algebra B(An

r,C) of the algebra An
r,C is isomorphic with B(R2r+1n). So, put

P(t, A) = µUt,pt(A) for each 0 < t ∈ T and A ∈ B(H), where an operator U and a vector p
are marked, satisfying conditions of Definitions 2.4 and 2.3(α) of [22].

Naturally, an embedding of Rn into An
r,C exists as i0Rn, where i0 = 1. If ξ(t) is

an Rn-valued random function, J is a right Ar,C-linear operator J : An
r,C → An

r,C satis-
fying the condition J(An

r ) ⊂ An
r , v ∈ An

r,C (see (22), (23) in Remark 4), then generally,
w(t) = Jξ(t) + vt is an An

r,C-valued random function, where 0 ≤ t ∈ T, w(t) is a shortened
notation of w(t, ω).

Operators B±1/2
j exist (see, for example, Chapter IX, Section 13 in [23].), since Bj is

positive definite for each j. On the Cayley–Dickson algebra Ar, function
√

a exists (see §3.7
and Lemma 5.16 in [19]). It has an extension on Ar,C and its branch, such that

√
a > 0 for

each a > 0 can be specified by the following. Take an arbitrary a = a0 + ia1 ∈ Ar,C with
a0 ∈ Ar and a1 ∈ Ar. Put a0,0 = Re(a0), a1,0 = Re(a1), a0

′ = a0 − a0,0, a1
′ = a1 − Re(a1).

If a0,0 6= 0 and a1,0 6= 0, a can be presented in the form a = (α + iβ)(u + iv′) with α ∈ R,
β ∈ R, u ∈ Ar, v′ ∈ Ar, Re(v′) = 0. Therefore, in the latter case

√
a =

√
α + iβ

√
u + iv′,

since C = Z(Ar,C). If a is such that a0,0 = 0 and a1,0 6= 0; then, for b = ia, there
are b0,0 = −a1,0 6= 0 and b1,0 = 0. On the other hand, for a with a1,0 = 0, equation
(γ + iδ)2 = a0 + ia1

′ has a solution with γ and δ in Ar, since, by utilizing the standard
basis of the complexified Cayley–Dickson algebra, this equation can be written as the
quadratic system in 2r complex variables γ0 + iδ0, . . . , γ2r−1 + iδ2r−1. The latter system
has a solution (γ, δ) in A2

r , since each polynomial over C has zeros in C by the principal
algebra theorem. Therefore, the initial equation has a solution in Ar,C. Thus, the operator
U1/2 =

⊕m
j=1 a1/2

j B1/2
j exists and it evidently belongs to Lr(An

r,C,An
r,C).

Particularly, J can be J = U1/2, while as ξ(t), it is possible to take a Wiener process
with the zero expectation and the unit covariance operator.

If f ∈ X, then T 3 t 7→ f (t) defines a continuous R-linear projection πt from X into H.
Therefore, πtn × (πtn−1 × . . .× πt1) provides a continuous R-linear projection πq from X
into Hq for each 0 < t1 < . . . < tn ∈ T, where q = {t1, . . . , tn}. These projections and Borel
σ-algebras B(Hq) on Hq for finite linearly ordered subsets q in T induce an algebraR(X) of
X. Since HT is supplied with the product Tychonoff topology, a minimal σ-algebraRσ(HT)
generated byR(HT) coincides with the Borel σ-algebra B(HT). Topological spaces T and H
are separable and relative to the norm topology on C0

b(T, H);Rσ(C0
b(T, H)) = B(C0

b(T, H))
is also obtained.

By virtue of Proposition 2.7 of [22] and Formulas 2.4(2) and 2.4(3) of [22], a character-
istic functional of PU,p(t, A) := µUt,pt fulfils Condition (17). It is worth to associate with
PU,p(t, A) a spatially homogeneous transition measure PU,p(t1, x1, t2, A) according to Equa-
tion (12) in Remark 2. Representation 2.10(2) of [22] implies that a bijective correspondence
exists between σ-additive norm-bounded Ar,C-valued measures and their characteristic
functionals, since it is valid for each real-valued addendum µj,k (see, for example, [1,7]) and
Z(Ar,C) = C. Moreover, a characteristic functional of the ordered convolution (µ ∗ ν) of
two σ-additive norm-bounded Ar,C-valued measures µ and ν is the ordered product µ̂ · ν̂
of their characteristic functionals µ̂ and ν̂, respectively. Therefore, Conditions (1)–(4) in
Definition 1 are satisfied.

Then, Formulas (5), (7) and (8) in Definition 1 together with the data above describe
an Ar,C-valued Markov cylindrical distribution PU,p on X (see Corollary 2.6 of [22] and
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Definition 1), since t = t2 − t1 > 0 for each 0 < t1 < t2 ∈ T. The space H is Radon by the
Theorem I.1.2 of [1], since H is separable and complete as the metric space. From Theorem
2.3 and Proposition 2.7 of [22], it follows that PU,p is uniformly norm-bounded. In view
of Theorem 2.15 and Corollary 2.17 [22], this cylindrical distribution has an extension to a
norm-bounded measure PU,p on a completionRP(X) ofR(X), whereRσ(X) = B(X).

Considering different operators U and vectors p, and utilizing the Kakutani theorem
(see, for example, in [1]), we infer that there is a family of the cardinality c of pairwise
nonequivalent and orthogonal measures of such type PU,p on X since each P has the
representation 2.10(2) of [22].

Let Ω = Ω[r] be the set of all elementary events

ω := { f : f ∈ X(T, H; (t0, t1, . . . , tn); (0, x1, . . . , xn))},

where Λω is a finite subset of N, xi ∈ H, (ti : i ∈ Λω) ∈ ΥT is a subset of T \ {t0} (see
Remarks 1 and 3), where t0 = 0, where ti < tj for each i < j in Λω. Hence, an algebra Ũ
exists of cylindrical subsets of X0(T, H) induced by the projections πq : X0(T, H) → Hq,
where q ∈ ΥT is a subset in T \ {0}. This procedure induces algebra R(Ω) of Ω. So, one
can consider a Markovian random function corresponding to PU,p (see Definition 3).

Corollary 1. Let w(t, ω) be a random function given by Theorem 1 with the transitional measure
µUt,pt for each t > 0, then

E(w(t2, ω)− w(t1, ω)) = (t2 − t1)p (24)

and
E((wk(t2, ω)− pkt2)(wh(t1, ω)− pht1)) = (t2 − t1)ajbk−β j−1,h−βl−1;jδj,l (25)

for each k and h in {1, . . . , n}, where 0 < t1 < t2 ∈ T, 1+ β j−1 ≤ k ≤ β j and 1+ βl−1 ≤ h ≤ βl ,
j = 1, . . . , m, l = 1, . . . , m, where E means the expectation relative to PL

U,p.

Proof. By virtue of Theorem 1, random function w(t, ω) has the transitional measure
P(t1, x, t2, A) = µFt2,t1 (A − x) = PL

(t2−t1)U,(t2−t1)p, where x = w(t1, ω). Therefore,
Formulas (24) and (25) follow from Proposition 2.8 and Theorem 2.9 of [22].

Definition 4. Let (Ω,F , P) be a measure space with an Ar,C-valued σ-additive norm-bounded
measure P on a σ-algebra F of a set Ω with P(Ω) = 1. There is a filtration {Ft : t ∈ T},
if Ft1 ⊂ Ft2 ⊂ F for each t1 < t2 in T, where Ft is a σ-algebra for each t ∈ T, where either
T = [0, s] with 0 < s < ∞ or T = [0, ∞). A filtration {Ft : t ∈ T} is called normal
if {B ∈ F : |P|(B) = 0} ⊂ F0 and Ft =

⋂
T3v>t Fv for each t ∈ T.

Then, if for each t ∈ T a random variable u(t) : Ω→ X with values in a topological space X is
(Ft,B(X))-measurable, random function {u(t) : t ∈ T} and filtration {Ft : t ∈ T} are adapted,
where B(X) denotes the minimal σ-algebra on X containing all open subsets of X (i.e., the Borel
σ-algebra). Let G be a minimal σ-algebra on T ×Ω generated by sets (v, t]× A with A ∈ Fv, also
{0} × A with A ∈ F0. Let also µ be a σ-additive measure on (T ×Ω,G) induced by the measure
product λ× P, where λ is the Lebesgue measure on T. If u : T×Ω→ X is (Gµ,B(X))-measurable,
then u is called a predictable random function, where Gµ denotes the completion of G by |µ|-null
sets, where |µ| is the variation of µ (see Definition 2.10 in [22]).

The random function given by Corollary 1 is called an An
r,C-valued (U, p)-random function

or, in short, U-random function for p = 0.

Remark 5. Random functions described in the proof of Theorem 1 are Ar,C generalizations of the
classical Brownian motion processes and of the Wiener processes.

Let w(t) be the An
r,C-valued (U, p)-random function provided by Theorem 1 and Corollary

1. Let a normal filtration {Ft : t ∈ T} on (Ω,F , P) be induced by w(t). Therefore, w(t) is
(Ft,B(An

r,C))-measurable for all t ∈ T; w(t1 + t2) − w(t1) is independent of any A ∈ Ft1
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for each t1 and t1 + t2 in T with t2 > 0. In view of Theorem 1 and Corollary 1, conditions
P(Ω \ θ(Ω[0])) = 0 and |P[r]|(Ω \ θ(Ω[0])) = 0 are satisfied, where Ω = Ω[r], F = [r]F (see
Remark 4).

