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Abstract: In recent years, the use of unmanned aerial vehicles (UAVs) has increased significantly.
Asymmetrical factors, or frictional studies on the disc brake of UAVs, are one of the safety consid-
erations taken into consideration during the design process because UAVs and their components
have been built with the best safety in mind. This study focuses on choosing the optimal material
for a UAV’s disc brake by using transient structural and thermal models. In order to compare the
asymmetry-based frictional force produced by the two ways; the processes used in the transient simu-
lation are validated using pin-on-disc (POD) testing. The foundation for this validation investigation
is a metal matrix composite made of an aluminum alloy, and the basis tool is an ASTM G99-based
computational test specimen. Steel-EN24 and carbon ceramic matrix composites testing are expanded
using the same POD tests. A range of 3 percent to 8 percent error rates is found. As a result, the
calculation techniques are applied to the UAV’s disc brake after they have proven to be trustworthy.
This fixed-wing UAV’s extensions have a 5 kg payload capacity. The weight, avionics components, tire
dimensions, and disc brake dimensions of the other UAV design parts are calculated using analytical
formulas. The final designs are made using CATIA as a result. The grid convergence experiment is
organized using a traditional finite element analysis tool. Finally, at its maximum rotational speed,
a UAV’s disc brake is put through asymmetrical friction testing based on structural and thermal
consequences. The correct materials for critical applications, such as carbon fiber-woven-wet-based
reinforced polymer and Kevlar unidirectional-49-based reinforced polymer composites for changing
rotating speeds, have now been made possible by fixed-wing UAVs.

Keywords: composite materials; disc brake; frictional force; FEA; equivalent stress; thermal stress; UAV

1. Introduction

The authors build on prior research by analyzing the frictional characteristics of disc
brakes used on fixed-wing unmanned aerial vehicles (FWUAVs). An essential part of a disc
brake is the wheel hub, which houses the caliper, knuckle, piston, lining puck, gasket, brake
pad, and other smaller parts. The disc is kept in place against the piston with the use of
pins, spring plates, and a friction pad. When used in conjunction with the aforementioned
components, the disc brake bleeding valve and bleeding bolt further enhance stopping
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power. Every cylinder has a rubber ring that seals the piston to the cylinder. The wheel
hub has been fitted with rotors. By applying force through the rudder pedals to the brakes,
the kinetic energy might be converted into thermal energy [1]. Due to the high likelihood
of failure induced by friction, it is anticipated that increased-resisting materials will deposit
between the internal frictional connections of the UAV’s disc brake. When landing an
airplane, disc brakes have long been the standard. Landings on very small runways have
been made possible thanks to the disc brake. The disc brake and brake pad may have been
major contributors to the inconsistent braking encountered in high-velocity zones due to
the UAV’s wide range of operating circumstances, which include 250 rotational speed per
minute (RPM) during takeoff and 3500 RPM while landing. Since a disc brake’s longevity
is tied to the materials and its qualities, this study compares and contrasts the traditional
selection approach with the thorough selection of appropriate material for unmanned
aerial vehicle (UAV) disc brakes under all loads. For this reason, there has been a surge
in interest in this topic as researchers consider the possibility of replacing alloys with
lightweight composites.

1.1. Literature Survey

Typically, a literature review directs the research and its solution strategies in the right
order. The objective of this study was to collect information regarding the design of an
FWUAV and its disc brake, as well as validation approaches for both transient structural
and thermal computations. Relevant works are as follows: Using computational transient
structural analysis, G. R. Kumar et al. [1] in 2020 conducted comparative research on ro-
tating discs made from a variety of lightweight composite materials. With the aid of the
ANSYS Tool, the polymer matrix composites (PMC) were primarily examined at various
rotational speeds. In addition, the SiC-based improvement in PMCs was implemented, re-
sulting in the same computational analyses. For validation, the POD (pin-on-disc) relevant
experimental test was utilized and frictional forces from POD and computational results
were compared. This inquiry reveals the following noteworthy data: material properties of
all composites, boundary conditions placed on computational structural calculations, pro-
totype preparations of PMC, and experimental procedures of POD. In 2018, Yash Vashi [2]
examined the disc brake’s thermal and structural assessments. Initially, he employed metal
matrix composites (MMC) in the disc brake, which paved the way for the current studies
to utilize other MMCs. MMCs are intended to be implemented in one location as part
of the ongoing research that is the validation of computational procedures derived from
MMC aluminum alloy. Yash Vashi’s computational techniques and boundary conditions
are supported in this work, particularly the mesh generation types, displacement types,
and RPM of the UAV’s disc brake, which are mostly sound. According to this UAV’s
specifications, the analytical approach outlined in the article [2] for the building of the
aircraft’s disc brake was adjusted and improved. Consequently, the singular UAV and its
disc brake were encased [2].

The FWUAV was built using the conventional analytical approach by Aliyu BharK-
isabo et al. [3] in 2017 for use in surveillance applications. Particularly, the confidence to
apply the current work was gained by deriving and employing the relationship between
the total weight of the UAV and the payload weight of the UAV. This study primarily
observes and intends to execute the other standard equations, including wing planform
area, aspect ratio, wing loading, wingspan, and chord length. The analytical method
used in this article [3] has been finalized to design the wing and fuselage configuration
of this current UAV. Preliminary design calculations on UAVs were performed by Álvaro
Gómez-Rodríguez et al. [4] in 2018, from which numerous relations were established for
use in the design process. The most important relationships discovered were those between
the wing area and the maximum take-off weight of the UAV, the loading on the span
and the total take-off weight, the area of the horizontal tailplane and the wing area of
the UAV, the area of the vertical tail planform and the maximum take-off weight of the
UAV, and the moment arm of the vertical tail-plane and the moment arm of the horizontal
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tail-plane. Due to difficulties in building the FWUAV’s vertical and horizontal tails, the
derived relationships between the UAV’s horizontal tailplane area and its wing area, its
vertical tail planform area and its maximum take-off weight, its vertical tail-plane moment
arm, and its horizontal tail-plane moment arm are used here [4]. Based on their research
and computations, Álvaro Gómez-Rodríguez et al. [4] determined the empennage for this
FWUAV. Building the landing gear and its wheel disc brakes is another challenging aspect
of this work. This paper referred to the standard equations found in Daniel Raymer’s
book on airplane design [5]. Extracted linkages include those between wheel diameter
and thickness, wheel height and thickness, and wheel design versus disc brake design
parameters. Daniel Raymer [5] compiled the formulas used to build the disc brake used in
this study.

