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Abstract: This paper investigated the effects of variant lighting conditions on the recognition process.
A framework is proposed to improve the performance of gesture recognition under variant illumi-
nation using the luminosity method. To prove the concept, a workable testbed has been developed
in the laboratory by using a Microsoft Kinect sensor to capture the depth images for the purpose
of acquiring diverse resolution data. For this, a case study was formulated to achieve an improved
accuracy rate in gesture recognition under diverse illuminated conditions. For data preparation,
American Sign Language (ASL) was used to create a dataset of all twenty-six signs, evaluated in
real-time under diverse lighting conditions. The proposed method uses a set of symmetric patterns
as a feature set in order to identify human hands and recognize gestures extracted through hand
perimeter feature-extraction methods. A Scale-Invariant Feature Transform (SIFT) is used in the
identification of significant key points of ASL-based images with their relevant features. Finally, an
Artificial Neural Network (ANN) trained on symmetric patterns under different lighting environ-
ments was used to classify hand gestures utilizing selected features for validation. The experimental
results showed that the proposed system performed well in diverse lighting effects with multiple
pixel sizes. A total aggregate 97.3% recognition accuracy rate is achieved across 26 alphabet datasets
with only a 2.7% error rate, which shows the overall efficiency of the ANN architecture in terms of
processing time.

Keywords: American Sign Language; gesture recognition; variant lighting conditions; symmetric
pattern; accuracy

1. Introduction

A hand gesture is simply defined as “the known movement of a single or both hands”.
A Gesture usually conveys a precise single message. For example, waving a hand is to say
‘Good Bye’, and waving both hands shows excitement [1]. For humans, the eyes capture
the hand movement, and the brain processes the image to recognize a gestural movement.
In this process, the combination of sharp vision and right visibility produces a perfect
picture in the brain. This results in accurate human gesture recognition. Similarly, machines
require complete and clear input information for accurate vision-based gesture recognition.
In addition, an efficient embedded system is required to extract meaningful information
from the environment.

In a vision-based gestural system, expressive input is required to recognize gestures
with human-like accuracy. The input types used for vision-based gesture recognition
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technology are static and dynamic gestures. A static gesture image contains the hand in
a static state. This means that the posture of the hand, its position, and shape remain the
same. On the other hand, a dynamic gesture comprises a sequence of still photos that have
been acquired frame by frame. Dynamic gestures can match the characteristics of actual
hand movement by having different images express the gestural movement from start
to finish. The accuracy of the dynamic gestural recognition system relies on an accurate
static gesture recognition model [2]. This is because factors that affect the static gesture
recognition process ultimately affect dynamic gesture recognition.

Image noise is one such factor that reduces the accuracy of the recognition system.
Noise is defined as the undesired information that comes along with the input image. An
example of this is the variation of brightness level within an image. This illumination
variation occurs either because of the image sensor or the image surroundings. The
change in the number of lumens (lm) emitted by the lighting device is referred to as
brightness variation. More lumens mean brighter light, fewer lumens mean dim light, and
in between is ambient or general lighting. Usually, rooms and kitchens are set to general
lighting, whereas bathrooms have brighter lighting and bedrooms have dim lighting.
Real-time recognition becomes complex when the user is moving around the house in
different lighting conditions where the brightness level varies unexpectedly. Hence, image
enhancement is necessary for accurate recognition.

Many researchers have proposed different image enhancement techniques to improve
the feature extraction and overall gestural recognition process. Some of the applications,
such as sign language recognition, need a high level of precision and reliability in detecting
the hand and recognizing gestures. Therefore, distinguishing characteristics need to be
identified for this purpose. However, the vast majority of efforts have only looked at a
single lighting scenario to recognize the gesture pattern, so there is still a lot of room for
improvement in the area of gesture recognition under varying lighting scenarios. In this
study, symmetric patterns and a related luminosity-based filter are considered for use in
gesture recognition. The main contributions of this paper are as follows:

• Firstly, we proposed a symmetry-pattern-based gesture recognition framework that
works well in diverse illumination lighting effects.

• Secondly, the dataset is created based on 26 American Sign Language (ASL) hand
gesture images under diverse illumination conditions. Then, an efficient method for
gesture feature extraction is used that is based on luminosity-based grey-scale image
conversion and perimeter feature extraction.

• Thirdly, segmentation and identifying the significant points to enhance the number of
Scale-Invariant Feature Transform (SIFT) key points and minimized the time taken for
key point localization within features.