Suppose that {S(t) : t ∈ T} is an Lr(An
r,C,Ah

r,C) valued random function (that is, random
operator), S(t) = S(t, ω), ω ∈ Ω (see also the notation in Remark 4). It is called elementary if a
finite partition 0 = t0 < t1 < . . . < tk = s exists, so that

S(t) =
k−1

∑
l=0

Sl · ch(tl ,tl+1]
, (26)

where Sl : Ω → Lr(An
r,C,Ah

r,C) is (Fl ,B(Lr(An
r,C,Ah

r,C))-measurable for each l = 0, . . . , k− 1,
where n and h are natural numbers, where ch(tl ,tl+1]

denotes the characteristic function of the
segment (tl , tl+1] = {t ∈ R : tl < t ≤ tl+1}, T = [0, s]. A stochastic integral relative to w(t) and
the elementary random function S(t) is defined by the formula:

∫ t

0
S(τ)dw(τ) :=

k−1

∑
l=0

Sl(w(tl+1 ∧ t)− w(tl ∧ t)), (27)

where t ∧ t′ = min(t, t′) for each t and t′ in T. Similarly, elementary Lr,i(An
r,C,Ah

r,C) random
functions and their stochastic integrals are defined. Put

< x, y >= x1ỹ1 + . . . + xhỹh (28)

for each x and y in Ah
r,C,

where y = (y1, . . . , yh) with yl ∈ Ar,C for each l, z̃ = z0 − z′ for each z = z0 + z′ in Ar,C with
z0 ∈ R and z′ ∈ Ar,C, Re(z′) = 0.

Q∗ denotes an adjoint operator of an R-linear operator Q : An
r,C → Ah

r,C, such that

< Qx, y >=< x, Q∗y > (29)

for each x ∈ An
r,C and y ∈ Ah

r,C.
Then, we put for Q = A + iB with A and B in Lr,i(An

r,C,Ah
r,C)

‖Q‖2
2 = 2Tr(AA∗) + 2Tr(BB∗). (30)

Lemma 1. Let
(i) S(t) be an elementary Lr(An

r,C,Ah
r,C)-valued random variable with E(‖S(t)‖|Fa) < ∞

P-almost everywhere on (Ω,F ) for each t ∈ [a, b], and let
(ii) w = w0 + iw1 be an An

r,C-valued random function with U0- and U1- random functions
w0 and w1, respectively, having values in An

r , so that U0 and U1 belong to Lr,i(An
r,C,An

r,C), and
operator U = U0 + iU1 fulfils Conditions 2.3(α) and of Definition 2.4 of [22], where w0 and w1
are independent; 0 ≤ a < b < ∞, [a, b] ⊂ T (see Definitions 2.10 of [22] , Remarks 4 and 5 above).

Then, E(
∫ b

a S(t)dw(t)|Fa) = 0 P-almost everywhere on (Ω,F ).

Proof. This follows from Corollary 1(24), and Formulas (26) and (27), since 0 ≤ (b −
a)E(∑k−1

l=0 ‖Sl‖|Fa) < ∞ P-almost everywhere and E(w(t2, ω)− w(t1, ω)) = 0 for each
t2 > t1 in [a, b] for the U-random function w.

Lemma 2. Let S = A + iB, with A and B belonging to Lr,i(An
r,C,Ah

r,C), where n ∈ N, h ∈ N,
2 ≤ r < ∞. Then,

‖S‖2
2 = Tr[(A + iB)((A∗ − iB∗)] + Tr[(A− iB)((A∗ + iB∗)] < ∞ and (31)

‖S‖ ≤ ‖S‖2. (32)
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Proof. Since A and B belong to Lr,i(An
r,C,Ah

r,C), then

‖A + iB‖2
2 = 2Tr(AA∗) + 2Tr(BB∗) < ∞ (33)

by Formula (30), where Tr(AA∗) denotes the trace of operator AA∗, as usual. On the other
side,

[(A + iB)((A∗ − iB∗)] + [(A− iB)((A∗ + iB∗)] = 2(AA∗ + BB∗).

Since A ∈ Lr,i(An
r,C,Ah

r,C), then < Aek, el >∈ Ar for each k = 1, . . . , n, l = 1, . . . , h,
where {ek : k = 1, . . . , m} denotes the standard orthonormal base in the Euclidean space
Rm, where m = max(n, h); Rn is embedded into An

r,C as i0Rn. Therefore, we deduce using
Formulas (28), (29), and (33) that

Tr(AA∗) = ∑
l,k
| < el , Aek > |2 ≥ 0, (34)

since Tr(AA∗) = ∑l < AA∗el , el >= ∑l,k < A∗el , ek >< ek, A∗el >.
This implies Formula (31). From the Cauchy–Bunyakovskii–Schwarz inequality,

Remark 4, Formulas (31) and (34), one obtains Inequality (32).

Theorem 2. If S(t) is an elementary random function with values in Lr,i(An
r,C,Ah

r,C) and w(t) is
an U-random function in An

r as in Definition 4 with U ∈ Lr,i(An
r,C,An

r,C), then

E
[
<
∫ t

a
S(τ)dw(τ),

∫ t

0
S(τ)dw(τ) > |Fa

]

= E
[ ∫ t

a
Tr({S(τ)U1/2}{(U1/2)∗S∗(τ)})dτ|Fa

]
(35)

P-almost everywhere for each 0 ≤ a < t ∈ T.

Proof. Since Ew(t) = 0 and U : An
r,C → An

r,C, U ∈ Lr,i(An
r,C,An

r,C) by the conditions of this
theorem, aj ∈ Ar \ {0} for each j and hence U1/2 : An

r,C → An
r,C and U1/2 ∈ Lr,i(An

r,C,An
r,C),

since U satisfies the conditions of Definition 2.4 and 2.3(α) [22] (see also Theorem 1).
Therefore, w(t, ω) ∈ An

r ; hence, S(t, ω)w(t, ω) ∈ Ah
r for each t ∈ T and P-almost all ω ∈ Ω,

where w(t) is a shortening of w(t, ω), while S(t) is that of S(t, ω). On the other hand,

< x, x >= |x|2 =
h

∑
j=1

xj x̃j =
h

∑
j=1
|xj|2 (36)

for each x ∈ Ah
r , where |z|2 = zz̃ = ∑2r−1

l=0 z2
l for each z in the Cayley–Dickson algebra Ar,

where z = z0i0 + . . . + z2r−1i2r−1 with zl ∈ R for each l, {i0, . . . , i2r−1} is the standard basis
of Ar.

Let el ∈ An
r,C and fl ∈ Ah

r,C, where el = (δl,k : k = 1, . . . , n) and fl = (δl,k : k =

1, . . . , h), where δl,k is the Kronecker delta. Then, for an operator J in Lr,i(An
r,C,Ah

r,C) and
each x ∈ An

r,C, the representation is valid:

Jx =
n

∑
k=1

h

∑
l=1

Jl,kxk fl , (37)

where x = x1e1 + . . . + xnen, xk ∈ Ar,C and Jl,k ∈ Ar for each k and l.
From the conditions imposed on U (see Definition 2.4 of [22]), it follows that U and

U1/2 =
m⊕

l=1

a1/2
j B1/2

j and (U1/2)∗ =
m⊕

l=1

ã1/2
j B1/2

j (38)
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belong to Lr,i(An
r,C,An

r,C), since the positive definite matrix [Bj]
1/2 with real matrix elements

corresponds to the positive definite operator Bj for each j, and z1/2 ∈ Ar for each z ∈ Ar.
By virtue of Proposition 2.5, and Formulas 2.8(2) and 2.8(3) in [22], µUt,0 is the Ar-

valued measure for each t > 0, since the Cayley–Dickson algebra Ar is power-associative
and expl(z) = exp(z) for each z ∈ Ar.

Random function S(t)w(t) is obtained from the standard Wiener process ξ in Rn with
the zero expectation and the unit covariance operator with the use of operator U1/2:

S(t)w(t) = S(t)U1/2ξ(t) (39)

according to Theorem 1. Therefore, the statement of this theorem follows from the Ito
isometry theorem (see, for example, Proposition 1.2 in [1], Theorem 3.6 in [2], XII in Chapter
VIII, Section 1 in [5] ), Formulas (36)–(39) above and Remarks 4 and 5.

Theorem 3. Suppose that
(i) S(t) is an elementary Lr(An

r,C,Ah
r,C) valued random function and

(ii) w = w0 + iw1 is an An
r,C-valued random function satisfying Condition (ii) in Lemma 1.

Then,

E
[∥∥∥∥ ∫ t

a
S(τ)dw(τ)

∥∥∥∥2

|Fa

]
≤ max(‖U1/2

0 ‖2
2, ‖U1/2

1 ‖2
2) E

[ ∫ t

a
‖S(τ)‖2

2dτ|Fa

]
(40)

P-almost everywhere for each 0 ≤ a < t ∈ T.

Proof. We consider the following representation: S(x + iy) = (S0,0x) + (S0,1y) + i(S1,0x) +
i(S1,1y) of S with Sl,k ∈ Lr,i(An

r,C,Ah
r,C) for every l, k ∈ {0, 1} and z = x + iy ∈ An

r,C with x
and y in An

r . For each z = x + iy ∈ An
r,C, we have |Sz|2 = |(S0,0x) + (S0,1y)|2 + |(S1,0x) +

(S1,1y)|2 (see Remark 2.1 of [22] and Formula (36) in Theorem 2 above). On the other
hand, |v|2 =< v, v > for each v ∈ Ah

r . For two operators G and H in Lr,i(An
r,C,Ah

r,C),
the inequality is valid |Tr(GH∗)|2 ≤ [Tr(GG∗)] · [Tr(HH∗)] due to Representation (37).
Applying Theorem 2 and Lemma 2 (see also Remarks 4 and 5) to S0,0w0 + S0,1w1 = (S0,0 ⊕
S0,1)η and S1,0w0 + S1,1w1 = (S1,0 ⊕ S1,1)η, where η = w0 ⊕ w1 and U = U0 ⊕U1, we
infer that

E
[∥∥∥∥ ∫ t

a
S(τ)dw(τ)

∥∥∥∥2

|Fa

]
=

2E
[ ∫ t

0

( 1

∑
l,k=0

Tr({Sl,k(τ)U
1/2
k }{(U

1/2
k )∗S∗l,k(τ)})

)
dτ|Fa

]

≤ max(‖U1/2
0 ‖2

2, ‖U1/2
1 ‖2

2) E
[ ∫ t

a
‖S(τ)‖2

2dτ|Fa

]
(41)

P-almost everywhere for each 0 ≤ a < t ∈ T, since |Tr(GH∗)| = |Tr(HG∗)| and |a + b| ≤
|a|+ |b| for each a and b in Ah

r .