Weight and resistance to thermal stress induction are prioritized in this work as
selection criteria for lightweight materials in the UAV arena. For this reason, the ther-
mal outcome is best calculated analytically and computationally with the aid of typical
boundary conditions and beginning variables such as thermal conductivity, thermal dif-
fusivity, and specific heat capacity. All of these basic thermal parameters for the imposed
lightweight materials are culled from widely available literature reviews, wherein refer-
ences to articles [6–9] on the required thermal characteristics of carbon fiber-reinforced
polymer (CFRP) were made. We cited [10] for information on the thermal properties of glass
fiber-reinforced polymer (GFRP), and [11,12] for information on the thermal characteristics
of kevlar fiber-reinforced polymer (KFRP). And the publication [13] provides the required
thermal characteristics of SiC related to CFRP composites.

1.2. Related Inferred Terminologies

The review of the literature showed that steel alloys were often used in aircraft disc
brakes because they could stand up to a lot. Steel was used in the disc brake, which made
the aircraft a little bit heavier. The gyro effect is well known in the aerospace industry as a
factor that shows how important it is for a design to be light and how there are trade-offs
when more mass is added. Since weight is so important, adding just 1 kg to the plane
would cause 10 problems. That is why it is important to cut back on the weight gain caused
by steel alloys, even if it is just a little bit. Since CFRP and its advanced composites are
already used in rotating environments in the automotive industry, it makes sense that the
aerospace industry will do the same. This study is mostly about how composites can be
used in the disc brakes of UAVs. The goal is to find a good composite based on the ability
to create low frictional stress.

Moreover, these surveys showed that computer-aided engineering simulations were
used for the vast majority of complex analyses, while experimental tests were used for the
vast majority of basic studies. So, the same methods will be used in this study from different
fields. Using computational coupled transient structural and thermal analyses, this material
optimization is planned to be carried out on the UAV’s disc brake. Planned the execution
of the grid convergence test to validate computational procedures and the completion
of verifications based on the pin-on-disc (POD) experimental test to further check the
reliability of the imposed computational methodologies. Its goal is to see if the reaction
forces from computational analyses and POD tests match up. With the results of these
verification and validation tests, the computational coupled analysis should be able to make
a good guess about what the frictional behavior of the rotating disc will be. So, the UAV’s
disc brake’s deformation, equivalent stress, and thermal stress are planned to be estimated
by combining the results of computational structural and thermal analyses with data from
computations. The Ansys Workbench tool, which is based on finite element analysis (FEA),
will be used to look at complex parameters such as stresses and deformations.

1.3. Contributions and Organizations

The following are the primary analytical and computational contributions of this
study: Initially, an unmanned aerial vehicle is hypothetically designed for the intended
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application using analytical calculations. As a result of an analytical calculation, a disc
brake for the aforementioned UAV is designed. Thirdly, frictional studies induced by
rotating loads are performed on base items and validated by POD-based experimental
experiments. Fourthly, the disc brake of a UAV is extended computationally using verified
computational structural analysis. Finally, the thermal consequences caused by friction
between the UAV’s disc and pad are computed, with the structural stresses well supported.
There are five sections in this study. The introduction to this work is discussed in the
Section 1, followed by the analytical calculations-based development of the UAV and its
disc brake in the Section 2, the imposed methodology and its validations in the Section 3,
real-time application-based computational investigations in the Section 4, and finally the
conclusion. Figure 1 depicts the comprehensive procedure involved in this endeavor.
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2. Proposed Design of UAV and Its Wheel Disc Brake

The design of FWUAVs with disc brakes for long-duration missions is discussed
in this work through optimized analytical methodologies. In order to extend the useful
life of disc brakes while keeping their performance qualities, the authors of this research
advised adopting high-quality composites in favor of more conventional materials. New
integrated analytical and computational structural studies are used to estimate stresses
due to heat, whilst new transient-based computationally coupled (structural and thermal)
computations are used to estimate stresses owing to friction [14–17]. An FWUAV’s payload
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weight and overall weight are related by the following Equation (1), which is inspired by
the publication [3].

WPl
WO

= 0.201 (1)

This fixed-wing UAV has a 5 kg payload, being its primary purpose. With the help
of the obtained Equation (1), we can determine that the total mass of this fixed-wing UAV
is 25 kg.

2.1. Estimation of Wing Surface Area, Wingspan, Chord Length, and Fuselage Length

From the comparative study [3,4,15,17] of suitable UAVs, which is able to perform the
same mission, a choice for wing load for this design was selected as W

S = 25 kg/m2.

SW =
WO

(W/S)
(2)

Wing area can be determined using Equation (2) when takeoff weight and wing
loading are known. About 1 square meter is used for the wing area. The third equation
(relating wing area to wing span and chord length) may be found numerous times in the
literature [3,4,15,17] and is generally acknowledged to be true.

Sw = bWCW,root (3)

The standard aspect ratio (AR) of the wing is given in Equation (4). In this work, the
ARW was chosen as 15 based on historical relationships [3,4,15,17].

ARW =
bW

2

Sw
(4)

With the help of Equations (3) and (4), the relevant historical relationship, the wingspan
is estimated, which is 3.873 m. The root chord of the taper wing is equal to,
1 = 3.873CW, root ⇒ CW,root = 0.2582 m. The length of the fuselage is mentioned
in Equation (5) [3,4,15,17].

LUAV = η× bW (5)

where “η” was taken as 0.8, then, LUAV = 0.8× 3.873 = 3.0984 m. The fineness ratio’s
assignment is very important to design the diameter of a UAV. With more concern, the
fineness ratio (FR) of the fuselage was fixed as 10. The major and minor fineness ratios are
mentioned in Equations (6) and (7), respectively [3,4,15,17].

FRF,major =
LUAV

Df
(6)

The estimated fuselage diameter of this UAV is 0.30984 m, wherein Equation (6) has
been greatly supported. Another D/T-based fineness ratio is important in the construction
of UAVs, wherein the value of this fineness ratio generally lies between 8 and 10 [3,4,15,17].

