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Abstract: In this paper, we construct variants of Bawazir’s iterative methods for solving nonlinear
equations having simple roots. The proposed methods are two-step and three-step methods, with
and without memory. The Newton method, weight function and divided differences are used to
develop the optimal fourth- and eighth-order without-memory methods while the methods with
memory are derivative-free and use two accelerating parameters to increase the order of convergence
without any additional function evaluations. The methods without memory satisfy the Kung–Traub
conjecture. The convergence properties of the proposed methods are thoroughly investigated using
the main theorems that demonstrate the convergence order. We demonstrate the convergence speed
of the introduced methods as compared with existing methods by applying the methods to various
nonlinear functions and engineering problems. Numerical comparisons specify that the proposed
methods are efficient and give tough competition to some well known existing methods.

Keywords: simple roots; nonlinear equation; iterative methods; error

1. Introduction

Finding the roots of nonlinear equations is one of the most challenging problems in ap-
plied mathematics, engineering and scientific computing. Analytical methods are generally
ineffective for finding the roots of a nonlinear equation. Consequently, iterative methods
are employed to obtain the approximate roots of nonlinear equations. Many iterative
methods for solving nonlinear equations have been developed and studied. Among these,
Newton’s method is one of the most widely used [1], which is defined as follows:

xn+1 = xn −
f (xn)

f ′(xn)
, n = 0, 1, 2, 3, ... (1)

Other well-known iterative approaches for solving nonlinear equations include the
Chebyshev [2], Halley [2] and Ostrowski [3], methods. Most of the authors try to improve
the order of convergence. As the order of convergence rises, so does the quantity of
functional evaluations. As a result, iterative methods’ efficiency index falls. The efficiency
index [2,3] of an iterative method determines the method’s efficiency, which is defined by
the formula below:

E = ρ
1
λ (2)

where ρ is the order of convergence and λ is the number of functional evaluations per step.
Kung–Traub conjectured [2] that the order of convergence of an iterative method without
memory is at most 2λ−1. The optimal method is one in which the order of convergence
is 2λ−1. In 2022, Panday S. et al. created optimal methods [4]. In 2015, Kumar M. et al.
developed a fifth-order derivative-free method [5]. Choubey N. et al. introduced the
derivative-free eighth-order method [6] in 2015. Tao Y. et al. developed optimal methods [7].
Neta B. also developed a derivative-free method [8]. Singh M. Kumar et al. developed the
eighth-order optimal method in 2021 [9]. In 2021, Said Solaiman O. et al. [10] developed
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an optimal eighth-order method. Chanu W. H. et al. [11] created a nonoptimal tenth-order
method in 2022. This paper presents optimal fourth- and optimal eighth-order methods
for solving simple roots of nonlinear equations, with efficiency indice of 41/3 = 1.5874 and
81/4 = 1.6817, respectively. The efficiency indice of with-memory methods of orders 5.7
and 11 are 5.71/3 = 1.7863 and 111/4 = 1.8211 respectively. The remaining part of the
manuscript is structured as follows. In Section 2, we describe the development of methods
without memory using divided difference and weight function techniques. The order of
convergence of without memory with derivative is analysed in Section 2. The development
of derivative free with-memory methods along with convergence analysis are in Section 3.
We present numerical tests to compare the proposed methods with other known optimal
methods in Section 4. In Section 5, the proposed without memory methods are discussed in
the complex plane using the basins of attraction. Finally, Section 6 covers the conclusions
of the study.

2. Development of the Methods and Convergence Analysis

In 2021, Bawazir H. M. developed the following nonoptimal seventh-order method [12]

yn = xn −
f (xn)

f ′(xn)

zn = yn −
f (yn)(1 + A

2 )

f ′(yn)

xn+1 = zn +
f (zn) f (yn)(1 + A

2 )(
f (zn)− f (yn)

)
f ′(yn)

(3)

where A =
f (yn)

(
f ′(xn)− f ′(yn)

)
f (xn) f ′(yn)

.

We take the first and second steps of method (3) and replace f ′(yn) by the divided dif-

ference f [yn, xn] =
f (yn)− f (xn)

yn − xn
; weighted by a function Q(tn), we obtain the following

fourth-order optimal method.

yn = xn −
f (xn)

f ′(xn)

xn+1 = yn −Q(tn)
f (yn)(1 + A

2 )

f [yn, xn]
(4)

where A =
f (yn)

(
f ′(xn)− f [yn, xn]

)
f (xn) f [yn, xn]

and Q : R → R is the weight function, which is a

sufficiently differentiable function at the point 0 with tn =
f (yn)

f (xn)
.