Lemma 3. If conditions (i) in Theorem 3, (ii) in Lemma 1 are satisfied, then

P

{∥∥∥∥ ∫ b

a
S(t)dw(t)

∥∥∥∥ > β max(‖U1/2
0 ‖2, ‖U1/2

1 ‖2)

}
≤

αβ−2 + P

{ ∫ b

a
‖S(t)‖2

2dt > α

}
(42)

for each α > 0, β > 0, [a, b] ⊂ T, 0 ≤ a < b < ∞.
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Proof. According to Formula (26) S(t) = S(tl) for each tl < t ≤ tl+1, where a = t0 < t1 <
. . . < tk = b. Since S(t) is (Ftl ,B(Lr(An

r,C,Ah
r,C))-measurable for each t ∈ (tl , tl+1], then∫ tl+1

a ‖S(t)‖2
2dt is (Ftl ,B([0, ∞]))-measurable. We consider a modified elementary random

function Sα(t) such that Sα(t) = S(t) for each t ≤ tl if
∫ tl+1

a ‖S(t)‖2
2dt ≤ α; otherwise

Sα(t) = 0 for each t ∈ (tl , b] if
∫ tl

a ‖S(t)‖
2
2dt ≤ α <

∫ tl+1
a ‖S(t)‖2

2dt for some l. Therefore,∫ t
a ‖Sα(t)‖2

2dt ≤ α for each t ∈ [a, b]; hence,

P{ sup
t∈[a,b]

‖Sα(t)− S(t)‖2 > 0} = P

{ ∫ b

a
‖S(t)‖2

2dt > α

}
. (43)

Then, we deduce that

P

{∥∥∥∥ ∫ b

a
S(t)dw(t)

∥∥∥∥ > β max(‖U1/2
0 ‖2, ‖U1/2

1 ‖2)

}
=

P

{∥∥∥∥ ∫ b

a
Sα(t)dw(t) +

∫ b

a
(S(t)− Sα(t))dw(t)

∥∥∥∥ > β max(‖U1/2
0 ‖2, ‖U1/2

1 ‖2)

}
≤

P

{∥∥∥∥ ∫ b

a
Sα(t)dw(t)

∥∥∥∥ > β max(‖U1/2
0 ‖2, ‖U1/2

1 ‖2)

}
+ P

{∥∥∥∥ ∫ b

a
(S(t)− Sα(t))dw(t)

∥∥∥∥ > 0
}

≤
E
[∥∥∥∥ ∫ b

a Sα(t)dw(t)
∥∥∥∥2]

β2 max(‖U1/2
0 ‖2

2, ‖U1/2
1 ‖2

2)
+ P

{ ∫ b

a
‖S(t)‖2

2dt > α

}
by Chebyshëv inequality (see, for example, in Section II.6 [7]), Equality (43) above, Formu-
las 2.10(1) and (2) in [22]. By virtue of Theorem 3 (see also Formulas (40) and (41))

E
[∥∥∥∥ ∫ b

a
Sα(t)dw(t)

∥∥∥∥2]
≤ max(‖U1/2

0 ‖2
2, ‖U1/2

1 ‖2
2) E

[ ∫ b

a
‖S(t)‖2

2dt
]

,

since E[E(ζ|Fa)] = Eζ for a random variable ζ : Ω → [0, ∞] which is (Fa,B([0, ∞]))-
measurable (Section II.7 [7]). This implies Inequality (42).

Theorem 4. If w is a U-random function and {S(t) : t ∈ T} is an Lr,i(An
r,C,Ah

r,C)-valued
predictable random function satisfying the condition

E[
∫ t

a
Tr({S(τ)U1/2}{(U1/2)∗S∗(τ)})dτ] < ∞ (44)

for each 0 ≤ a < t in T, where operator U is specified in Definition 2.4 [22], such that
U ∈ Lr,i(An

r,C,An
r,C); then, a sequence {Sκ(t) : κ ∈ N} of elementary random functions ex-

ists with t ∈ T such that

limκ→∞E[
∫ t

a
Tr({(S(τ)− Sκ(τ))U1/2}{(U1/2)∗(S∗(τ)− Sκ(τ))})dτ] = 0 (45)

for each 0 ≤ a < t in T.

Proof. Tr({S(τ)U1/2}{(U1/2)∗S∗(τ)} ≥ 0 for each τ ∈ T, since U ∈ Lr,i(An
r,C,An

r,C)

implying aj ∈ Ar ; hence, a1/2
j ∈ Ar for each j. In view of Formulas (35), (37) random

function S(τ)U1/2 having values in Lr,i(An
r ,Ah

r ) has the decomposition into a finite
R-linear combination

S(t)U1/2 =
n

∑
l=1

h

∑
k=1

2r−1

∑
j=0

ηl,k;jel ⊗ fkij (46)



Symmetry 2022, 14, 2049 13 of 28

of real random functions ηl,k;j using vectors el , fk and the standard basis {i0, i1, . . . , i2r−1}
of the Cayley–Dickson algebra Ar over R. For each real-valued random function, the
condition

E[
∫ t

a
η2

l,k;jdτ] < ∞ (47)

is fulfilled for each 0 ≤ a < t in T by (44); hence, a sequence of real-valued random
functions ηl,k;j;κ exists, such that

limκ→∞E[
∫ t

a
(ηl,k;j − ηl,k;j;κ)

2dτ] = 0 (48)

for each t ∈ T. Thus, Formulas (46), (47), and (48) imply (45).

Theorem 5. If w fulfills Condition (ii) in Lemma 1 and S(t) is a Lr(An
r,C,Ah

r,C)-valued predictable
random function satisfying the following inequality:

E
[ ∫ b

a
F(S; U0, U1)(τ)dτ

]
< ∞ (49)

for each 0 ≤ a < b in T, where

F(S; U0, U1)(t) =
1

∑
l,k=0

Tr({Sl,k(t)U
1/2
k }{(U

1/2
k )∗S∗l,k(t)}). (50)

Then, a sequence {Sκ(t) : κ ∈ N} of elementary random functions exists with t ∈ T, such that

limκ→∞E
[ ∫ b

a
F((S(τ)− Sκ(τ)); U0, U1)(τ)dτ

]
= 0 (51)

for every 0 ≤ a < b in T.

The proof is analogous to that of Theorem 4 with the use of Formula (41), using
(49), (50) and (51), since E(E(ζ|Fa)) = Eζ with ζ =

∫ b
a F(S; U0, U1)(τ)dτ, ζ ≥ 0 P-

almost everywhere.

Definition 5. A sequence {Sκ(t) : κ ∈ N} of elementary Lr(An
r,C,Ah

r,C)-valued random functions
with t ∈ T is mean absolute square convergent to a predictable Lr(An

r,C,Ah
r,C)-valued random

function {S(t) : t ∈ T}, where w satisfies Condition (ii) in Lemma 1, if Condition (51) in Theorem
5 is satisfied. The corresponding mean absolute square limit is induced by Formulas (41) and (51),
and is denoted by l.i.m.. The family of all predictable Lr(An

r,C,Ah
r,C)-valued random functions

{S(t) : t ∈ T} satisfying Condition (49) is denoted by V2,1(U0, U1, a, b, n, h)
A stochastic integral of S ∈ V2,1(U0, U1, a, b, n, h) is:∫ t

0
S(τ)dw(τ) := l.i.m.κ→∞

∫ t

0
Sκ(τ)dw(τ), (52)

where w = w0 + iw1 is an An
r,C-valued random function with U0 and U1 random functions w0

and w1, respectively, having values in An
r , where 0 ≤ a ≤ t ≤ b in T, where w satisfies Condition

(ii) in Lemma 1.

Proposition 1. Let the conditions of Theorem 5 be satisfied, and let S ∈ V2,1(U0, U1, a, b, n, h),
0 ≤ a < c < b ∈ T. Then, there exists

∫ γ
β S(t)dw(t) for each a ≤ β ≤ γ ≤ b and

∫ b

a
S(t)dw(t) =

∫ c

a
S(t)dw(t) +

∫ b

c
S(t)dw(t). (53)
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Proof. In view of Theorem 5, Definitions 4 and 5, and Remark 5, there exists
∫ γ

β S(t)dw(t)
for each a ≤ β ≤ γ ≤ b. Formula (53) for elementary random functions Sκ for each
κ ∈ N follows from Formula (27). Hence, taking l.i.m.k→∞, we infer Equality (53) for
S ∈ V2,1(U0, U1, a, b, n, h) by Theorem 5.

Proposition 2. If S ∈ V2,1(U0, U1, a, b, n, h), Sκ ∈ V2,1(U0, U1, a, b, n, h) for each κ ∈ N, w
satisfies Condition (ii) in Lemma 1, and

lim
κ→∞

E
∫ b

a
F(S− Sκ ; U0, U1)(t)dt = 0, (54)

where 0 ≤ a < b ∈ T, then there exists

l.i.m.κ→∞

∫ b

a
Sκ(t)dw(t) =

∫ b

a
S(t)dw(t). (55)

Proof. In view of Proposition 1, stochastic integrals
∫ b

a S(t)dw(t) and
∫ b

a Sκ(t)dw(t) exist
for each κ ∈ N. Then, Equality (55) follows from Theorem 5, Equality (54), and Formula
(52) in Definition 5.