FRF,minor =
Df
Tf

(7)

The estimated fuselage thickness of this UAV is 0.015492 m, wherein Equation (7)
has been greatly supported. The literature survey [3,4,15,17] showed that λ = 0.5 is more
suitable for the provision of low drag with high lift at a positive angle of attack. Therefore,
in this work, λ = 0.5 is used [3,4,15,17].

λW =
CW,tip

CW,root
(8)
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Since both the root chord and the wing taper ratio have already been measured, the
tip chord of the wing may be found with relative ease. The primary wing has a tip chord
measuring 0.1291 m. Because it is intended for this particular fixed-wing UAV to have a
high-wing configuration, the wingspan and each of its subordinate design characteristics
are required in order to calculate chord at any place along the span. These parameters are
as follows [3,4,15,17]:

CW =
2
3

CW,root
1 + λW + λW

2

1 + λW
(9)

yMAC =
bW

6

(
1 + [2λW]

(1 + λW)

)
(10)

With the help of Equations (9) and (10), the mean aerodynamic chord and its span-
wise location are determined. The mean aerodynamic chord is 0.13154 m and its spanwise
position is 0.86067 m. Additionally, the other spanwise chord estimations have been
estimated with the help of Equation (11) [3,4,15,17].

CW,y

CW,root
= 1−

[
2(1− λW)

y
bW

]
(11)

ΛW
LE = tan−1

[
2dW

bW

]
(12)

The sweep angle of the main wing is estimated as 3.8141◦, wherein the needful
wing positioned data are substituted in Equation (12). Through the help of relevant
Equations (1)–(12), the design parameters of the UAV’s main wing were calculated.

2.2. Empennage Design—Horizontal Tail

From the historical data and thus its regression line formation, the relationship
between wing area and horizontal tailplane area was formed [4], which is mentioned
in Equation (13).

SH−Tail = 0.1737Sw + 0.0366 (13)

The planform area of the horizontal tail was attained as SH−Tail = 0.1737 ∗ 1+ 0.0366 =
0.2103 m2 and the horizontal tail volume was assumed as VH−Tail = 0.60 and the aspect
ratio of the horizontal tail was picked as 5 [4,8].

ARH−Tail =
bH−Tail

2

SH−Tail
(14)

SH−Tail = bH−TailCH−Tail (15)

The tail span and chord root of the horizontal tail are determined as 0.2051 m and
1.02543 m respectively with the support of Equations (14) and (15). Aside from the aforesaid
assumptions, this completed literature survey [3,15] provided the info about the tail taper
ratio. For this kind of application, a good taper ratio is 0.3, so λH−Tail = 0.3 has been used
for the complete tail design.

λH−Tail =
CH−Tail−tip

CH−Tail−root
(16)

CH−Tail =
2
3

CH−Tail−root

(
1 + λH−Tail + λH−Tail

2

1 + λH−Tail

)
(17)

yMAC =
b
6

(
1 + 2λH−Tail
1 + λH−Tail

)
(18)

ΛH−Tail
LE = tan−1

[
2dH−Tail
bH−Tail

]
(19)
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With the help of relevant Equations (16)–(19), the design parameters of the UAV’s
horizontal tail such as tip chord as 0.06153 m, mean aerodynamic chord as 0.146377819 m,
and its spanwise location as 0.210345 m, and finally, the sweep angle as 15.64225◦ were
calculated [3,4,15,17].

2.3. Empennage Design—Vertical Tail

From the historical data and thus its regression line formation, the relationship be-
tween maximum takeoff weight and vertical tailplane area was formed [4], and through
the standard formulae (Equations (20) to (24)), other parameters developed. From the
literature survey [3], the aspect ratio for the vertical tail was picked as ARV−Tail = 3 and
the taper ratio was obtained as λV−Tail = 0.3. The volume of the vertical tail was assumed
as VV−Tail = 0.07.

SV−Tail = 0.0006(WO[kg]) + 0.1475 (20)

VV−Tail =
(`V−Tail)(SV−Tail)

(bw)(Sw)
(21)

`V−Tail =

√
2Sw

(
(VH−Tail)

(
CW
)
+ (VV−Tail)(bW)

)
π (R1 + R2)

(22)

ARV−Tail =
(bV−Tail)

2

SV−Tail
=

bV−Tail
CV−Tail, root

(23)

λV−Tail =
CV−Tail, tip

CV−Tail, root
(24)

With the help of relevant Equations (15)–(19), the design parameters of the UAV’s
vertical tail were calculated. The important design parameters are: planform area as
0.1625 m2, and thus SV−Tail

SW
= 0.1625, the tail span as 0.70 m, the root chord as 0.234 m, the

tip chord as 0.0702 m, mean aerodynamic chord as 0.2653326 m, and so lV−Tail = 1.67 m,
the outer and inner radiuses are 0.15492 m and 0.075 m, respectively [3,4,15,17].

2.4. Estimation of Propulsive System and Its Weight

A co-axial propeller system was implemented in this work. The thrust requirement by
the single propeller in the co-axial propulsive system was calculated through Equation (25),
wherein the forward velocity is assumed as 100 km/h [16].

0.5ρA
[
(Ve)

2 − (Vo)
2
]
=

WO

2
(25)

The thrust requirement of this propulsive system is estimated as 122.625 N and the
diameter (dpropeller) of the single propeller is found out as 25.47 inches.

2.4.1. Estimation of Co-Efficient of Lift (CL)

Technically, the CL has been calculated at the maneuvering of steady level flight
because this stage creates the environment, which enforces all the parts of UAVs have been
working in good conditions. At steady level flight, the force equilibriums are Lift = Weight
and Thrust = Drag; Thus, the force equilibrium equation is revealed in (26) [3,4,15–17].

T =
VForward

2

2
ρCLAP (26)

Finally, the maximum coefficient of lift is calculated as 0.9744, wherein the UAV is
assumed to move with maximum forward speed.
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2.4.2. Estimation of Power, Propeller’s Pitch and its RPM

Equation (27) contains the relationship of maximum mechanical power required by
this propulsive system [3,4,15–17].