• Then, the gesture recognition process is validated by different Artificial Neural Net-
work (ANN) architectures to enhance the recognition accuracy rate and avoid any
uncertainty management in decision-making.

• Finally, a comparison has been performed between our work and other available
researchers’ published work in a similar domain to show the efficiency of our proposed
framework process.

The organization of the paper is as follows in different sections: Section 2 literature
review. Section 3 briefly explains the proposed hand gesture recognition framework with
mathematical modelling. Section 4 demonstrated the testbed environment and results.
Finally, Section 5 discussed the conclusion and possible future work.

2. Literature Review

This section reviews the most relevant state-of-the-art literature on gesture detection
in a variant illuminated background environment, considering its application in ASL. Re-
searchers [3–6] have proposed different techniques to address the illumination variation
problem in vision-based hand gesture recognition systems. For sign language recognition
covering languages of their origin, that may affect image recognition. In a study [7], the
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approach of pattern recognition for surface electromyography (sEMG) signals of nine different
finger movements is described. The authors in [8] proposed log-spiral codes of symmetric
patterns in the unique method that was developed to identify human hands and understand
motions from video streams using long spiral codes. In a recent study [9], the authors present
a symmetric CNN called HDANet. This CNN is built on the self-attention mechanism of the
Transformer and makes use of symmetric convolution in order to capture the relationships of
image information in two dimensions, specifically spatial and channel. In research [10], using
a generative adversarial network to capture the implicit relationship between glyphs from
Oracle Bone Characters and modern Chinese characters was the basis of a research project that
proposed a method for image translation from Oracle Bone Characters to modern Chinese
characters. This method could translate images from Oracle Bone Characters to modern
Chinese characters. Another research [11] presents a collaborative surgical robot system for
percutaneous treatment directed by hand gestures and supplemented by an AR-based surgi-
cal field. The use of hand gestures to instruct the surgical robot improved needle insertion
accuracy in experiments. Whereas [12] proposed a depth-based palm biometrics system. The
technology splits the user’s palm and retrieves finger dimensions from the depth picture. In
addition, studies [13–15] present a thorough review of hand gesture techniques to eliminate
the effect of illumination variations. Some of the most common classifiers proposed by the
researchers include k-NN, presented in [12], the SVM classifier discussed in [16], and the
tree-based random forest classifier elaborated in [17].

The authors in [18] presented a novel recognition algorithm based on a double-channel
convolutional neural network, which separates the varying illumination from the gesture.
The study [19], recognized sign language gestures in seven categories using visibility, shape,
and orientation of the hand features. At the preprocessing step, they applied skin detection
using colour properties in the HSV domain to form a uniform linear binary pattern. The
multiclass Support Vector Machine classifier classified the images from the dataset of 3414
signs corresponding to 37 Pakistan Sign Language alphabets with good categorization
results. Chen et al. [20] proposed an event-based system that uses a biologically inspired
neuromorphic vision sensor, an encoding process to identify objects, and a flexible system
to classify hand movements. According to [21], the fitness function for gamma correction
preserves the brightness and details of the image of both brighter and low-contrast images.
Particle Swarm Optimization can be applied to make the gamma correction adaptive by
calculating the optimal gamma values.

As shown by [22], a method for compensating for the poor ambient illumination in the
scene is by balancing it against incident illumination. Demonstrated by [23], details about
imaging hardware, the collection procedure, the organization of the database, several potential
uses of the database, and how to obtain the database. The study collected a database of over
40,000 images of 68 people. Each person is captured in 13 different poses, under 43 different
illumination conditions, and with 4 different expressions. In another study [24], a large-scale
dataset was collected with various illumination variations to evaluate the performance of
the Remote Photo Plethysmography (RPG) algorithm. The study also proposed a low-light
enhancement solution for remote heart rate estimation under low-light conditions. In a
recent study [25], fine perceptive generative adversarial networks (FP-GANs) are proposed to
construct super-resolution (SR) MR images from low-resolution equivalents. FP-GANs use
a divide-and-conquer strategy to process low-and high-frequency MR image components
individually and in tandem. In another study [26] mild cognitive impairment and Alzheimer’s
disease are assessed using a tensorizing GAN with high-order pooling. The proposed model
can benefit from brain structure by tensorizing a three-player cooperative gaming framework.
By introducing high-order pooling into the classifier, the suggested model can employ second-
order MRI statistics (MRI). The study [27] proposed state-of-the-art XAI algorithms for EMG
hand gesture classification to understand the outcome of machine learning models with
respect to physiological processes to recognise hand movements by mapping and merging
synergic muscle activity.