Proposition 3. If S ∈ V2,1(U0, U1, a, b, n, h), and if w satisfies Condition (ii) in Lemma 1, where
0 ≤ a < b ∈ T, then

E
[ ∫ b

a
S(t)dw(t)

∣∣∣∣Fa

]
= 0 P-almost everywhere and (56)

E
[∥∥∥∥ ∫ t

a
S(τ)dw(τ)

∥∥∥∥2

|Fa

]
= 2E

[ ∫ t

0
F(S; U0, U1)(τ)dτ|Fa

]
≤ max(‖U1/2

0 ‖2
2, ‖U1/2

1 ‖2
2) E

[ ∫ t

a
‖S(τ)‖2

2dτ|Fa

]
(57)

P-almost everywhere for each 0 ≤ a < t ∈ T.

Proof. From Lemmas 1 and 2, and Proposition 1, Identity (56) follows. Then, Theorem 3 and
Proposition 1 imply Inequality (57), since E(E(ζ|Fa)) = Eζ with ζ =

∫ b
a F(S; U0, U1)(t)dt

and since

P

{
ω ∈ Ω : E

[ ∫ b

a
F(S; U0, U1)(t)dt

∣∣∣∣Fa

]
(ω) = ∞

}
= 0; ζ ≥ 0

P-almost everywhere.

Remark 6. Let ch[0,∞)(t) = 1 for each t ≥ 0, and ch[0,∞)(t) = 0 for each t < 0 be a characteristic
function of [0, ∞), [0, ∞) ⊂ R. Then, G(τ) ∈ V2,1(U0, U1, a, b, n, h) for each t ∈ [a, b], if S(τ) ∈
V2,1(U0, U1, a, b, n, h), where G(τ) := S(τ)ch[0,∞)(τ − t). It is put

η(t) =
∫ t

a
S(τ)dw(τ) :=

∫ b

a
S(τ)ch[0,∞)(t− τ)dw(τ) (58)

for each t ∈ [a, b]. From Proposition 3, it follows that η(t) is defined P-almost everywhere. By virtue
of Theorem IV.2.1 in [5], η(t) is the separable random function up to the stochastic equivalence since
(Ah

r,C, | · |) is the metric space. Therefore, η(t) is considered to be the separable random function.

Definition 6. Let ζ(t), t ∈ T, be a Lh
r,C-valued random function adapted to the filtration {Ft :

t ∈ T} of σ-algebras Ft and let E|ζ(t)| < ∞ for each t ∈ T. If E(ζ(t)|Fs) = ζ(s) for each s < t
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in T, then the family {ζ(t),Ft : t ∈ T} is called a martingale. If ζ(t) ∈ R for each t ∈ T and
E(ζ(t)|Fs) ≥ ζ(s) for each s < t in T, then {ζ(t),Ft : t ∈ T} is called a sub-martingale.

Lemma 4. Assume that S(t) ∈ V2,1(U0, U1, a, b, n, h) and w satisfies Condition (ii) in Lemma 1,
0 ≤ a < b < ∞, [a, b] ⊂ T and

E
[ ∫ b

a
F(S; U0, U1)(t)dt

∣∣∣∣Fa

]
< ∞ (59)

and η(t) is provided by Formula (58); then, {η(t),Ft : t ∈ [a, b]} is a martingale and {|η(t)|2,Ft :
t ∈ [a, b]} is the submartingale.

Proof. By virtue of Proposition 3 η(t) is (Ft,B(Ah
r,C))-measurable and E(η(t2)− η(t1)|Ft1) =

E
[ ∫ t2

t1
S(τ)dτ

∣∣∣∣Ft1

]
= 0 for each a ≤ t1 < t2 ≤ b. Hence {η(t),Ft : t ∈ [a, b]} is the

martingale.
Random function η(t) has the decomposition:

η(t) = ∑
k∈{0,1}; j∈{0,1,...,2r−1}; l∈{1,...,h}

ηk,j,l(t)ijikel (60)

with ηk,j,l(t) ∈ R, for each k, j, l, where {el : l = 1, . . . , h} is the standard orthonormal
basis of the Euclidean space Rh, where Rh is embedded into Ah

r,C as i0Rh. Therefore, each
random function ηk,j,l(t) is the martingale. Then,

|η(t)|2 = ∑
k∈{0,1}; j∈{0,1,...,2r−1}; l∈{1,...,h}

|ηk,j,l(t)|2. (61)

By virtue of Theorem 1 and Corollary 2 in Chapter III, Section 1 [5], Inequality (59) and
Formula (57) above {|ηk,j,l(t)|2,Ft : t ∈ [a, b]} is the submartingale for each k, j, l. Conse-
quently, {|η(t)|2,Ft : t ∈ [a, b]} is the submartingale by Formulas (60) and (61).

Lemma 5. Let S(t) ∈ V2,1(U0, U1, a, b, n, h) and w satisfy Condition (ii) in Lemma 1 such that

E
[ ∫ b

a
F(S; U0, U1)(t)dt

∣∣∣∣Fa

]
< ∞ (62)

Then,

P{ sup
t∈[a,b]

∣∣∣∣ ∫ t

a
S(τ)dw(τ)

∣∣∣∣ > β max(‖U1/2
0 ‖2, ‖U1/2

0 ‖2)

∣∣∣∣Fa} ≤

β−2E
[ ∫ b

a
F(S; U0, U1)(t)dt

∣∣∣∣Fa

]
, (63)

P{ sup
t∈[a,b]

∣∣∣∣ ∫ t

a
S(τ)dw(τ)

∣∣∣∣ > β max(‖U1/2
0 ‖2, ‖U1/2

0 ‖2)} ≤

β−2E
[ ∫ b

a
F(S; U0, U1)(t)dt

]
. (64)

Proof. Inequality (64) follows from Inequality (63). Therefore, (63) remains to be proven.
We take an arbitrary partition a = t0 < t1 < . . . < tn = b of [a, b]. Then, we consider
ηk :=

∫ tk
a S(τ)dw(τ). In view of Lemma 4 {ηl ,Ftl : l = 1, . . . , n} is the martingale and

{|ηl |2,Ftl : l = 1, . . . , n} is the submartingale.



Symmetry 2022, 14, 2049 16 of 28

Therefore, from Theorem 5 in Chapter III, Section 1 [5], Formulas 2.10(1), (2) of [22]
and Inequality (62), we deduce that

P{ sup
0≤l≤n

|ηl | > β(max(‖U1/2
0 ‖2, ‖U1/2

1 ‖2)|Fa} ≤ β−2E(|ηn|2|Fa)

(see also Remark 5). Together with Proposition 3 above and the Fubini theorem (II.6.8 [7]),
this implies that

P{ sup
0≤l≤n

∣∣∣∣ ∫ tl

a
S(τ)dw(τ)

∣∣∣∣ > β max(‖U1/2
0 ‖2, ‖U1/2

0 ‖2)|Fa} ≤

β−2E
[ ∫ b

a
F(S; U0, U1)(t)dt|Fa

]
. (65)

Random function
∫ t

a S(τ)dw(τ) is separable (see Remark 6); hence Inequality (63) follows
from Inequality (65).

Theorem 6. Let S ∈ V2,1(U0, U1, a, b, n, h) be a predictable Lr(An
r,C,Ah

r,C)-valued random func-
tion, let w satisfy Condition (ii) in Lemma 1, [a, b] ⊂ T. Then, random function η(t) =∫ t

a S(τ)dw(τ) is stochastically continuous, where t ∈ [a, b].

Proof. If Sκ(τ) is an elementary Lr(An
r,C,Ah

r,C)-valued random function, then ηκ(t) =∫ t
a Sκ(τ)dw(τ) is stochastically continuous by Formula (27), since w(t) is stochastically con-

tinuous.
For each S ∈ V2,1(U0, U1, a, b, n, h) according to Definition 5 and the Fubini theorem∫ b

a E(F(S; U0, U1))(t)dt < ∞. By virtue of Theorem 5, there exists a sequence {Sκ(t) : κ ∈
N} of elementary Lr(An

r,C,Ah
r,C)-valued random functions, such that Limit (51) is satisfied.

From Lemma 5 and the Fubini theorem, we infer that

P{ sup
t∈[a,b]

|
∫ t

a
S(τ)dw(τ)−

∫ t

a
Sκ(τ)dw(τ)| > ε max(‖U1/2

0 ‖2, ‖U1/2
1 ‖2)}

≤ ε−2
∫ b

a
E(F(S− Sκ ; U0, U1))(t)dt.

Therefore, there exists a sequence {εκ : κ ∈ N} with limκ→∞ εκ = 0 and a sequence
{nk ∈ N : k ∈ N}, such that

∞

∑
k=1

ε−2
k

∫ b

a
E(F(S− Snk ; U0, U1))(t)dt < ∞

Consequently,

∞

∑
k=1

P{ sup
t∈[a,b]

|
∫ b

a
S(τ)dw(τ)−

∫ b

a
Snk (τ)dw(τ)| > εk} < ∞.