PRequired =
TVForward

2

[(
T

AVForward
2 (ρ/2)

+ 1
) 1

2
+ 1

]
(27)

The maximum mechanical power required by this propulsive system is calculated
as 3686.62 Watts. The P/D ratio applicable for this above equation is up to 0.1 to 0.6.
Therefore, in this work, the P/D ratio was fixed as 0.6, which is mathematically given
in Equation (28) [3,4,15–17].

ppropeller

dpropeller
= 0.6 (28)

PRequired = k R3D4ppropeller (29)

The estimated power required and Equations (28) and (29) are supported a lot for
the development of other design parameters such as pitch and rotational speeds. The
pitch of the propeller is calculated as 15.282 inches and the maximum rotational speed is
determined as 4765 RPM.

2.4.3. Estimation of Pitch angle and Chord of the Propeller

The pitch angles and their corresponding chord lengths of the imposed propellers are
uniquely developed with the help of Equations (30) and (31). For this work, the numbers of
blades are assumed as 2 due to the imposition of the co-axial propulsive system [3,4,15–17].

θPitch = arctangent

(
ppropeller

2πrpropeller

)
(30)

Ccp =

8π
(

sin(θ)(tan(θ)− 1
1.2 tan(θ))

(1+ 1
1.2 tan(θ))

)
rpropeller

nCL
(31)

With the help of relevant Equations (26)–(31), the design parameters of the UAV’s
propeller were found, which are listed in Table 1.

Table 1. The calculated primary design data of UAV’s propeller—Chord and pitch angles.

Location
(Inch)

Pitch Angle
(◦)

Chord Length
(Inch)

Location
(Inch)

Pitch Angle
(◦)

Chord Length
(Inch)

1.274 62.37 1.79 7.644 17.66 1.254
2.548 43.68 2.011 8.918 15.26 1.122
3.822 32.49 1.835 10.192 13.43 1.013
5.096 25.53 1.62 11.466 11.98 0.923
6.37 20.91 1.42 12.74 10.82 0.85

2.5. Aerofoil Selection

The fundamental part of the propeller is aerofoil, which has been shortlisted with
utmost care. In this work, the predominant selection factor involved in aerofoil selection is
low coefficient drag under the maximum coefficient of lift at the average angle of attack.
With this consideration, the best aerofoil was picked as NACA 2412, which was created a
low coefficient of drag value than the other best aerofoils that are listed in Table 2 [3,4,15–17].
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Table 2. The calculated secondary design data of UAV’s propeller—aerofoil selection.

Aerofoil CL CD Aerofoil CL CD

NACA 2412

0.9744

0.035 NACA 23015

0.9744

0.04
NACA 1412 0.05 NACA 23112 0.04

S8052 0.036 NACA 24112 0.039
NACA 2415 0.04 NACA 63(1)-412 0.0425
NACA 4415 0.04 NACA 64(1)-212 MOD B 0.0475
NACA 4418 0.06 NACA 66(4)-021 0.055

NACA 22112 0.05 NACA 63(2)-615 0.0475
NACA 23012 0.04

2.6. Weight Estimation

In the weight estimation, the conventional formula has been investigated, wherein
the density of the lightweight materials and volume of the components are played the
predominant roles. The volume of the propeller is 0.00007605 m3, and the weight of the
GFRP propeller is equal to 1646 × 0.00007605 = 0.1251783 kg. The volume of the fuselage is
0.041 m3 thus weight of the UAV’s fuselage is equal to 0.041 × 250 (sandwich composite)
= 10.25 kg. The volume of the horizontal tail is estimated as 0.0006144 m3, and thus the
weight of the UAV’s horizontal tail is obtained as 0.0006144× 300 = 0.18432 kg. The volume
of the main wing is 0.003 m3, and thereby weight of the UAV’s main wing is equal to 0.003
× 300 = 0.9 kg. The volume of the vertical tail is obtained as 0.0004836 m3, and thus the
weight of the UAV’s vertical tail is equal to 0.0004836 × 300 = 0.14508 kg [3,4,15–17].

Estimation of Electrical and Electronics System and Its Weight

The maximum power requirement by the unmanned aircraft system is 3686.62 Watts,
and the proportional RPM is calculated as 4765. In addition to these parameters, the
estimated diameter of the propeller is also included in the selection of the motor. Finally,
the motor is shortlisted for this operation. The motor of this work is KWTBLDC-6010-12S,
which has a constant velocity rate of 280, and the weight of the motor is 232 g [3,4,15,17].

VRequired =
RPMWorking

KVrate
(32)

The maximum voltage requirement is obtained as 35 V with the help of Equation (32)
and that will help to obtain the battery’s maximum cell requirement [3,4,15,17].

SRequired =
VMaximum

Required

VCell
(33)

The number cell requirement is determined as 10 through the guidance of standard
Equation (33) and this outcome helped to pick the 10 S LiPo battery, in which the specifica-
tions are: overall capacity is 10,000 mAh, the discharge rate is 35C, and the overall weight
is 2240 g [3,4,15,17].

VMaximum
Draw rate =

PRequired

VMaximum
Required

(34)

Through the above-mentioned Equation (34), the maximum current draw rate is
calculated as 105.332 A. Based on this estimation, the electronic speed controller (ESC) is
finalized with the inclusion of a battery eliminator circuit, and thus, the total weight of the
ESC is 79 g. Similarly, all the weights of the components are estimated, which are listed
in Table 3.
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Table 3. Weights of all the UAV’s components.

Sl. No. Components Name Weight (Grams) Sl. No. Components Name Weight (Grams)

1 Payload 5000 6 Other electronic items 100
2 Propeller 125.1783 7 Fuselage 10250
3 Motor 232 8 Horizontal tail 184.32
4 Battery 2240 9 Main wing 900
5 ESC 79 10 Vertical tail 145.08

Total weight 19,255.5783
Landing gear weight [WLanding Gear] 25,000 − 19,255.5783 = 5744.4217

At last, a brand-new FWUAV is created by employing the aforementioned optimized
analytical formulas and derived historical correlations. The proposed UAV is intended for
use in highly advanced settings, such as the transport of medical supplies, instruments,
weapons, etc. Multiple views of the proposed UAV are pictured in Figures 2 and 3. Given
the importance of the key applications, the lifetime of the proposed UAV is a major con-
sideration. It was determined that frictional damage had a much greater impact on the
UAV’s components than any other damaging element, and the primary failure reasons
were assessed accordingly. Therefore, the frictional force, shear stress calculations, and
displacement assessments of an FWUAV’s main wheel disc brake are the primary foci of
this work. As shown in Figure 4, a unique disc brake has been constructed using standard
analytical formulas and well-documented historical relationships [3,4,15,17].
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2.7. Estimation of Stick of Landing Gear and Its Weight (Assymetrical Component)

The focus of this section is to find the design parameters of the UAV’s disc brake
through the help of the design data of the landing stick of this proposed UAV. Thus, the
estimation of design data and the weight of the UAV’s landing gear is an unavoidable
one. Under the design process, the determination of height, mass, volume, and hollow
section-based inner and outer diameters of the landing stick are executed. One of the major
factors involved in the design process is the fineness ratio (FR), which mostly lies between
5 and 10 [5].