Symmetry 2022, 14, 2045 4 of 18

The systematic review shown in Table 1 that highlights the potential related research
focused on diverse illumination variation factors is given by.

Table 1. Comparison of various existing techniques under different illuminated conditions.

Paper # of Gestures Technique Lighting Changes Background

[18] 10 DC-CNN 2-Variant Redundant
[28] 8 CNN N/A Cluttered
[29] 10 ANN 2-Variant Colourful
[30] 8 3D-CNN variant Occlusion
[31] 24 Darknet 2-Variant N/A
[32] 40 D Learn 2-Variant Cluttered
[33] 24 DC-CNN Dissimilar Noise
[34] 24 ANN Artificial Cluttered

3. Materials and Methods

This section proposed a framework of sensor-based sign language gesture recognition
which consists of the following main phases, i.e., acquiring the image, image preprocessing,
feature extraction, and classification, as shown in Figure 1.
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Figure 1. Proposed framework of sensor-based sign language gesture recognition.

The recognition process starts with the acquisition of depth images using the Kinect
sensor. Each pixel in a depth image reflects the distance between the image plane and
an RGB image object. Following that, hand shapes are precisely segmented in order to
locate and track the hands’ shapes, similar to the human’s communication approach. To
develop the datasets, ASL-based gesture images are stored in a database and converted
into PNG format. The next step is the pre-processing of the acquired images to transform
the captured image into a uniform level of brightness. For that, the system performs the
luminosity method based on the grey-scale conversion of the input image. Grayscale
conversion reduces complexity and is much easier to work with a variety of tasks such as
image segmentation problems. Greyscale conversion is carried out through the weighted
method, also called the luminosity method. The main reason for proposing the luminosity
method is to equalize the weights of red, green, and blue according to their wavelengths.
The luminosity method is a better version of the average method. As discussed in [35],
luminosity-based greyscale conversion can be calculated as follows:

Grayscale = 0.299R + 0.587G + 0.114B (1)

where R, G, and B represent red, green, and blue colours, respectively.
The next step is to extract the appropriate features and their selection. The selection of

the number of features is a critical step because more features consume additional space
and computational time. Fewer features affect the accuracy. For that, the SIFT method is
proposed to select and extract the appropriate features from acquired data. The proposed



Symmetry 2022, 14, 2045 5 of 18

method extracts four significant features (perimeter, hand size, centre of hand and finger
distance) from a given input image.

To define the shape of the hand and calculate the perimeter value, the perimeter
feature extraction (PFE) technique is used to detect the edges and boundaries of the human
hand by counting the pixels having values of 1 and 0 for neighboring pixels while skipping
the grey shades. The shape is calculated by finding the projection of the hand that provides
the size of the hand. For that, vertical and horizontal values are calculated by adding up all
the values of rows and columns as follows:

vi (c) = ∑n−1
c=0 Pi(r, c) (2)

hi (r) = ∑n−1
r=0 Pi(r, c) (3)

where v and h represent the vertical and horizontal positions, and r and c represent the row
and column, respectively, of pixel P in an image. In Equation (2), the letter “n” stands for
the maximum “height” value, which is the vertical side of a hand. In Equation (3), the letter
“n” stands for the maximum “width” value, which is the horizontal side of a hand.

The hand size feature is useful to recognize the change in the size of a hand because
hand size differs from person to person. The size component of a hand represents the hand
size at a specific time. To calculate the hand size, we define the function, Mi(r, c) as in
Equations (4) and (5).

Mi (r, c) =
{

1 i f P(r, c) = ith object number
0 otherwise

}
(4)

Ai =
n−1

∑
r=0

n−1

∑
c=1

Mi(r, c) (5)

where r and c represent the row and column, respectively, of pixel P in an image. Then, the
area Ai is measured in pixels and indicates the relative size of the hand.

The centre of the hand feature recognizes the orientation and position of the hand.
Finding the centre of the object is important for detecting any change in hand shape, palm
position, and movement of the hand or fingers. We can define the centre of hand by the
pair (ri, ci) for rows and columns, respectively, measured as follows:

ri =
1
Ai

n−1

∑
r=0

n−1

∑
c=1

r Mi(r, c) (6)

ci =
1
Ai

n−1

∑
r=0

n−1

∑
c=1

c Mi(r, c) (7)

where both r and c represent the row and column, respectively, of pixel P in an image, and
Mi(r, c) is a size function.