In view of the Borel–Cantelli lemma (see, for example, Chapter II, Section 10 [7]) a natural
number k0 ∈ N exists, such that

P{ sup
t∈[a,b]

|
∫ b

a
S(τ)dw(τ)−

∫ b

a
Snk (τ)dw(τ)| > εk} = 1

for each k ≥ k0. Hence,
∫ t

a S(τ)dw(τ) is stochastically continuous since
∫ t

a Snk (τ)dw(τ) is
stochastically continuous for each k ∈ N.
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Definition 7. The generalized Cauchy problem over the complexified Cayley–Dickson
algebra Ar,C. Let

H : T ×Ah
r,C → Lr(An

r,C,Ah
r,C) and (66)

G : T ×Ah
r,C → Ah

r,C be mappings , (67)

w = w0 + iw1 be a random function in An
r,C (68)

satisfying Condition (ii) in Lemma 1, where n and h are natural numbers.
A stochastic Cauchy problem over Ar,C is:

dY(t) = G(t, Y(t))dt + H(t, Y(t))dw(t) with Y(a) = ζ, (69)

where Y(t) is an Ah
r,C-valued random function, ζ is an Ah

r,C-valued random variable which is
Fa-measurable, t ∈ [a, b] ⊂ T, 0 ≤ a < b, where H, G, w are as in (66)–(68). Problem (69) is
understood as the following integral equation:

Y(t) = ζ +
∫ t

a
G(τ, Y(τ))dτ +

∫ t

a
H(τ, Y(τ))dw(τ), where t ∈ [a, b] ⊂ T. (70)

Then, the random function Y(t) is called a solution if it satisfies Conditions (71)–(73):

random function Y(t) is predictable, (71)

∀t ∈ [a, b] P{Y(t) :
∫ t

a
‖G(τ, Y(τ))‖dτ = ∞} = 0 and (72)

P{ω ∈ Ω : ∃t ∈ [a, b],

Y(t) 6= ζ +
∫ t

a
G(τ, Y(τ))dτ +

∫ t

a
H(τ, Y(τ))dw(τ)} = 0, (73)

where Y(t) is a shortened notation of Y(t, ω).

Theorem 7. Let G(t, y) and H(t, y) be Borel functions, w satisfy Condition (ii) in Lemma 1, and
K = const > 0 be such that

(i) ‖G(t, x)− G(t, y)‖+ ‖H(t, x)− H(t, y)‖2 ≤ K‖x− y‖ and
(ii) ‖G(t, y)‖2 + ‖H(t, y)‖2

2 ≤ K2(1 + ‖y‖2) for each x and y in Ah
r,C, t ∈ [a, b] = T, where

0 ≤ a < b < ∞,
(iii) E[‖ζ‖2] < ∞.

Then, a solution Y of Equation (70) exists (see Definition 7); if Y and Y1 are two stochastically
continuous solutions, then

P{ sup
t∈[a,b]

‖Y(t)−Y1(t)‖ > 0} = 0. (74)

Proof. We consider a Banach space B2,∞ = B2,∞[a, b] consisting of all predictable random
functions X : [a, b]×Ω→ Ah

r,C such that X(t) is (Ft,B(Ah
r,C))-measurable for each t ∈ [a, b]

and supt∈[a,b] E[‖X(t)‖2] < ∞ with the norm

‖X‖B2,∞ = ( sup
t∈[a,b]

E[‖X(t)‖2])1/2. (75)

In view of Proposition 2, there exists operator Q on B2,∞ such that

QX(t) = ζ +
∫ t

a
G(τ, X(τ))dτ +

∫ t

a
H(τ, X(τ))dw(τ) (76)
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for each t ∈ [a, b], since G and H satisfy Condition (ii) of this theorem. Then, QX(t)
is (Ft,B(Ah

r,C))-measurable for each t ∈ [a, b], since G and H are Borel functions and
X ∈ B2,∞. By virtue of Proposition 3, using the inequality (α + β + γ)2 ≤ 3(α2 + β2 + γ2)
for each α, β and γ in R, the Cauchy–Bunyakovskii–Schwarz inequality, (75), (76), and
Condition (ii) of this theorem, we infer that

E[‖QX(t)‖2] ≤ 3E[‖ζ‖2] + 3(b− a)
∫ t

a
K2(1 + ‖X(τ)‖2)dτ + 3E

∫ t

a
K2(1 + ‖X(τ)‖2)dτ

≤ 3E[‖ζ‖2] + 3K2[(b− a) + 1]E
∫ b

a
(1 + ‖X(τ)‖2)dτ

≤ 3E[‖ζ‖2] + 3K2(b− a)[(b− a) + 1](1 + ‖X‖2
B2,∞

).

Thus, Q : B2,∞ → B2,∞. Then, using the Cauchy–Bunyakovskii–Schwarz inequality,
2.3(12) of [22], Proposition 3, Condition (i) of this theorem, and inequality (α + β)2 ≤
2(α2 + β2) for each α and β in R, we deduce that

E[‖QX(t)− X1(t)‖2] ≤ 2(b− a)
∫ t

a
E[‖G(τ, X(τ))− G(τ, X1(τ))‖2]dτ

+ 2E[‖
∫ t

a
{H(τ, X(τ))− H(τ, X1(τ))}dw(τ)‖2]

≤ C1

∫ t

a
E[‖X(τ)− X1(τ)‖]2dτ ≤ C1(t− a)‖X− X1‖2

B2,∞

for each X and X1 in B2,∞, t ∈ [a, b], where C1 = 2K2(b− a + 1). Therefore, the operator
Q : B2,∞ → B2,∞ is continuous. Then, we infer that

E[‖QmX(t)−QmX1(t)‖2] ≤ C1

∫ t

a
E[‖Qm−1X(τ)−Qm−1X1(τ)‖2]dτ

≤ . . . ≤ Cm
1

∫
. . .
∫

a<t1<...<tn<t
E[‖X(tm)− X1(tm)‖2]dt1 . . . dtm

≤ Cm
1 ‖X− X1‖2

B2,∞
(b− a)m/m!

for each X and X1 in B2,∞, m = 1, 2, 3, . . .. Therefore,

‖Qm+1X−QmX‖2
B2,∞
≤ Cm

1 (b− a)m‖QX− X‖2
B2,∞

/m!

for each m = 1, 2, 3, . . .. Hence, the series ∑∞
m=1 ‖Qm+1X−QmX‖B2,∞ converges. Thus, the

following limit exists limm→∞ QmX(t) =: Y(t) in B2,∞. From the continuity of Q, it follows
that limm→∞ Q(QmX) = QY, hence QY = Y. Thus,

‖QY − Y‖B2,∞ = 0. Consequently, P{Y(t) = QY(t)} = 1 for each t ∈ [a, b]. This
means that Y(t) is the solution of Equation (70). In view of Theorem 6 and Condition (ii)
of this theorem, solution Y(t) is stochastically continuous up to the stochastic equivalence.

Now, let Y and Y1 be two stochastically continuous solutions of Equation (70). We
consider a random function qN(t), such that qN(t) = 1 if ‖Y(τ)‖ ≤ N and ‖Y1(τ)‖ ≤ N
for each τ ∈ [a, t], qN(t) = 0 in the opposite case where t ∈ [a, b], N > 0. Therefore,
qN(t)qN(τ) = qN(t) for each τ < t in [a, b]; consequently,

qN(t)[Y(t)−Y1(t)] = qN(t)[
∫ t

a
qN(τ)[G(τ, Y(τ))− G(τ, Y1(τ))]dτ

+
∫ t

a
qN(τ)[H(τ, Y(τ))− H(τ, Y1(τ))]dw(τ)].
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On the other hand,

qN(τ)[‖G(τ, Y(τ))− G(τ, Y1(τ))‖+ ‖H(τ, Y(τ))− H(τ, Y1(τ))‖]

≤ KqN(τ)‖Y(τ)−Y1(τ)‖ ≤ 2KN

by Condition (i). This implies that E[qN(t)‖Y(t)− Y1(t)‖2] < ∞. Then, using the Fubini
theorem, 2.3(12) of [22], Proposition 3, Lemma 5, we deduce that

E[qN(t)‖Y(t)−Y1(t)‖2] ≤ 2E[qN(t)‖
∫ t

a
qN(τ)[G(τ, Y(τ))− G(τ, Y1(τ))dτ‖2] +

2E[qN(t)‖
∫ t

a
qN(τ)[H(τ, Y(τ))− H(τ, Y1(τ))]dw(τ)‖2]

≤ 2(b− a)
∫ t

a
E[qN(τ)‖G(τ, Y(τ))− G(τ, Y1(τ))‖2]dτ

+ 4
∫ t

a
E[qN(τ)F(H(τ, Y(τ))− H(τ, Y1(τ)); U0, U1)]dτ

≤ 2K2[b− a + max(‖U1/2
0 ‖2

2, ‖U1/2
1 ‖2

2)]
∫ t

a
E[qN(τ)‖Y(τ)−Y1(τ)‖2]dτ.

Thus, a constant C2 > 0 exists, such that

E[qN(t)‖Y(t)−Y1(t)‖2] ≤ C2

∫ t

a
E[qN(τ)‖Y(τ)−Y1(τ)‖2]dτ.

The Gronwall inequality (see Lemma 3.15 in [2], Lemma 1 in Chapter 8, Section 2
in [5]) implies that E[qN(t)‖Y(t)−Y1(t)‖2] = 0. Consequently,

P{Y(t) 6= Y1(t)} ≤ P{ sup
t∈[a,b]

‖Y(t)‖ > N}+ P{ sup
t∈[a,b]

‖Y1(t)‖ > N}.

Random functions Y(t) and Y1(t) are stochastically continuous and hence stochasti-
cally bounded. Consequently,

lim
N→∞

P{ sup
t∈[a,b]

‖Y(t)‖ > N} = 0 and

lim
N→∞

P{ sup
t∈[a,b]

‖Y1(t)‖ > N} = 0.

Therefore, random functions Y(t) and Y1(t) are stochastically equivalent. This implies
Equality (74).