FRmajor =
LUAV

HL.S
(35)

With the help of Equation (35), the height of the landing stick is determined as
0.30984 m. Another “H/D” based minor FR is vital in the construction of UAV, which
deals relationship between the height and diameter of the landing stick [5]. For this work,
the value of 5 is used as minor FR and thereby the hollow section based inner and outer
diameters of the landing stick are calculated [5].

FRminor =
HL.S

DL.S
(36)

Through Equation (36), the different radiuses of this UAV are determined. The val-
ues are: the outer diameter of the LS is 0.061968 m and the inner diameter of the LS is
0.0123936 m [5].

VLG = πHL.S

(
(ro)

2 − (ri)
2
)

(37)

The volume of per landing stick is calculated as 0.0036 m3. In addition, the overall
weights of the landing sticks are calculated as: 3× 300× 0.00092160792576 = 0.829447133184
kg. After the estimation of design data of the landing stick, the predominant focus of this
section is to be performed, which is the design process of the wheel and its disc brake [5].

WWheel =
[WLG]− [WLSs]

nW
(38)

From Table 3 and Equation (38), the weight of the wheel is calculated as 1638.325 g or
3.612 lbs [5].

DDisc = A(Wwheel)
Bor wDisc = A(Wwheel)

B (39)

For general aviation the design parameters [5] for Wheel’s width, A = 0.7150, B = 0.312.
Rotating Disc width (in.) = 0.7150× (3.612)0.312 ⇒ 1.07 inches ; For general aviation, the
design parameters [5] for the wheel’s diameter, A = 1.51, B = 0.349. Rotating Disc diameter
(in.) = 1.51× (3.612)0.349 ⇒ 2.364 inches; Various types of tires are involved in construct-
ing an aircraft’s landing gear; however, in this work, three parts are used because the model
is a perfect fit for advanced airplanes. In a three-part type tire, the following relationships
(Equations (40) to (44)) are obtained [5], which are predominantly used in the calculation of
each and every part of the disc brake of fixed wing UAV [5].

ARW =
HW

WW
(40)

DW

WW
= 2.57895 (41)

WW

DW
= 0.387755 (42)

dW

WW
=

20
19

(43)
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WW

dW
=

19
20

(44)

2.8. Conceptual Design UAV’s Disc Brake (Assymetrical Component)

Analytical calculations are first made for the UAV’s disc brake’s diameter, width,
and height. Second, advanced components from earlier research, such as the caliper,
smooth pins, and brake pads, are used. CATIA is the best modeling tool for creating
the essential conceptual design because a UAV’s disc brakes are made up of multiple
intricate components. The recommended modeling approach must therefore be used in the
conceptual design of this disc brake.

3. Proposed Methodology and Its Validations

In this research, finite-element-based computational transient structural and thermal
assessments are used. Due to the intricacy of the underlying activities, the proposed tran-
sient structural and thermal investigations must incorporate susceptibility tests to achieve
exceptionally precise results. Researchers apply grid convergence tests and frictional force
tests, which rely on experimental validation as sensitivities, to examine the work.

3.1. Computational Model (Symmetrical Study)

The computational model used in the POD experiment is the basis for all the accuracy
and reliability evaluations. All of the computational models are based on the ASTM G99
standards. After discovering that the disc brake arrangement of UAVs is graphically
comparable to the POD setup, the authors determined to enforce POD-based validations
for implemented transient structural simulations. Insight into the typical platform layout
of this massive dataset can be gleaned from a survey of the relevant literature [1,14–20].

3.2. Boundary Conditions and Description about Analyses

Most frictional-based studies use low wear rate, low frictional force, low coefficient
of friction, low cost, better mechanical properties, high resistance to frictional loads, good
wear resistance, low coefficient of thermal expansion, excellent material availability, good
machinability, high melting point, and anti-corrosion as selection criteria. This lightweight
material selection for the UAV’s disc brake is dominated by these characteristics, with the
inclusion of pertinent requirements from the aforementioned list, such as low frictional
stress, high rigidity, and less thermal stress. Because this work ended with POD-based
validation, the disc and POD components are critical inputs for the development of this
computational model. In which the ‘rosette’ facility was primarily used to determine
fiber direction. Another facility known as “oriented set-up” was used to determine the
orientation of the laminate of the composites. Finally, the created solid model was used
to precisely combine the allocated reinforcements with the matrix. Figure 5 shows a
consolidated model of the pin-on-disc test specimen created with the ANSYS Composite
Preprocessor tool. The tiny red solid on top was called a pin, and the blue-grey solid on the
bottom was called a disc [1,14,21–30].