Theorem 1. Let f : I ⊂ R → R be a real-valued, sufficiently differentiable function. Let µ ∈ I
be a simple root of f and x0 be sufficiently close to µ; then, the iterative scheme defined in (4) is
of fourth order of convergence if Q(tn) satisfies Q(0) = 1, Q′(0) = 2 and Q′′(0) = 9, and (4)
satisfies the following error equation

εn+1 = −K2K3ε4
n + O[εn]

5 (5)

Proof of Theorem 1. Let µ be the simple root of f (x) = 0 and let εn = xn − µ be the error
of nth iteration. Using Taylor expansion, we obtain

f (xn) = f ′(µ)
(

εn +
4

∑
i=2

Kiε
i
n + O[εn]

5]

)
. (6)
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where Ki =
f (i)(µ)
i! f ′(µ)

f ′(xn) = f ′(µ)
(

1 +
4

∑
i=2

iKiε
i−1
n + O[εn]

5]

)
. (7)

Using Equations (6) and (7) in the first step of (4), we obtain the following

yn − µ = K2ε2
n + (−2K2

2 + 2K3)ε
3
n + (4K3

2 − 7K2K3 + 3K4)ε
4
n + O[εn]

5 (8)

Expanding f (yn) about µ, we obtain

f (yn) = K2 f ′(µ)ε2
n + 2(−K2

2 + K3) f ′(µ)ε3
n + f ′(µ)

(
5K3

2 − 7K2K3 + 3K4
)
ε4

n + O[εn]
5 (9)

Using the expansion of f (xn) and f (yn), we obtain

f (yn)

f (xn)
= K2εn +

(
− 3K2

2 + 2K3
)
e2

n +
(
8K3

2 − 10K2K3
)
e3

n +
(
− 20K4

2

+ 37K2
2K3 − 8K2

3 − 14K2K4 + 4K5
)
ε4

n + O[εn]
5

(10)

Moreover,

f [yn, xn] = f ′(µ)(1 + K2εn + (K2
2 + K3)ε

2
n + (−2K3

2 + 3K2K3 + K4)ε
3
n

+ (4K4
2 − 8K2

2K3 + 2K2
3 + 4K2K4 + K5)ε

4
n + O[εn]

5)
(11)

Using (6), (7), (9) and (11), we obtain

A = K2
2ε2

n + (−5K3
2 + 4K2K3)ε

3
n + (17K4

2 − 26K2
2K3 + 4K2

3 + 6K2K4)ε
4
n + O[εn]

5 (12)

Using (9), (11) and (12) in (4), we obtain

εn+1 = K2(1−Q(0))ε2
n +

(
2K3(1−Q(0)) + K2

2(−2 + 4Q(0)

−Q′(0))
)
ε3

n +
(
3K4(1−Q(0)) + K2K3(−7 + 14Q(0)

− 4Q′(0)) +
1
2

K3
2(8− 27Q(0) + 14Q′(0)− (Q′′(0))

)
ε4

n

+ O[εn]
5

(13)

To achieve the fourth order of convergence, we put Q(0) = 1, Q′(0) = 2 and Q′′(0) = 9
and obtain the following error equation

εn+1 = −K2K3ε4
n + O[εn]

5 (14)

From Equation (14), we conclude that the method (4) is of the fourth order of conver-
gence.

The new eighth-order optimal method is obtained by adding the following equation
as the third step to the method (4).

xn+1 = zn +
f (zn) f (yn)

(
1 + A

2
)(

f (zn)− f (yn)
)

f ′(zn)
(15)

where zn is the second step of method (4). To obtain the optimal method, f ′(zn) is ap-
proximated by h(zn, yn, xn) and weighted by a function Q : R → R, and the method is
given by
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yn = xn −
f (xn)

f ′(xn)

zn = yn −Q(tn)
f (yn)(1 + A

2 )

f [yn, xn]

xn+1 = zn + G(tn, sn)
f (zn) f (yn)

(
1 + A

2
)(

f (zn)− f (yn)
)
h(zn, yn, xn)

(16)

where h(zn, yn, xn) = f [zn, yn]− f ′(xn), A =
f (yn)

(
f ′(xn)− f [yn, xn]

)
f (xn) f [yn, xn]

and Q : R → R

and G : R2 → R are the weight functions with tn =
f (yn)

f (xn)
and sn =

f (zn)

f (yn)
.