Finally, the fingers position is calculated by finding the distance between two open or
closed fingers. The finger’s distance feature helps define the gesture. It can be carried out
by counting the continuous pixel having a value of 0 until a neighboring pixel with a value
of 1. The significant points can be calculated as follows:

Sp = (avg x, avg y) (8)

Sp =

(
1
5

p=x+5

∑
p=sx

,
1
5

p=y+5

∑
p=sy

+b

)
(9)

where Sp is a significant point plotted on the plane averaging 5-pixel values along the
x-axis and y-axis, respectively, sx is the starting point along the x-axis averaging the next
five values, sy is the starting point along the y-axis averaging the next five-pixel values.
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Additionally, b is a bias that gives the neural network an extra parameter to tune by
initializing non-zero random values.

After that, extracted features are combined into the form of a feature vector set Fs, the
data is displayed in the form of these symmetric patterns. To measure the boundary, size,
and orientation of the hand for a particular gesture defined as

Fs = [Perimeter, Hand Size, Center o f Hand, Finger Position] (10)

where
Perimeter F1 = [a1, a2, a3, . . . , an] (11)

Hand Size F2 = [b1, b2, b3, . . . , bn] (12)

Center o f Hand F3 = [x1, x2, x3, . . . , xn] (13)

Finger Position F4 = [y1, y2, y3, . . . , yn] (14)

where the letter “n” denotes the total number of extracted ‘feature points’ for each defined
feature (F1, F2, F3, and F4) for a hand gesture. The symmetric feature set enables the description
of symmetric patterns such as the perimeter, center, finger position, and the size of the hand.
Where ‘perimeter features’ outline the physical shape of the hand, ‘size feature’ extracts
features for comparison of scale variation of the hand, ‘center of hand’ handles the orientation
of the hand, and ‘finger position’ feature measures the distance between two fingers. The
feature set created in matrix form shows all the features combined in Equation (15).

X =


F1
F2
F3
F4

⇒


a1 a2 a3 . . . an
b1 b2 b3 . . . bn
x1 x2 x3 . . . xn
y1 y2 y3 . . . yn

⇒


0 0 0 1 1 0 . . . 0
0 0 1 1 0 0 . . . 1
0 0 1 1 1 0 . . . 0
0 1 1 1 0 0 . . . 1

 (15)

where each pixel corresponds to a matrix element value. “0” and “1” represent pixel values,
with 1 indicating the presence of a feature point and 0 indicating its absence. Finally,
the SIFT technique is employed, which was proposed by Lowe, D.G. [36] and later the
anatomical structure was discussed by the authors in their work [37]. The SIFT technique
extracts features and identifies the significant key points of ASL-based images with their
relevant features in diverse illumination conditions. The SIFT algorithm is formulated as
follows in Algorithm 1.

Algorithm 1: SIFT Keypoints Generation

1: Gaussian scale-space computation
2: Input: i image
3: Output: s scale-space
4: Difference of Gaussians (DoG)
5: Input: s scale-space
6: Output: d DoG
7: Finding keypoints (extrema of DoG)
8: Input: d DoG
9: Output: {(rd, cd, αd)} list of discrete extrema (position and scale)
10: Keypoints localization to sub-pixel precision
11: Input: d DoG and {(rd, cd, αd)} discrete extrema
12: Output: {(r, c, α)} extreme points
13: Filter unstable extrema
14: Input: d DoG and {(r, c, α)}
15: Output: {(r, c, α)} filtered keypoints
16: Filter poorly localized keypoints on edges
17: Input: d DoG and {(r, c, α)}
18: Output: {(r, c, α)} filtered keypoints
19: Assign a reference orientation to each keypoint
20: Input: (∂mv, ∂nv) scale-space gradient and {(r, c, α)} list of keypoints
21: Output: {(x, y, α, θ)} list of oriented keypoints
22: SIFT Feature descriptor generator
23: Input: (∂mv, ∂nv) scale-space gradient and {(x, y, α, θ)} list of keypoints
24: Output: {(r, c, 1: α, θ, f )} list of described keypoints
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4. Experimentation and Results