In the FEA mathematical modeling of boundary value problems, boundary conditions
and governing equations play a key role. This study incorporated four key boundary con-
ditions, including downward force, remote displacement, constant support, and rotational
velocities. From the POD test procedures, it is determined that a downward force has been
applied to the top of the pin, so a 2 kg weight has been added. The cylindrical surface of
the pin is held rigidly, so a fixed support was provided at that face. The disc is modeled to
rotate in the direction of the “Z” axis, so a remote displacement is applied in that direction.
As “3D” structural elements are used to create the grid, each element must be solved using
a stiffness-based dynamic approach and 15 governing equations [14,31–41].
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3.3. Validation—I—Grid Convergence Study

The initial step in the validation process for the MMC based on aluminum alloy is
to perform a grid convergence test. The presence of the pin slightly modified the mesh
formation on the disc’s surface, but otherwise, the test specimen is totally discretized with
fine structural elements. To perform this rotodynamic frictional computation, a total of
six unique mesh instances are constructed and mandated. Several mesh facilities, such as
fine at proximity places, fine at curvature regions, inflations between the pin and disc, face
mesh setup at the base of the pin, face mesh setup at the top of the disc, and inflation across
the board, are used for this initial grid convergence test. Case III of the mesh performed
best in terms of accuracy of the findings and quick computation times, as shown in the full
statistical report on the mesh in Table 4, as well as in the full results displayed in Figure 6.
Additionally, a second grid convergence test is intended to pick the most reliable sum
components. Figure 7 displays the results of the second grid convergence test. This second
experiment determined the optimum amount of components, which were then merged
with the findings of the first experiment to form the consolidated elements, which are now
required for all further calculations [24,25].
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3.4. Validation—II—Pin on Disc Based Validation

Second, an aluminum-related MMC is subjected to a POD-based experimental test,
with the frictional force recorded and compared to the findings of a computational transient
structural analysis. This composite consists of a metal (aluminum 6063) and a matrix (epoxy
resin). Production was accomplished using a stir casting technique, with speeds ranging
from 250 to 400 RPM and temperatures reaching 600 ◦C.

3.4.1. Finite Element Analysis Results

The POD-based computational test specimen is next subjected to the FEA results for
the aforementioned initial conditions. The precise input conditions used in this in-depth
study are a disc rotating at 400 RPM, a weight of 2 kg on the pin, and a fixed support on the
pin’s cylindrical surface. The disc used in the frictional test has a diameter of 165 mm and a
thickness of 10 mm [26–29]. The pin used in the experiment has a diameter of 10 mm and a
height of 30 mm, as shown in Figure 5. The curvature-based fine mesh approach, shown in
Figures 8 and 9, is developed as a direct result of the curvature-based nature of the design
of this entire system. Figures 10 and 11 show the pin and disc’s overall deformations and
variations in shear stress. There was typically just a need for a single modeling tool for the
2D geometric while getting a composite ready.

Figures 10 and 11 allow us to make the following conclusions: (1) both the pin and
the disc undergo linear deformation; (2) the greatest deformation occurs at the disc’s outer
region; and (3) the greatest frictional stress is created by the pin apparatus [30–36]. These
findings are consistent with the overall phenomenon. As a result, the results from the FEA
simulations are found to be generally accurate. The experimental test is then performed
utilizing the aforementioned POD equipment, and the resulting frictional data are recorded
once the initial verification is completed.
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3.4.2. Experimental Results

All of the equipment and prepared samples for testing are depicted in Figure 12.
Figure 12a exhibits MMC based on Al-6063 alloy test samples, and Figure 12b illustrates
test configurations. The bundled software, Winducom 2010, and a TR-20LE-PTM-based
model with 1–200 kg of operating load and 200–2000 RPM of rotational speed are used
for these validation testing. Information on frictional forces has been collated in Table 5,
and the error percentage is below 10%, which is acceptable and also suggests that the
computational techniques of transient structural analysis have been verified. Computing
methods developed for disc brakes and POD setups are directly transferable to the disc
brake of UAVs.

Table 5. The comprehensive report of both the engineering approaches’ outcomes of AL-MMC.

Sl. No. Methodology Used Frictional Force (N) Error (%)

1 FEA results 26.80
0.752 Pin-on-disc results 27.01
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Figure 12. Machining product and pin-on-disc setup (a) test specimen, (b) POD test set-up.

3.5. Validation—III—Pin on Disc Based Validation

Thirdly, the validation research is conducted in the same POD test configuration, but
with various materials and under varied operating conditions. In this third scenario, Steel
EN24 serves as the lightweight material requirement, and typical alloy production practices
are used to manufacture test specimens. Working RPM is set to 600, and all other boundary
conditions are applied in the same manner as in the second validation example. The test
specimen made of Steel EN24 and the resulting frictional forces [N] are shown in Figure 13.
The Steel EN24 computational model is used to determine the stresses, deformations, and
frictional forces in the transient FEA study. Figure 14 displays the FEA result for Steel EN24,
while Table 6 displays the computational findings with the experimental result.
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Table 6. Comprehensive report of both the engineering approaches’ outcomes of Steel EN24.

Sl. No. Methodology Used Frictional Force (N) Error (%)

1 FEA results 9.7949
0.462 Pin-on-disc results 9.75

Table 6 indicates that when alloys are investigated using computational techniques,
the error percentage between experimental and computational results is smaller and is
within accepted ranges [33–41]. This means that the proposed methodology can yield
results that are applicable to alloys.

3.6. Validation—IV—Pin on Disc Based Validation

As a fourth phase of validation, the POD experiment is also used to validate the
carbon ceramic matrix composite (CCMC), the imposed lightweight material. For CCMC
advancements, woven wet carbon fiber with a tensile strength of 230 GPa made up 95% of
the contents, while standard SiC made up the remaining 5%. An epoxy resin compression
molding machine is used to develop and integrate the various components. The composite’s
rotational velocity is the only distinguishing feature. In this case, 800 RPM is the only
value given for the working RPM. Test specimen and frictional force [N] results based
on CCMC are shown in Figure 15. Stresses, deformations, and frictional forces are all
measured and recorded during the transient FEA study that is also performed on the same
CCMC computational model. The CMC FEA result is shown in Figure 16, and both the
numerical output and the experimental result are shown in Table 7. Table 7 suggests that
the proportion of error between experimental and computational results for evaluating rare
materials such as CCMC is within a reliable range. As a result, both CCMC and PMC stand
to benefit from the proposed approach.

Table 7. Comprehensive report of both the engineering approaches’ outcomes of CCMC.