Theorem 2. Let f : I ⊂ R→ R be a real-valued, sufficiently differentiable function. Let µ ∈ I be
a simple root of f and x0 be sufficiently close to µ; then, the iterative scheme defined in (16) is of
the eighth order of convergence if Q(tn) and G(tn, sn) satisfy the following conditions Q(0) = 1,
Q′(0) = 2 and Q′′(0) = 9, G(0, 0) = 0, G(1,0)(0, 0) = −2, G(0,1)(0, 0) = −1, G(2,0)(0, 0) =
−10, G(1,1)(0, 0) = 0, G(0,2)(0, 0) = 0, G(2,1)(0, 0) = −9, G(4,0)(0, 0) = −Q(4)(0)− 318 and
G(3,0)(0, 0) = −

(
Q(3)(0) + 15

)
. Equation (16) satisfies the following error equation

εn+1 =− 1
240

(
K2K3

(
− 20K2

2K3

(
G(3,1)(0, 0) + 129

)
+ K4

2
(
G(5,0)(0, 0) + 100Q(3)(0)

+ Q(5)(0) + 60
)
+ 60K2

3

(
G(1,2)(0, 0) + 4

)
+ 240K2K4

))
ε8

n + O[εn]
9

(17)

Proof of Theorem 2. Considering all the assumptions made in Theorem 1, from Equation (14)
we have

zn − µ = −K2K3ε4
n +

8

∑
j=5

Djε
j
n + O[εn]

9. (18)

Expanding f (zn) about µ, we obtain

f (zn) =K2K3 f ′(µ)ε4
n + f ′(µ)

(
2K2

2K3 −
1
6

K4
2

(
Q(3)(0)− 75

)
− 2K2K4 − 2K2

3

)
ε5

n

+
8

∑
j=5

Xjε
j
n + O[εn]

9
(19)

Further,

h(zn, yn, xn) =− 2(K2 f ′(µ))εn + (K2
2 − 3K3) f ′ε2

n +−2((K3
2 − K2K3 + 2K4) f ′(µ)ε3

n

+
8

∑
i

Yiε
i
n.

(20)

Using (19) and (20) in the third step of method (16), we obtain

εn+1 =− 1
2
((K3G(0, 0)))ε3

n +
1

12
ε4

n

(
K3

2

(
Q(3)(0)− 75

)
(−G(0, 0))−

3K2
3G(0, 0)

K2

− 6K2K3

(
G(1,0)(0, 0) + 2

)
+ 9K2K3G(0, 0)− 12K4G(0, 0)

)
+

8

∑
i=5

Ziε
i
n.

(21)

To eliminate εk
n, k = 3, 4, 5, 6, 7, we put G(0, 0) = 0, G(1,0)(0, 0) = −2, G(0,1)(0, 0) = −1,

G(2,0)(0, 0) = −10, G(1,1)(0, 0) = 0, G(0,2)(0, 0) = 0, G(2,1)(0, 0) = −9, G(4,0)(0, 0) =

−Q(4)(0)− 318, G(3,0)(0, 0) = −
(

Q(3)(0) + 15
)

. Then, we obtain
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εn+1 =− 1
240

((
K2K3

(
− 20K2

2K3

(
G(3,1)(0, 0) + 129

)
+ K4

2

(
G(5,0)(0, 0) + 100Q(3)(0) + Q(5)(0) + 60

)
+ 60K2

3

(
G(1,2)(0, 0) + 4

)
+ 240K2K4

)))
ε8

n + O[εn]
9.

(22)

From Equation (22), we conclude that (16) is of the eighth order of convergence.

Remark 1. The methods defined in (4) and (16) have derivatives and are without-memory methods.
In the next section, we will develop derivative free with-memory methods in order to obtain a higher
efficiency index.