To prove the concept, a workable testbed has been developed in the laboratory by
using the Microsoft Kinect sensor to capture the images and convert them into depth
images for acquiring the diverse resolution data, as shown in Figure 2.
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For the development of a case study, a total of three subjects were considered to
acquire the data in diverse illuminated conditions and save it into PNG format according
to Equation (1), as shown in Figure 3.
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The subsequent step is to convert the ASL images into grayscale for the segmentation
to separate the hand object from its background, as shown in Figure 4. The next stage is to
calculate the SIFT points from the segmented hand objects to identify the feature points as
mentioned in Equation (15). A feature descriptor method is used to process the significant
image points from identified feature points to convert them into significant vector points.
For that, the Matlab tool is used to extract the required feature point values and convert
them into significant points using the SIFT algorithm from 26 letters of the alphabets.
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After calculating the SP using SIFT, the average processing time of every step is
calculated under different lighting conditions and resolution rates as shown in the fol-
lowing Table 2. As we can observe from Table 2, the reasonable processing time is at a
1024 × 768-resolution rate in ambient light conditions, which is a good resolution rate for
analysis. It is noticed that higher resolution rates consume more processing time. Therefore,
we will consider the 1024 × 768 resolution rate at the next stage.

Table 2. Average processing time under variant lightening conditions at different resolution.

Resolution
Average Processing Time (Sec)

Bright Light Ambient Light Dark Light

260 × 175 2.38 2.24 2.34
320 × 240 2.50 2.20 2.46
640 × 480 2.58 2.24 2.25
800 × 600 2.21 2.18 2.41
1024 × 768 2.28 2.21 2.35

2048 × 1540 2.28 2.36 2.32
4160 × 3120 2.39 2.50 2.84
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After converting the 26 alphabets into grayscale, segmentation and significant point
calculation of A–Z, four letters are considered to show the efficiency of the proposed
framework. Letters “P”, “A”, “I”, and “R” are used for segmentation, SIFT, and measure
the significant points of the hand gesture as shown in the following Figure 5.

Symmetry 2022, 14, x FOR PEER REVIEW 10 of 21 
 

 

 
Figure 5. Case study feature and significant point’s calculation using SIFT. 

Referring to Equation (15), and Figure 6, we considered the mean (x̄), standard de-
viation (σ), variance (µ) and average deviation (AD) values against each feature of se-
lected SP and converted them into the compact form of featured SP, respectively. The de-
tails are shown in Table 3. 

 
Figure 6. Proposed ANN classification architecture for the gesture. 

Table 3. Feature values calculation. 

Features P A I R 

F1 

x̄ 348.57 335.12 278.37 433.92 
µ 18744.8 11651.6 13358.49 28356.31 
σ 136.91 107.94 115.57 168.39 

AD 108.64 76.01 91.82 125.29 

F2 

x̄ 362.96 317.5 432.61 402.57 
µ 17503.4 5888.75 10446.19 5307.95 
σ 132.30 76.73 102.20 72.85 

AD 103.22 70.75 76.43 43.01 

F3 

x̄ 456.12 392.47 457.19 413.45 
µ 3845.16 9542.87 1481.61 5662.65 
σ 62.00 97.68 38.49 75.25 

AD 47.56 79.88 30.47 63.90 

F4 
x̄ 494.23 527.55 519.97 540.97 
µ 5157.58 4899.46 3547.31 6015.84 

Figure 5. Case study feature and significant point’s calculation using SIFT.

Referring to Equation (15), and Figure 6, we considered the mean (x), standard devia-
tion (σ), variance (µ) and average deviation (AD) values against each feature of selected
SP and converted them into the compact form of featured SP, respectively. The details are
shown in Table 3.
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Figure 6. Proposed ANN classification architecture for the gesture.

Selection of applicable gesture features is a key task as inputs of ANN for training
to measure the accuracy from acquired data and it may indistinct the network structure.
However, the right feature selection improves the efficiency of the ANN network, and
training time may also be reduced by adopting the right ANN hidden layer architecture
according to the input and output. In classification and data processing, ANN learning
accommodates a variety of conditions better than any other classification technique [38].
In this paper, we have chosen four different features as inputs (F1, F2, F3 and F4) for each
layer of neurons. Each network consists of one hidden layer that contains multiple neurons
according to the inputs. The number of hidden layer neurons has a reliable impact on the
performance of the ANN model. Therefore, the selection of a number of the hidden layer
neurons depends on ANN accuracy in primary trials. For the target output, a vector of
classes to recognize the hand gesture is written as follows:
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1. [1; 0; 0]: Hand Natural Position;
2. [0; 1; 0]: Hand Gestural Position;
3. [0; 0; 1]: Hand Unknown Position.

Table 3. Feature values calculation.