Sl. No. Methodology Used Frictional Force (N) Error (%)

1 FEA results 2.5265
0.92152 Pin-on-disc results 2.55
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4. Results and Discussions on UAV’S Disc Brake
4.1. Conceptual Design (Asymmterical Case Study)

The UAV disc brake is modeled in CATIA using accepted engineering methods. This
design implementation deliberately mandated the use of a complex modeling tool due to
the frequent occurrence of compositions of complex components in disc brakes. Illustrations
of a UAV’s disc brake are shown in Figure 17.
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4.2. Discretization and Its Convergence Test

The discretization phase has been studied more thoroughly for disc brakes because of
the prevalence of curvature-oriented shapes in this application. Due to this, the authors
have opted to use a hybrid discretization approach that employs both structural and
unstructural grid elements. Disc brakes with a hybrid grid structure are depicted in
Figure 18. The disc’s rotation requires special care because it is continually making contact
with the braking pads. In order to adequately capture all the subcomponents, which are
typically discs in motion, an unstructured mesh is put on the disc. On the other hand,
the structural mesh may be simply created for brake pads because they do not contain
any moving parts. A hybrid mesh is one that contains both structural and unstructural
nodes. In order to depict this hybrid mesh, we combine cuboids and tetrahedral elements
in a multi-zone-based local mesh configuration. As grid amalgam increases the likelihood
of oscillation during convergence, the grid convergence test is an essential prerequisite.
After two other tests are finished, the time came to test the grid convergence of the UAV
disc brakes. The second sensitivity test optimization focused on the grid and its sections.
Analysis of convergence is carried out by modeling the disc brake of a KFRP-based UAV
on six different grids. The results of the second grid convergence test are summarized
statistically in Table 8. Both the standard mesh facility and the integrated gird facility are
used in this second sensitivity test. The entire frictional loads imposed on the UAV disc
brake during this grid independence test are shown in Figure 19. At this point, we know
that the fine mesh facility can be relied upon. These sensitivity evaluations demonstrate
the high reliability of the results obtained using the computational approaches developed
for this study.

Table 8. Mesh statistical report of UAV’s disc brake.

Mesh Case Nodes Elements Mesh Case Nodes Elements

Case—I 50254 87459 Case—III 124550 245709
Case—II 80451 99874 Case—IV 321001 547120
Case—V 91420 112457 Case—VI 664512 978451
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The authors must undergo validation just to guarantee the integrity of the computa-
tional procedures used by the tools. Thus, for the same RPMs, both computational tests and
experimental tests are compiled and compared. It follows that the necessary computing
procedures have been validated and confirmed, and they may generate trustworthy results,
as they obtained error percentages are well within the acceptable range. This means that
even the most time-sensitive real-world applications still need to use the same time-tested
computational procedures.
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4.3. Boundary Conditions

Boundary conditions, such as remote displacement, rotational velocities, and supports,
are enforced in this real-time example with the precision and testing that is necessary to
ensure valid results [1,14].

VForward[km/h] = DWheel[cm] ∗ RPM ∗ 0.001885 (45)

Forward speed was assumed as 25 m/s, and the diameter of the main wheel was
calculated as 15 cm, therefore, RPM = 90

0.001885∗15 = 90
0.028275 = 3183. The UAV’s disc brake

might be subjected to an external rotational stress of the same magnitude according to the
analytical Equation (45) found in the section Landing/Take-off maneuvers. [RPM = 3183].
An off-board displacement facility locked the UAV’s disc in place, while a fixed support
held the disc pad in position. The flexing quality is also imparted to the rotating disc part so
that it could be used in real-world applications. As an added bonus, frictional contact has
been established between the disc pad and the revolving disc, with the frictional coefficients
modified in accordance with the composites. The one-way connection feature is used to link
the composite specimen tool to the FEA preprocessor as well as solver tool. The complicated
composite specimens are successfully transferred from the experimental production stage
to the solver using this state-of-the-art computational simulation technology.

4.4. Structural Results—Assymetrical Failure Factors

Through the use of frictional and structural calculations, the primary and highest
performing materials are selected for the UAV’s disc brake, ensuring the vehicle’s stopping
power is maximized. Kevlar fiber outperforms epoxy resin under rotodynamic frictional
loads, as shown by both preliminary and standard tests. The disc brake computational cal-
culations of this UAV take into account the performance of various high-quality materials,
such as carbon fiber and E-Glass fiber. Finally, considering the disc brake’s operational
characteristics, CCMC, a thermal load-resisting material, is accounted for. Computational
model processing of CCMCs included the incorporation of carbon fiber as reinforcement,
with the primary goal of increasing toughness; epoxy resin as adhesive, with the primary
goal of maintaining the reinforcing phase in the desired orientation, acting as a load trans-
fer media, and shielding the reinforcement from the environment; and silicon carbide
as filler material, in the form of particle-sized spherical spheres, to the matrix materials.
For this reason, we have narrowed down the top choices for this computation to include
CFRP-UD-Prepreg based PMC, CFRP-Woven-Wet based PMC, E-Glass-Woven based PMC,
KFRP-UD-49-Epoxy based PMC, and CCMC. The formation of frictional forces and, by ex-
tension, the various stresses, may be computed with the help of these boundary conditions.
Figures 20–23 show the outcomes of deformations and different stresses on high-quality
materials. Stress hotspots caused by deformation are shown in Figures 23 and 24, and those
caused by stress are shown in Figures 20–22. Figure 20 demonstrates that disc deformation
is the most extreme. Based on the illustrations in Figures 21–23, we can conclude that the
inner hub and the inside of the disc are subjected to the most pressure. These locations
pose serious threats to one’s health and happiness and should be avoided at all costs if
one seeks to live a long and fruitful life. Figures 25 and 26 are display the comprehensive
outcomes of the UAV’s disc braking testing.
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Based on Figures 24–26, the following recommendations are made: Unidirectional
prepreg categorized Kevlar fiber reinforced with epoxy resin-based PMC induced very
few frictional stresses compared to all other lightweight materials; and carbon fiber rein-
forced ceramic matrix based advanced composite reacted less structural deformations and
equivalent elastic moduli compared to other CFRP materials.

4.5. Thermal Stress Results—Assymetrical Failure Factors

The disc brake on the UAV has survived for the most part due to the effort put into
generating thermal stress and estimating it. Using verified structural outputs, this work
computationally analyses the thermal generation and its impacts on the UAV’s disc brake.
The ANSYS transient thermal tool is the computational platform integral to achieving
thermal outcomes such as heat production owing to friction and, by extension, thermal
stress induction. Computational evaluations rely heavily on material parameters including
thermal conductivity, thermal coefficient, and thermal diffusivity; to obtain these values,
researchers have combed through the literature [2,6–13]. UAV disc brake heat production
[Q] is equal to,

Q = σNormal
Induced ∗ µF ∗ VRelative (46)

∆T = T0 +

[[ϕq

k

]
∗
√

4∗α ∗ tFrictional Interaction ∗ 7
22

]
(47)

The heat generation due to friction was evaluated and compared in Figure 26 using
the analytical approach (Equations (46) and (47)) and computational structural outcomes.