3. Derivative-Free and with-Memory Methods

In this section, we present derivative-free parametric and with memory iterative
methods. Another Bawazir’s iterative method is written as [12]

yn = xn −
f (xn)

f ′(xn)

zn = yn −
f (yn)(1 + A

2 )

f ′(yn)

xn+1 = zn −
f (zn)(1 + B

2 )

f ′(zn)
(23)

where A =
f (yn)

(
f ′(xn)− f ′(yn)

)
f (xn) f ′(yn)

, B =
f (zn)

(
f ′(yn)− f ′(zn)

)
f (yn) f ′(zn)

. This method uses five

function evaluation to achieve the twelfth order of convergence. We modify the method
given in (23) by adding two parameters γ and β as follows:

yn = xn −
f (xn)

f [xn, wn] + γ f (xn)
, wn = xn − β f (xn)

2

xn+1 = yn −Q(tn)
f (yn)(1 + A

2 )

F(xn, wn, yn)
(24)

where A =
f (yn)

(
f [xn, wn]− F(xn, wn, yn)

)
f (xn)F(xn, wn, yn)

, and Q : R → R is the weight function with

tn =
f (yn)

f (xn)
, f ′(y) ≈ F(xn, wn, yn) = 2 f [xn, yn]− f [xn, wn] [13] and f [x, y] =

f (x)− f (y)
x− y

Theorem 3. Let f : I ⊂ R→ R be a real-valued, sufficiently differentiable function. Let µ ∈ I be
a simple root of f and x0 be sufficiently close to µ; then, the iterative scheme defined in (24) is of the
fourth order of convergence if Q(tn) satisfies the following conditions Q(0) = 1, Q′(0) = 0 and
Q′′(0) = 0. The iterative scheme (24) satisfies the following error equation

εn+1 = (γ + K2)
(

βK2 f ′(µ)2 − K3

)
ε4

n + O
(

e5
)

(25)

Proof of Theorem 3. Let µ be the simple root of f (x) = 0 and let εn = xn − µ be the error
of nth iteration. Using Taylor expansion, we obtain

f (xn) = f ′(µ)
(

εn +
4

∑
i=2

Kiε
i
n + O[εn]

5]

)
. (26)
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where Ki =
f (i)(µ)
i! f ′(µ) Using (26) in wn, we obtain

wn − µ = εw,n =εn − βf′(µ)2ε2
n − 2

(
βK2f′(µ)2

)
ε3

n

− βf′(µ)2
(

K2
2 + 2K3

)
ε4

n + O[ε5
n]

(27)

By Taylor series expansion, we obtain

f (wn) = f ′(µ)εn + f ′(µ)(K2 − f ′(µ)2β)ε2
n + f ′(µ)(K3

− 4K2 f ′(µ)2β)ε3
n + f ′(µ)(K4 − 3K3 f ′(µ)2β

− (K2
2 + 2K3) f ′(µ)2β + K2(−4K2 f ′(µ)2β

+ f ′(µ)4β2))ε4
n + O[ε5]

(28)

Using (26) and (28) in the first step of (24), we obtain

yn − µ = εy,n = f ′(µ)(γ + K2)ε
2
n − f ′(µ)

(
γ2 + 2K2

2 + 2γK2

+ βK2 f ′(µ)2 − 2K3 + βγ f ′(µ)2
)

ε3
n + O[ε4

n]

(29)

Using Taylor series expansion, we obtain

f (yn) = f ′(µ)(K2 + γ)ε2
n − f ′(µ)(2K2

2 − 2K3 + K2 f ′(µ)2β

+ 2K2γ + f ′(µ)2βγ + γ2)ε3
n + O[ε4

n]
(30)

Using (26) and (30), we obtain

tn =
f (yn)

f (xn)
= (γ + K2)εn +

(
− 3K2

2 − K2

(
3γ + β f ′(µ)2

)
+ 2K3 − γ

(
γ + β f ′(µ)2

))
ε2

n + . . . + O[ε4
n]

(31)

Using (26), (28), (30) and (31) in second step of (24), we obtain

xn+1 − µ = εn+1 = −(K2 + γ)(1−Q(0))ε2
n + P3ε3

n + P4ε4
n + O[ε5

n] (32)

P3 = K2
2(−Q′(0) + 2Q(0)− 2) + βK2 f ′(µ)2(Q(0)− 1) + 2γK2(−Q′(0) + Q(0)− 1)− 2K3

(Q(0)− 1)+ βγ f ′(µ)2(Q(0)− 1)+γ2(−Q′(0) + Q(0)− 1). etc. Putting Q(0) = 1, Q′(0) =
0 and Q′′(0) = 0, Equation (32) becomes

xn+1 − µ = εn+1 = (−K3 + K2 f ′(µ)2β)(K2 + γ)ε4
n + O[ε5

n] (33)

From Equation (33), we can conclude that the method (24) has fourth order of convergence,
which completes the proof of Theorem 3.