Features P A I R

F1

x 348.57 335.12 278.37 433.92
µ 18744.8 11651.6 13358.49 28356.31
σ 136.91 107.94 115.57 168.39

AD 108.64 76.01 91.82 125.29

F2

x 362.96 317.5 432.61 402.57
µ 17503.4 5888.75 10446.19 5307.95
σ 132.30 76.73 102.20 72.85

AD 103.22 70.75 76.43 43.01

F3

x 456.12 392.47 457.19 413.45
µ 3845.16 9542.87 1481.61 5662.65
σ 62.00 97.68 38.49 75.25

AD 47.56 79.88 30.47 63.90

F4

x 494.23 527.55 519.97 540.97
µ 5157.58 4899.46 3547.31 6015.84
σ 71.81 69.99 59.55 77.56

AD 61.92 57.36 48.78 67.11

A multi-layer Feedforward Neural Network (FFNN) method is used in this paper for
the recognition of hand gestures from datasets. The proposed architecture of ANN for a
single hand gesture is presented in Figure 7.

Based on the same ANN training process, we used a similar classification architecture
for the recognition of multiple hand gestures as objects. Every hand gesture feature’s vector
class was used as input data and classified through a similar network architecture. The
output layer in Figure 6 presents the current state of the gesture. It contains a total of four
NN input nodes, and the hidden layer activation function (logsig) is employed for every
proposed output. All object feature values in Table 3 were stored in the Mat extension file
and assigned these values with each hand gesture and divided all features into sub-features.
The training goal is set at 0.01 target value and the Back Propagation (BP) learning method
is adopted for training. Figure 7 presents the inside architecture of each neural network for
each hand object.
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Figure 7. The internal design of NN architecture.

After initializing the ANN model for non-linear system modelling, specific ANN
data must be assessed targeting nodes precedents. The hidden layer neurons and transfer
function are set up to compute the training objective. Then, the layer weight is set for
output. Table 4 shows the brief explanation and ANN layer setup information.

For the selection of suitable hidden layer neurons architecture, three types of ANN
architecture (the [4 × 4 × 3], [4 × 14 × 3] and [4 × 24 × 3]) were tested in this paper for
training purposes, as shown in Figure 8. To alter the weights of the hidden layer until the
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targeted output was achieved at reasonable epoch numbers with less error rate, as shown
in Table 5.

Table 4. Description of the implemented ANN.

NN Steps Artificial Neural Network Structure for Performance Matrices

Network Mode FFNN

Learning Pattern Back Propagation

Training Goal 0.001

Input data Four inputs of 1D ANN matrix where all data were placed in each
image’s class for recognition process index

No. of neurons in hidden layer
Diverse N architectures are used with different values of neurons inside
hidden layer. For example, [4 × 4 × 3], [4 × 14 × 3] and [4 × 24 × 3]

(see Figure 9).

Vector of classes for the target outputs Mathematical matrices refer to the classified vector classes with
value 0 or 1.

Symmetry 2022, 14, x FOR PEER REVIEW 12 of 21 
 

 

Table 4. Description of the implemented ANN. 

NN Steps Artificial Neural Network Structure for Performance Matrices 
Network Mode FFNN 

Learning Pattern Back Propagation 
Training Goal 0.001 

Input data Four inputs of 1D ANN matrix where all data were placed in each 
image’s class for recognition process index 

No. of neurons in 
hidden layer 

Diverse N architectures are used with different values of neurons 
inside hidden layer. For example, [4 × 4 × 3], [4 × 14 × 3] and [4 × 24 × 

3] (see Figure 9). 
Vector of classes for 
the target outputs 

Mathematical matrices refer to the classified vector classes with 
value 0 or 1. 

 

 
(a) 

 
(b) 

Figure 8. Cont.



Symmetry 2022, 14, 2045 12 of 18Symmetry 2022, 14, x FOR PEER REVIEW 13 of 21 
 

 

 
(c) 

Figure 8. Overview of the different ANN architectures chosen: (a) [4 × 4 × 3]; (b) [4 × 14 × 3]; (c) [4 × 
24 × 3]. 

It can be observed from Table 5 that the selected architecture [4 × 14 × 3] has presented 
better mean squared error (MSE) performance with reasonable epoch numbers and error 
rate than other ANN architectures. The next process is to measure the validation of ac-
quired features in Table 2. Figures 9–12 show the training performance graph of the ANN 
architecture [4 × 14 × 3], which attained a good and considerable performance result dur-
ing ANN testing. 

Table 5. Different ANN architecture for classification performance. 