Corollary 2. Let operators G and H be G ∈ Lr(Ah
r,C,Ah

r,C) and H ∈ Lr(An
r,C,Ah

r,C) such that G
be a generator of a semigroup {S(t) : t ∈ [0, ∞)}. Let w(t) also be a random function fulfilling
Condition (ii) in Lemma 1. Then, the Cauchy problem

Y(t) = ζ +
∫ t

0
GY(τ)dτ +

∫ t

0
Hdw(τ), (77)

where t ∈ T, E[‖ζ‖2] < ∞, has a solution

Y(t) = S(t)ζ +
∫ t

0
S(t− τ)Hdw(τ) (78)

for each 0 ≤ t ∈ T.
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Proof. Condition G ∈ Lr(Ah
r,C,Ah

r,C) implies that ‖G‖ = supx∈Ah
r,C ,‖x‖=1 ‖Gx‖ < ∞, where

‖x‖2 = ‖x1‖2 + . . . + ‖xh‖2, x = (x1, . . . , xh) ∈ Ah
r,C, xk ∈ Ar,C for each k. As a realization

of the semigroup S(t), it is possible to take {S(t) = expl(Gt) : t ≥ 0} since G is a bounded
operator and ‖ expl(Gt)‖ ≤ exp(‖G‖t) for each t ≥ 0 by Formulas 2.1(9) and 2.3(12)
in [22]. Therefore, from Theorem 7 applied to Equation (77), Assertion (78) of this corollary
follows.

Theorem 8. Let G, H, and w satisfy conditions of Theorem 7, and Yt,z(t) be an Ah
r,C-valued

random function satisfying the following equation:

Yt,z(t1) = z +
∫ t1

t
G(τ, Yt,z(τ))dτ +

∫ t1

t
H(τ, Yt,z(τ))dw(τ), (79)

where z ∈ Ah
r,C, t < t1 in [a, b] ⊂ T, 0 ≤ a < b < ∞. Then, random function Y satisfying

Equation (70) is Markovian with the following transitional measure:

P(t, z, t1, A) = P{Yt,z(t1) ∈ A} (80)

for each A ∈ B(Ah
r,C).

Proof. Random function Y(t) is (Ft,B(Ah
r,C))-measurable for each t ∈ [a, b]. On the

other hand, Yt,z(t1) is induced by the random function w(t1)− w(t) for each t1 ∈ (t, b],
where w(t1)− w(t) is independent of Ft. Therefore, Yt,z(t1) is independent of Y(t) and
each A ∈ Ft (see (79)). By virtue of Theorem 7, Y(t1) is the unique (up to stochastic
equivalence) solution of the following equation:

Y(t1) = Y(t) +
∫ t1

t
G(τ, Y(τ))dτ +

∫ t1

t
H(τ, Y(τ))dw(τ) (81)

and Yt,Y(t)(t1) is also its solution. Consequently, P{Y(t1) = Yt,Y(t)(t1)} = 1.
Let f ∈ C0

b(A
h
r,C,Ar,C), where C0

b(A
h
r,C,Ar,C) denotes the family of all bounded con-

tinuous functions from Ah
r,C into Ar,C. Let g ∈ Rb(Ω,Ar,C), where Rb(Ω,Ar,C) denotes

the family of all random variables g : Ω→ Ar,C such that there exists Cg = const > 0 for
which P{‖g‖ < Cg} = 1, where Cg may depend on g. We put

q(z, ω) = f (Yt,z(t1, ω)). (82)

Hence, f (Y(t1, ω)) = q(Y(t1), ω), where Y(t) is a shortening of Y(t, ω) as above, ω ∈ Ω
(see (81)). Assume first that q has the following decomposition:

q(z, ω) =
m

∑
k=1

qk(z)uk(ω), (83)

where qk : Ah
r,C → Ar,C, uk : Ω→ Ar,C, m ∈ N. This implies that uk(ω) is independent of

Ft for each k. Therefore, using (82), we deduce that

E[g
m

∑
k=1

qk(Y(t))uk(ω)] =
m

∑
k=1

E[gqk(Y(t))]Euk(ω)

= E[
m

∑
k=1

gqk(Y(t))]Euk(ω) and

E[
m

∑
k=1

qk(Y(t))uk(ω)|Y(t)] =
m

∑
k=1

qk(Y(t))Euk(ω). Consequently,

Eg f (Y(t1)) = EgE[ f (Y(t1))|Y(t)] (84)
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for q of the form (83). This implies that

E[ f (Y(t1))|Ft] = v(Y(t)), (85)

where v(z) = E f (Yt,z(t1)).
Then, E[‖gq(Y(τ), ω)‖2] ≤ C2

g‖ f ‖2
C for each τ ∈ [a, b] by 2.3(12) [22], since g and f

are bounded, where ‖ f ‖C := supz∈Ah
r,C
‖ f (z)‖ < ∞. Therefore, for each ε > 0, there exists

f(ε) ∈ C0
b(A

h
r,C,Ar,C) for which q(ε)(z, ω) = f(ε)(Yt,z(t1, ω)) has the decomposition of type

(83) and such that E[‖q(ε)(Y(t), ω) − q(Y(t), ω)‖2] < ε/C2
g. Taking ε ↓ 0, one obtains

that Formulas (84) and (85) are accomplished for each f ∈ C0
b(A

h
r,C,Ar,C). Therefore,

P{Y(t1) ∈ A|Ft} = P{Y(t1) ∈ A|Y(t)} for each A ∈ B(Ah
r,C), t < t1 in [a, b], since

the families Rb(Ω,Ar,C) and C0
b(A

h
r,C,Ar,C) of all such g and f are separate points in

Ah
r,C. This implies that P{Y(t1) ∈ A|Ft} = Pt,Y(t)(t1, A) for each A ∈ B(Ah

r,C), where
Pt,z(t1, A) = P{Yt,z(t1) ∈ A}. Thus, Equality (80) is proven.

3. Conclusions

The results obtained in this paper, namely, random functions and measures in
modules over the complexified Cayley–Dickson algebras, and the integration of the
generalized diffusion PDE, open new opportunities for the integration of PDEs of an order
higher than 2. Indeed, a solution of a stochastic PDE with real or complex coefficients of an
order higher than 2 can be decomposed into a solution of a sequence of PDEs of order 1 or 2
with Ar,C coefficients [9,24]. They can be used for further studies of random functions and
integration of stochastic differential equations over octonions and the complexified Cayley–
Dickson algebra Ar,C. Equations of the type (70) are related with generalized diffusion
PDEs of the second order. For example, this approach can be applied to PDEs describing
nonequilibrium heat transfer, fourth order Schrödinger- or Klein-Gordon-type PDEs.

Another application of obtained results is for the implementation of the plan de-
scribed in [22]. It is related with investigations of analogs of Feynman integrals over the
complexified Cayley–Dickson algebra Ar,C for solutions of PDEs of orders higher than 2.
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Appendix A. Basics on Hypercomplex Numbers

Remark A1. Quaternions and octonions (over the real field R) are the particular cases of hy-
percomplex numbers. The algebra O of octonions (octaves, the Cayley algebra) is defined as an
eight-dimensional nonassociative algebra over R with a basis, for example,

b3 := b := {1, i, j, k, l, il, jl, kl} such that (A1)

i2 = j2 = k2 = l2 = −1, ij = k, ji = −k, jk = i, kj = −i, ki = j, ik = −j, li = −il,

jl = −l j, kl = −lk; (A2)

(α + βl)(γ + δl) = (αγ− δ̃β) + (δα + βγ̃)l (A3)

is the multiplication law in the octonion algebra O for each α, β, γ, δ ∈ H, where H denotes
the quaternion skew field, ξ := α + βl ∈ O, η := γ + δl ∈ O, z̃ := v − wi − xj − yk for
z = v + wi + xj + yk ∈ H with v, w, x, y ∈ R.
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The octonion algebra is neither commutative nor associative, since (ij)l = kl, i(jl) = −kl,
but it is distributive and R1 is its center. If ξ := α + βl ∈ O, then

ξ̃ := α̃− βl (A4)

is called the adjoint element of ξ, where α, β ∈ H. Then

(ξη).̃ = η̃ξ̃, ξ̃ + η̃ = (ξ + η).̃ and ξξ̃ = |α|2 + |β|2, (A5)

where |α|2 = αα̃ such that
ξξ̃ =: |ξ|2 and |ξ| (A6)

is the norm in O. Therefore,
|ξη| = |ξ||η| (A7)

Consequently, O does not contain divisors of zero (see also [12,25–27]). The multiplication of
octonions satisfies Equations (A8) and (A9) below:

(ξη)η = ξ(ηη), (A8)

ξ(ξη) = (ξξ)η, (A9)

which forms the alternative system. In particular, (ξξ)ξ = ξ(ξξ). Put ξ̃ = 2a− ξ, where a =
Re(ξ) := (ξ + ξ̃)/2 ∈ R. Since R1 is the center of the octonion algebra O and ξ̃ξ = ξξ̃ = |ξ|2.
Then, from (A8) and (A9) by induction, it follows that for each ξ ∈ O and each n-tuplet (product),
n ∈ N, ξ(ξ(. . . ξξ) . . .) = (. . . (ξξ)ξ . . .)ξ the result does not depend on an order of brackets (order
of multiplications). Hence, the definition of ξn := ξ(ξ(. . . ξξ) . . .) does not depend on the order of
brackets. This also shows that ξmξn = ξnξm, ξm ξ̃m = ξ̃mξn for each n, m ∈ N and ξ ∈ O.

Apart from the quaternions, the octonion algebra can not be realized as the subalgebra of the
algebra M8(R) of all 8× 8-matrices over R, since O is not associative, but the matrix algebra
M8(R) is associative (see, for example, [10,25–28]). There are the natural embeddings C ↪→ O and
H ↪→ O, but neither O over C, nor O over H, nor H over C are algebras, since the centers of them
are Z(H) = Z(O) = R equal to the real field.