Figure 27 shows that the PMC and CCMC made from KFRP-49-UD reacted with
far less heat generation than the other two outstanding materials. It was also evidently
recognized that the free stream flow velocity based on UAV movement and the resulting
normal stress at the region of friction were key inputs for the estimate of heat generation.
Several of the most effective lightweight materials were subjected to thermal stresses at the
calculated temperature; the combined impacts of these boundary conditions are depicted
in Figure 28. Distant displacement inside the rotating disc, fixed support outside the
brake pad, and an approximated temperature inside the brake pad were the boundary
conditions for this thermal experiment. Figures 29 and 30 show the outcomes of thermal
tests performed on the UAV’s disc brake to narrow down the list of increased lightweight
materials. All the best materials were compared in the final analysis. KFRP-49 and CFRP-
Woven are both unidirectional. Because of the reduced thermal stress experienced during
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production, wet-based polymer matrix composites are superior to competing high-quality
goods. Figure 31 displays the full outcomes of thermal stress.
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5. Conclusions

The widespread usage of UAVs has led to the development of multidisciplinary
research on the subject in recent years. As a result of this new development, the FWUAV is
chosen to serve as the platform for this endeavor. The spinning disc is the most susceptible
to failure in the FWUAV, which is why the target of this domain is on the disc brake and
the material optimization of the UAV, which is focused on low frictional stress and thermal
stress generators. The estimations of the whole FWUAV included both conventional and
standard theoretical calculations. The design of the UAV’s spinning disc played a significant
part in these estimations. When it came to the creation process of the revolving disc for the
UAV, CATIA was the modeling tool that successfully created the disc brake. Computational
platforms such as ANSYS ACP, ANSYS Transient Structural, and ANSYS Transient Thermal
are utilized extensively in the process of optimizing the material in question.

Finally, when subjected to structural loadings, the GFRP-E-Woven-Epoxy, KFRP-
UD-49-Epoxy-based polymer matrix composites, and KFRP-UD-49-Honeycomb-based
sandwich structured composite performed better than the others. In comparison to other
premium PMCs, the GFRP-E-Woven-Epoxy-based PMC is reacted and reduced the fric-
tional stress level froma minimum of 18.26 percent to a maximum of 42.58 percent; the
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KFRP-UD-49-Epoxy-based PMC is reacted and reduced the frictional stress level at a mini-
mum of 17.18 percent to a maximum of 41.82 percent; in addition, the KFRP- Because of
this significant high reduction of structural and frictional outcomes, the Uni-Directional-
49-Kevlar Fiber is extended to form advanced composites. Subsequently, it is strongly
observed that all of the co-products of KFRP-based advanced composites performed better
than other imposed lightweight materials.

In addition, the ceramic composite is included in the material lists that are discussed
previously, and as a result, the thermal stress simulations are performed. The KFRP-49-UD-
Epoxy-based polymer matrix composite material is reacted 70 percent of lesser thermal
outcomes than other superior materials [GFRP-E-Woven-Epoxy]. This is due to the low
heat generations that occurred between the rotating disc and the brake pad, as well as
the consideration of the low thermal stress induction factor. PMCs based on KFRP-49-
UD-Epoxy are chosen and advised for use on real-time FWUAVs because they allow for a
maximum forward speed of 3183 RPMs and 25 m per second.

The future planned work is to extend the same investigation toother frictional parts
of UAVs. The focused other frictional parts of UAVs are rotor brakes at the gearbox of
the rotary wing UAV, brake-shoes of the long-range FWUAVs, and moving parts in the
hybrid mechanism of advanced UAVs. Additionally, various lightweight materials such as
hybrid composites, polymer fiber-based natural composites, natural resin-based polymer
composites, high SiC mixtures loaded CCMCs, and nanocomposites are planned to impose
on these aforesaid applications.
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Symbols and Notations
This investigation is predominantly aimed to construct a unique UAV and its disc brake so the

design process has been played a vital role. Hence, the symbols and notations of imposed design
parameters of UAV need to be listed in a separate section for the purpose of clarification and accu-
rate calculation. In this regard, Table 1 was formed, which contained all the imposed symbols and
its notations.

List of Symbols and Notations.
Symbol Meaning
WPl Payload Weight for UAV
WO Overall Take-Off Weight of UAV
(W/S) Wing Loading of the UAV
SW Surface area of the Wing
bW Wingspan
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CWing−root Root chord of the Wing
LUAV Length of the UAV
Df Diameter of the Fuselage
λ Taper ratio
CWing−tip Tip chord of the Wing
CWing Mean Aerodynamic Chord of the Wing
yMAC ‘y’ location of the Mean Aerodynamic Chord
y ‘y’ wise position in Wing
SH−Tail Surface Area of the Horizontal Tail
VH−Tail Volume Coefficient of the Horizontal Tail
LH−Tail Distance between MAC of Hori. Tail to MAC of Wing
bH−Tail Horizontal Tail-Span
ARH−Tail Aspect Ratio of the Horizontal Tail
R1 Radius at Wing-Fuselage Interaction
R2 Radius at Tail region
Vo Velocity of the Atmospheric fluid
Ve Velocity of the UAV
T Thrust
ρ Density of the Atmospheric fluid
r Radius of the Propeller
CL Coefficient of Lift
AP Disc Area of the Propeller
VForward Velocity at forward manuvering
θ Pitch angle
Ccp Chord of the propeller
rpropeller Radius of the propeller
n Number of blades involved in propeller
k Design factor [5.3×10−15]
R Rotational speed of the rotor in RPM
D Diameter of a rotor in inches
ppropeller Pitch of rotor in inches
P Required power in watts
a Chord at wing root
b Chord at wing tip
c Half of the wingspan
HL.S Height of the Landing Stick
r1, r2 Inner and Outer radius of the Landing Stick
DW Nominal diameter of wheel/disc in inch
WW Nominal section Width of wheel/disc in inch
dW Nominal Wheel/Rim Diameter in inch
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