Arch Sample MSE No. of 
Epoch 

Accuracy Classification 
Error 

[4 × 4 × 3] 

F1 7.56 × 10−2 70 93.6 6.4 
F2 7.22 × 10−2 62 92.7 7.3 
F3 6.56 × 10−2 72 93.1 6.9 
F4 7.22 × 10−2 98 93.9 6.1 

[4 × 14 × 3] 

F1 8.96 × 10−2 114 96.7 3.3 
F2 8.75 × 10−2 122 96.8 3.2 
F3 7.5 × 10−2 130 97.4 2.6 
F4 9.28 × 10−2 125 97.1 2.9 

[4 × 24 × 3] 

F1 7.65 × 10−2 372 93.7 6.3 
F2 6.22 × 10−2 304 92.8 7.2 
F3 7.90 × 10−2 385 90.9 9.1 
F4 7.56 × 10−2 374 90.4 9.6 

Figure 8. Overview of the different ANN architectures chosen: (a) [4 × 4 × 3]; (b) [4 × 14 × 3];
(c) [4 × 24 × 3].

It can be observed from Table 5 that the selected architecture [4× 14× 3] has presented
better mean squared error (MSE) performance with reasonable epoch numbers and error rate
than other ANN architectures. The next process is to measure the validation of acquired
features in Table 2. Figures 9–12 show the training performance graph of the ANN architecture
[4× 14× 3], which attained a good and considerable performance result during ANN testing.

Table 5. Different ANN architecture for classification performance.

Arch Sample MSE No. of Epoch Accuracy Classification Error

[4 × 4 × 3]

F1 7.56 × 10−2 70 93.6 6.4
F2 7.22 × 10−2 62 92.7 7.3
F3 6.56 × 10−2 72 93.1 6.9
F4 7.22 × 10−2 98 93.9 6.1

[4 × 14 × 3]

F1 8.96 × 10−2 114 96.7 3.3
F2 8.75 × 10−2 122 96.8 3.2
F3 7.5 × 10−2 130 97.4 2.6
F4 9.28 × 10−2 125 97.1 2.9

[4 × 24 × 3]

F1 7.65 × 10−2 372 93.7 6.3
F2 6.22 × 10−2 304 92.8 7.2
F3 7.90 × 10−2 385 90.9 9.1
F4 7.56 × 10−2 374 90.4 9.6
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Figure 12. Performance graphs using [4 × 14 × 3] neural network architecture for gesture R.

After measuring and testing the performance graph of the ANN architecture [4 × 14 × 3],
the next stage of validation is to calculate the accuracy by calculating the Confusion Matrix
(CM). To construct the CM, the four features input (F1, F2, F3 and F4) values are inserted into
ANN architecture in Figure 7 by adjusting the height of the hidden layer. The combined
confusion matrices of all features against each character of the PAIR word are shown in
Figures 13–16.
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In Figures 13–16 above, each corner cell shows the accurately tested pattern cases of
gestures through the proposed ANN architecture [4 × 14 × 3] to decide the recognition
of the right-hand gesture. In the confusion matrices graph, the confusion grid holds
the features processed training data between the target and output classes, consisting of
three procedural stages: preparing, testing, and training of the gesture recognition and
individually measuring the performance of the ANN architecture.

To perform these procedural stages, four horizontal target and vertical output classes
were defined to demonstrate the precise data validation testing process to reflect all possible
targeted sample values of feature sets. The green cells in the CM grid graphs show those
data groups that are accurately classified and have completed a successful training process.
Each grey corner cell in horizontal position shows those data groups of targeted classes that
are accurately classified and complete the testing phase in the training process. The red cell
presents those data sets that are wrongly classified or might not be properly validated in
the testing phase. Finally, the blue cell presents the overall percentage of correctly classified
gesture test cases from datasets. From confusion matrix diagrams, we can easily observe
that each class has been tested under 1200 test cases and show percentages in green cells to
observe the targeted class output parentage with error rates which are accurately classified
during the testing phase with less than 1% wrongly classified in all trained datasets. Overall,
a maximum 97.4% accurate rate of the word “PAIR” was achieved in the blue cell with only
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a 2.6% error rate, which shows the overall efficiency of the ANN architecture in terms of
processing time.

After measuring, testing, and calculating the accuracy of four selected features, the
next step is to measure the accuracy of the whole dataset (A–Z). For that, the same ANN
architecture [4 × 14 × 3] is utilized with the previous configuration settings that were used
in the case study. Figure 17 shows the training performance graph of ANN architecture
[4 × 14 × 3], NN testing produced an excellent and significant performance result. The
combined confusion matrix of all chosen features against each character (A–Z) word is
shown in Figure 17. From Figure 18, we can certainly perceive that each class has been
tested under 1400 test cases from trained datasets to observe the accurately classified target
output class and only less than 1% are wrongly classified in all trained datasets. Overall,
a maximum of 97.3% accuracy rate of all 26 alphabets was achieved in the blue cell with
only a 2.7% error rate, which shows the overall efficiency of the adopted NN architecture
[4 × 14 × 3] in terms of processing time.