We consider also the Cayley–Dickson algebras An over R, where 2n is its dimension over R.
They are constructed by induction starting from R such that An+1 is obtained from An with the
help of the doubling procedure, in particular, A0 := R, A1 = C, A2 = H, A3 = O and A4 is
known as the sedenion algebra [10,28]. The Cayley–Dickson algebras are ∗-algebras, that is, there
is a real-linear mapping An 3 a 7→ a∗ ∈ An such that

a∗∗ = a, (A10)

(ab)∗ = b∗a∗ (A11)

for each a, b ∈ An. Then, they are nicely normed, that is,

a + a∗ =: 2Re(a) ∈ R and (A12)

aa∗ = a∗a > 0 for each 0 6= a ∈ An. (A13)

The norm in it is defined by the equation:

|a|2 := aa∗. (A14)

We also denote a∗ by ã. Each nonzero Cayley–Dickson number 0 6= a ∈ An has a multiplica-
tive inverse given by a−1 = a∗/|a|2.
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The doubling procedure is as follows. Each z ∈ An+1 is written in the form z = a + bl, where
l2 = −1, l /∈ An, a, b ∈ An. The addition is component-wise. The conjugate of a Cayley–Dickson
number z is prescribed by the formula:

z∗ := a∗ − bl. (A15)

Multiplication is given by:

(a + bl)(c + dl) = (ac− d̃b) + (da + bc̃)l (A16)

for each a, b, c, d in An.

Remark A2. By {i0, i1, . . . , i2r−1}, the standard basis of the Cayley–Dickson algebra Ar = Ar,R
is denoted over the real field R such that i0 = 1, i2l = −1 and il ik = −ikil for each l 6= k
with 1 ≤ l and 1 ≤ k. For r ≥ 3 the multiplication of them is generally nonassociative (see
also Remark A1). In particular A3 is the octonion algebra. Henceforth, the complexified Cayley–
Dickson algebra Ar,C = Ar ⊕ (Ari) is also considered where i2 = −1, ib = bi for each b ∈ Ar,
2 ≤ r < ∞. This means that each complexified Cayley–Dickson number z ∈ Ar,C can be
written in the form z = x + iy with x and y in Ar, x = x0i0 + x1i1 + . . . + x2r−1i2r−1, while
x0, . . . , x2r−1 are in R. The real part of z is Re(z) = x0 = (z + z∗)/2, the imaginary part
of z is defined as Im(z) = z − Re(z), where the conjugate of z is z∗ = z̃ = Re(z) − Im(z).
Thus, z∗ = x∗ − iy with x∗ = x0i0 − x1i1 − . . .− x2r−1i2r−1. Then, |z|2 = |x|2 + |y|2, where
|x|2 = xx∗ = x2

0 + . . . + x2
2r−1.

Clearly, the F-algebra structure on Ar,F induces the F-algebra structure on Al
r,F such that

w + z = (w1 + z1, . . . , wl + zl) and κ(w, z) = (w1z1, . . . , wlzl) for each w and z in Al
r,F,

w = (w1, . . . , wl) with wk ∈ Ar,F for each k = 1, . . . , l, where κ : Al
r,F ×Al

r,F → Al
r,F, where

2 ≤ l. This also induces the Ar,F-bimodule structure on Al
r,F such that κ1(b, w) = (bw1, . . . , bwl)

and κ2(b, w) = (w1b, . . . , wlb) for each b ∈ Al
r,F and w ∈ Al

r,F, where κj : Ar,F ×Al
r,F → Al

r,F
for each j ∈ {1, 2}.

If U is a domain in Fl2r
, then to each vector u = (u0, . . . , u2r−1) ∈ U a unique Cayley–

Dickson number z = ẑ(u) = u0i0 + u1i1 + . . . + u2r−1i2r−1 is posed, where either F = R or F =
C, uj ∈ Fl for each j = 0, . . . , 2r − 1; l ∈ N. This gives a domain V = {z : z = ẑ(u), u ∈ U} in
Al

r,F. Vice versa, to each Cayley–Dickson number z ∈, V, a unique vector π(z) = û(z) = u ∈ U,
corresponds to:

uj = πj(z) for each j, (A17)

where πj : Al
r,F → Fl is a F-linear operator given by the formulas:

πj(z) = (−zij + ij(2r − 2)−1{−z +
2r−1

∑
k=1

ik(zi∗k )})/2 (A18)

for each j = 1, 2, . . . , 2r − 1,

π0(z) = (z + (2r − 2)−1{−z +
2r−1

∑
k=1

ik(zi∗k )})/2, (A19)

where 2 ≤ r ∈ N, z is a Cayley–Dickson vector (or a number for l = 1) presented as follows.

z = z0i0 + z1i1 + . . . + z2r−1i2r−1 ∈ Ar,F, zj ∈ Fl (A20)

for each j = 0, . . . , 2r − 1; z∗ = z0i0− z1i1− . . .− z2r−1i2r−1 (see Formulas II(1.1)–(1.3) in [29]).
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Appendix B. Hypercomplex Measures

In Appendix B, basic facts on hypercomplex measures from [22] are given.

Remark A3. PDEs. λn denotes the Lebesgue measure on the Euclidean space Rn. Consider a
domain U in Rn, such that U ⊆ cl(Int(U)), where Int(U) denotes the interior of U, while cl(U)
notates the closure of U in Rn.

Let {i0, i1, . . . , i2r−1} notate the standard basis of the Cayley–Dickson algebra Ar over the
real field R, such that i0 = 1, i2l = −1 and il ik = −ikil for each l 6= k with 1 ≤ l and 1 ≤ k (see
also Remark 1 and Definition 2 in Introduction). The Cayley–Dickson algebra Ar is nonassociative
for each r ≥ 3 and nonalternative for each r ≥ 4, for example, (i1i2)i4 = −i1(i2i4), etc. Then,
Ar,C stands for the complexified Cayley–Dickson algebra Ar,C = Ar ⊕ (Ari), where i2 = −1,
ib = bi for each b ∈ Ar, 2 ≤ r < ∞ Therefore, each complexified Cayley–Dickson number
z ∈ Ar,C has the form z = x + iy with x and y in Ar, x = x0i0 + x1i1 + . . . + x2r−1i2r−1,
while x0, . . . , x2r−1 are in R. The real part of z is Re(z) = x0 = (z + z∗)/2, the imaginary part
of z is defined as Im(z) = z − Re(z), where the conjugate of z is z∗ = z̃ = Re(z) − Im(z),
that is z∗ = x∗ − iy with x∗ = x0i0 − x1i1 − . . .− x2r−1i2r−1. Then |z|2 = |x|2 + |y|2, where
|x|2 = xx∗ = x2

0 + . . . + x2
2r−1. It is useful also to put ‖z‖ = |z|

√
2.

Each function f : U → Ar,C has a decomposition

f (x) =
2r−1

∑
s=0

fs(x)is,

where fs : U → C for each s, Ar,C denotes the complexified Cayley–Dickson algebra (see above).
Function f (x) is differentiable (in real variables) at x in U if and only if fs(x) is differentiable at x
for each s = 0, 1, . . . , 2r − 1.

Sobolev space Hk(U, λn,Ar,C) is the completion by a norm ‖ f ‖k of the space of all k times
continuously differentiable (in real variables) functions f : U → Ar,C with compact support, where

‖ f ‖2
k :=

k

∑
j=0

∫
U
‖ f (j)(x)‖2λn(dx), (A21)

f (j)(x) = Dj
x f (x) denotes the j-th derivative poly-R-linear operator on Rn at a point x, where n is

a natural number. Particularly, it may be U = Rn.
Suppose that an operator Bj is realized as an elliptic PDO B̂j of the second order on the

Sobolev space H2(Rmj , λmj , R) by real variables x1+β j−1 ,. . . ,xβ j , where m0 = 0, β0 = 0, β j =
m0 + . . . + mj, mj ∈ N for each j = 1, 2, . . ..

We consider a second-order PDO of the form

B̂ = −1
2

m

∑
j=1

aj B̂j, (A22)

where aj = aj,0 + iaj,1 are nonzero coefficients, aj ∈ Ar,C, aj,0 and aj,1 belong to Ar, where B̂j is
an elliptic PDO of the second order on H2(Rmj , λmj , R) by real variables x1+β j−1 ,. . . ,xβ j , where
2 ≤ r < ∞.

There are the natural embeddings H2(Rmj , λmj ,Ar,C) ↪→ H2(Rn, λn,Ar,C), where n =

m1 + . . . + mm = βm. Thus, B̂ and all B̂j are defined on H2(Rn, λn,Ar,C). Let σ∗ also be a
first-order PDO

σ∗ f (x) =
m

∑
j=1

σ∗j f (x) and (A23)

σ∗j f (x) =
β j

∑
k=β j−1+1

ψk;j
∂ f (x)

∂xk
(A24)
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for each f ∈ H1(Rn, λn,Ar,C), where β j = m0 + . . . + mj for each j, m0 = 0, β0 = 0;
ψk;j ∈ Ar,C for each k and j. Then, the operator

Ŝ =
∂

∂t
+ B̂ + σ∗ (A25)

is defined on a Sobolev space H2,1(Rn×R, λn+1,Ar,C), where Hk,l(U×V, λn+1,Ar,C) is the com-
pletion relative to a norm ‖ f ‖k,l of the space of all functions f (x, t) : U ×V → Ar,C continuously
differentiable k times in x and l times in t with compact support, where V ⊆ cl(Int(V)) ⊂ R,

‖ f ‖2
k,l :=

k

∑
j=0

l

∑
s=0

∫
U×V
‖Dj

xDs
t f (x, t)‖2λn+1(dx), (A26)

where x ∈ U, t ∈ V. Evidently, Hk,l(U×V, λn+1,Ar,C) has a structure of a Hilbert space over R,
also of a two-sided Ar,C-module. Particularly, H0(U, λn,Ar,C) = L2(U, λn,Ar,C).