Finally, a comparison has been performed between our work and other researcher’s
published works in a similar domain to show the efficiency of our proposed framework
process. Table 6 compares the performance of our and other works based on gesture image
datasets and recognition methods in terms of the number of gestures, frame resolution,
response time, recognition approaches, and accuracy rate with an error rate under various
illuminated conditions. The combination of preprocessing process, PFE, segmentations,
significant point extraction, and utilising multiple ANN architectures for classification to
reduce the error rate and achieve the high accuracy rate in gesture recognition is the reason
for achieving the high accuracy rate compared with others.
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Table 6. Performance comparison with other gesture recognition research.

Paper # of
Gestures Test Image Frame Resolution Recognition Time (sec) Technique Accuracy (%) Error Rate (%)

[18] 10 400 128 × 128 0.4 DC-CNN 94.8 5.2
[25] 8 195 320 × 240 0.09–0.11 CNN 93.9 6.1
[26] 10 600 512 × 424 0.133 ANN 95.6 4.4
[27] 8 220 112 × 112 0.03 3D-CNN 95.8 4.2
[28] 24 300 416 × 416 0.0666 Darknet 96.7 3.3
[29] 40 90 112 × 112 N/A D Learn 96.2 3.8
[30] 24 66 320 × 240 N/A DC-CNN 94.5 5.5
[31] 24 135 400 × 400 0.19 ANN 95.7 4.3
Our

work 26 800 1024 × 768 0.013 ANN 97.4 2.6
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5. Conclusions

This paper presented an efficient framework to improve the performance of gesture
recognition under variant illumination using the luminosity method. Symmetric patterns
and a related luminosity-based filter are considered for use in gesture recognition. The
proposed framework consists of four main phases, i.e., acquiring the image, image pre-
processing, feature extraction, and classification. To develop the datasets, a workable
testbed has been developed in the laboratory by using two Microsoft Kinect sensors to
capture the depth images for the purpose of acquiring diverse resolution data. ASL-based
gesture images are stored in the database and converted into PNG format. The next step is
the pre-processing of the acquired images to transform the captured image into a uniform
level of brightness. For that, the system performs the luminosity method based on the
grey-scale conversion of the input image. Grayscale conversion reduces complexity and
is much easier to work with a variety of tasks such as image segmentation problems.
Greyscale conversion was carried out through the weighted method. The next step is to
extract the appropriate features and make their selection. It is a critical step because more
appropriate features consume additional space and computational time. For that, the SIFT
method is proposed to select and extract the appropriate features from acquired data. The
proposed method extracts four significant features (perimeter, hand size, centre of hand,
finger distance) from a given input image. After that, extracted features are combined into
the form of a feature vector set to measure the boundary, size, and orientation of the hand
for a particular gesture. Then, SIFT algorithm is to identify the significant key points of
ASL-based images with their relevant features in diverse illuminated conditions. A feature
descriptor method is used to calculate the significant image points from identified feature
points and convert them into significant vector points. From the results, we can observe that
the reasonable processing time is at a 1024 × 768 resolution rate, which is a good resolution
rate for analysis. It is also noticed that higher resolution rates consume higher processing
time and are shown in tabular form. Finally, we have chosen four different features as
inputs (F1, F2, F3 and F4) for each layer of neurons. Each network consists of one hidden
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layer that contains multiple neurons with NN architectures ([4 × 4 × 3], [4 × 14 × 3], and
[4 × 24 × 3]), respectively. After training, it is identified that the architecture [4 × 14 × 3]
presented a better mean squared error (MSE) performance with reasonable epoch numbers
and error rate among other NN architectures. From confusion matrix diagrams, we can
easily observe that each class has been tested under 1200 test cases and show percentages
in green cells to observe the targeted class output parentage with error rates which are
accurately classified during the testing phase with less than 1% wrongly classified in all
trained datasets. Overall, a maximum 97.4% accurate rate of the word “PAIR” was achieved
with only a 2.6% error rate, which shows the overall efficiency of the NN architecture.

Future development would be extended toward the incorporation of complex depth
images with more gesture angles in other languages (regional sign language) by using
multiple high-resolution camera modules. Further complexity in recognition can be created
to select more features at multiple angles and lighting conditions in outdoor environments.
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