Using the change in variables, we consider operators with constant coefficients

B̂j f (x) =
mj

∑
u,k=1

bu,k;j
∂2 f (x)

∂xu+β j−1 ∂xk+β j−1

, (A27)

for each f ∈ H2(Rn, λn,Ar,C), where bu,k;j ∈ R for every u, k, j, β j = m0 + . . . + mj, m0 = 0,
β0 = 0. [Bj] denotes a matrix with matrix elements bu,k;j ∈ R for every u and k in {1, . . . , mj},
where j = 1, . . . , m. Bj notates a linear operator Bj : Rmj → Rmj prescribed by its matrix [Bj].
Since the operator B̂j is elliptic, then without loss of generality, matrix [Bj] is symmetric and
positive definite. Then, using a variable change, it is also frequently possible to impose the condition
Re(ψk;jψ

∗
i;l) = 0 if either k 6= i or j 6= l.

Let A be a unital normed algebra over R, where A may be nonassociative, and let its center
Z(A) contain the real field R. Then, by l ∏m

k=1 uk, we denote an ordered product from right to left,
such that

l

m

∏
k=1

uk = um(l

m−1

∏
k=1

uk) (A28)

for each m ≥ 2, where l ∏1
k=1 uk = u1; u1, . . . , um are elements of A. Then, we put

expl(z) = 1 +
∞

∑
n=1

l(zn)

n!
, (A29)

where l(zn) = l ∏n
k=1 z, which corresponds to the ordered product from right to left (see above

(A28)), z ∈ A, that is, for the particular case u1 = z,. . . .,un = z.

Definition A1. Let X be a right module over Ar,C such that

X = X0 ⊕ X1i1 ⊕ . . .⊕ X2r−1i2r−1,

where X0,. . . ,X2r−1 are pairwise isomorphic vector spaces over C. If an addition x + y in X is
jointly continuous in x and y and a right multiplication xb is jointly continuous in x ∈ X, and
b ∈ Ar,C and Xj is a topological vector space for each j ∈ {0, 1, . . . , 2r − 1}, then X is a topological
right module over Ar,C.

For the right module X over Ar,C an operator h from X into Ar,C is called right Ar,C-linear in
a weak sense if and only if it h( f b) = (h( f ))b for each f ∈ X0 and b ∈ Ar,C. Then, X∗r denotes
a family of all continuous right Ar,C-linear operators h : X → Ar,C in the weak sense on the
topological right module X over Ar,C.

An operator h : X → Ar,C is rightAr,C-linear if and only if h( f b) = (h( f ))b for each f ∈ X
and b ∈ Ar,C.
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Symmetrically, on a left module Y over Ar,C such that

Y = Y0 ⊕ i1Y1 ⊕ . . .⊕ i2r−1Y2r−1,

where Y0,. . . ,Y2r−1 are pairwise isomorphic vector spaces over C are defined leftAr,C-linear operators
and left Ar,C-linear in a weak sense operators. A family of all continuous left Ar,C-linear operators
g : Y → Ar,C on the topological left module Y over Ar,C in the weak sense is denoted by Y∗l .

X is a two-sided module over the complexified Cayley–Dickson algebra Ar,C if and only if it is
a left and right module over Ar,C and ijxj = xjij for each xj ∈ Xj and j ∈ {0, 1, . . . , 2r − 1}.

Theorem A1. Let a PDO Ŝ be of the form (A25), fulfilling the condition
(α) Re(aj,0) > |qj| · | sin φj| with q2

j = |Im(aj,0)|2 − |Im(aj,1)|2 − 2iRe(aj,0aj,1),
qj ∈ C, φj = arg(qj) for each j, where 2 ≤ r < ∞. Then, a fundamental solution K of the equation

ŜK = δ(x, t) is (A30)

K(x, t) =
θ(t)
(2π)n

∫
Rn

expl(−
m

∑
j=1
{1

2
aj(Bjyj, yj) + i(sj, yj)}t) exp(−i(y, x))λn(dy), (A31)

where θ(t) = 0 for each t < 0, while θ(t) = 1 for each t ≥ 0, where 2 ≤ r < ∞, yj =
(yβ j−1+1, . . . , yβ j) with yk ∈ R for each k,

(sj, yj) =

β j

∑
k=β j−1+1

skyk, (A32)

where sβ j−1+k = ψk;j for each k = 1, . . . , mj and each j = 1, . . . , m.

Definition A2. Let aj ∈ Ar,C satisfy Condition (α) of Theorem A1 for each j, Bj : Rmj → Rmj

be a positive definite operator for each j = 1, . . . , m, p ∈ An
r,C, where n = βm = m1 + . . . + mm,

2 ≤ r < ∞. Let also U : Ar,C → Ar,C be an operator such that U =
⊕m

j=1 ajBj. We define

(y, z)s =
n

∑
k=1

ykzk (A33)

for each y and z in An
r,C, where z = (z1, . . . , zn), zk ∈ Ar,C for each k. (y, z) is also briefly written

instead of (y, z)s when a situation is specified. Then,

ϑ̂U,p(y) := expl(−
1
2
(Uy, y) + i(p, y)) (A34)

is called a characteristic functional of an Ar,C-valued measure ϑU,p on a Borel σ-algebra B(Rn) of
the Euclidean space Rn, where y ∈ Rn. We define a measure µU,p on the Borel σ-algebra B(An

r,C)
of the two-sided Ar,C-module An

r,C by the formula:

µU,p(p + U1/2dh) = ϑU,p(dx)δU,p(p′ + U1/2dg), (A35)

where h = x + g, h ∈ An
r,C, x ∈ Rn, g ∈ X′, X′ = (Ar,C 	 Ri0)n, Rn is embedded into An

r,C
as Rni0, p = p0 + p′ with p0 ∈ Rn and p′ ∈ X′,∫

Y′
f (y′)δU,p(dy′) = f (p′) (A36)

for each f ∈ C0
b(Y

′,Ar,C), where C0
b(Y

′,Ar,C) denotes the family of all continuous bounded
functions f from Y′ into Ar,C, Y′ = p′ + U1/2X′.

Proposition A1. The measure µU,p (see Definition A2) is σ-additive on B(An
r,C).
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Corollary A1. If conditions of Theorem A1 are fulfilled, t > 0, p = −s, measure µUt,pt is
σ-additive on B(An

r,C).

Proposition A2. For each z ∈ Ar,C, function χz(t) = expl(zt) is a character from R considered
as the additive group into the algebra Ar,C, such that

expl(zt) = (expl(z))
t and (A37)

χz(t + t1) = χz(t)χz(t1) (A38)

for each t ∈ R and t1 ∈ R.

Definition A3. Let Ω be a set with an algebra R of its subsets and an Ar,C-valued measure
µ : R → Ar,C, where 2 ≤ r, Ω ∈ R. Then

|µ| :=
2r−1

∑
j=0

(|µj,0|+ |µj,1|) (A39)

is called a variation, and |µ|(Ω) is a norm of the measure µ, where

µ =
2r−1

∑
j=0

(µj,0ij + µj,1iji) (A40)

is the decomposition of the measure µ.
µj,k : R → R, |µj,k| denotes the variation of a real-valued measure µj,k for each j =

0, 1, . . . , 2r − 1 and k = 0, 1, |µ| : R → [0, ∞).
A class G of subsets of a set Ω is compact if, for any sequence Gk of its elements fulfilling⋂∞

k=1 Gk = ∅, a natural number l exists so that
⋂l

k=1 Gk = ∅.
An Ar,C-valued measure µ (not necessarily σ-additive, i.e., a premeasure in another termi-

nology) on an algebra R of subsets of the set Ω is approximated from below by a class H, where
H ⊂ R, if for each A ∈ R and ε > 0 a subset B belonging to the classH exists, such that B ⊂ A
and |µ|(A \ B) < ε (see Formula (A39)).

The Ar,C-valued measure µ on the algebraR is called Radon if it is approximated from below
by the compact classH. In this case, the measure space (Ω,R, µ) is called Radon.

Remark A4. Different forms of the diffusion PDE.
In the classical case over the real field R, different forms of the diffusion PDE such as

backward Kolmogorov, Fokker–Planck–Kolmogorov, and stochastic are provided by Theorems 6 and
7 in Chapter I, Section 4, Theorem 4 in Chapter VIII, Section 2 in [5], or by Theorems 3.7, 3.11 in
Chapter 3, Section 3.8 in [2]. The stochastic PDE

ξt,x(s) = x +
∫ s

t
a(u, ξt,x(u))du +

m

∑
k=1

∫ s

t
bk(u, ξt,x(u))dwk(u)

is considered to be the diffusion PDE with m variables in Equation (14) in Chapter VIII, Section
2 in [5], where (b1, . . . , bm) denotes the diffusion operator reduced to the diagonal form, a is the
transition (generally may be nonlinear shift) operator, (w1, . . . , wk) denotes the Gaussian–Wiener
process with values in the Euclidean space Rm. Solutions of the diffusion PDE in its stochastic form
provide evolutionary operators and their generators serving for solutions of backward Kolmogorov
or Fokker–Planck–Kolmogorov PDEs (see [1,2,5]).
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Following this terminology, a generalized analog of the Fokker–Planck–Kolmogorov PDE or
backward Kolmogorov is obtained by substituting their partial differential operator by the partial
differential operator Ŝ given by Formula (A25) in Remark A3. The generalized diffusion PDE itself
(in the stochastic form) is Equation (70) in Definition 7 above.

In more details see also [30–34].
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