The eighth-order method is given as follows:

yn = xn −
f (xn)

f [xn, wn] + γ f (xn)
, wn = xn − β f (xn)

2

zn = yn −Q(tn)
f (yn)(1 + A

2 )

F(xn, wn, yn)

xn+1 = zn − G(rn, sn)
f (zn)(1 + B

2 )

H(xn, wn, yn, zn)
(34)
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where A =
f (yn)

(
f [xn, wn]− F(xn, wn, yn)

)
f (xn)F(xn, wn, yn)

, B =
f (zn)

(
F(xn, wn, yn)− H(xn, wn, yn, zn)

)
f (yn)H(xn, wn, yn, zn)

.

Q : R → R & G : R2 → R are the weight functions with tn =
f (yn)

f (xn)
, rn =

f (zn)

f (xn)
and sn =

f (zn)

f (yn)
, f ′(zn) ≈ H(xn, wn, yn, zn) = f [xn, zn] +

(
f [wn, xn, yn]− f [yn, xn, zn]

)
(xn − zn) [13].

Theorem 4. Let f : I ⊂ R → R be a real-valued, sufficiently differentiable function. Let µ ∈ I
be a simple root of f and x0 be sufficiently close to µ; then, the iterative scheme defined in (34) is
of eighth order of convergence if Q(tn) and G(rn, sn) satisfy the following conditions Q(0) = 1,
Q′(0) = 0, Q′′(0) = 0, G(0, 0) = 1, G(1,0)(0, 0) = 0, G(0,1)(0, 0) = 0 and G(0,2)(0, 0) = −1.
The iterative scheme (34) satisfies the following error equation

εn+1 = K4(γ + K2)
2
(

βK2 f ′(µ)2 − K3

)
ε8

n + O
(

ε9
n

)
(35)

Proof of Theorem 4. Considering all the assumptions made in Theorem 3, we have from (33),

zn − µ = εn,z = (−K3 + K2 f ′(µ)2β)(K2 + γ)ε4
n +

8

∑
j=5

Cjε
j
n + O[ε9

n] (36)

where Cj’s are constants formed by K′is, β and γ.
Using Taylor expansion, we obtain

f (zn) = f ′(µ)(−K3 + K2 f ′(µ)2β)(K2 + γ)ε4
n +

8

∑
j=5

f ′(µ)Bjε
j
n + O[ε9

n] (37)

where Bj’s are constants formed by K′is, β and γ. Using (26), (28), (30) and (37) in third step
of (34), we obtain

xn+1 − µ = εn+1 =
(
K3 − K2 f ′(µ)2β

)
(K2 + γ)(G(0, 0)− 1)ε4

n +
8

∑
j=5

Mjε
j
n + O[ε8

n] (38)

where Mj’s are constants formed by K′is, β and γ. Putting G(0, 0) = 1, G(1,0)(0, 0) = 0,
G(0,1)(0, 0) = 0, G(0,2)(0, 0) = −1, we obtain the following:

εn+1 = xn+1 − µ = K4(γ + K2)
2
(

βK2 f ′(µ)2 −K3

)
ε8

n + O
(

ε9
n

)
(39)

Thus, the proof is complete.

Development of with Memory Methods

We are going to develop with-memory methods from (24) and (34) using the two
parameters. From Equations (25) and (35), we clearly see that the order of convergence

of the method (34) is sixth and evelenth if β =
K3

K2 f ′(µ)
and γ = −K2. With the choice

β =
K3

K2 f ′(µ)
=

f ′′′(µ)
3 f ′(µ)2 f ′′(µ)

and γ = −K2 = − f ′′(µ)
2 f ′(µ)

, the error Equation (25) becomes

εn+1 =
(K2

2 − 2K3)(2K2
2K3 + 3K2

3 − 2K2K4)ε
6
n

k2
+ O[ε7

n] (40)

and the error Equation (35) becomes

εn+1 =
(K2

2 − 2K3)
2K4(2K2

2K3 + 3K2
3 − 2K2K4)ε

11
n

K2
+ O[ε12

n ]. (41)
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In order to obtain with-memory method, we choose β = βn and γ = γn, as the iteration

proceeds by the formulas βn =
f̄ ′′′(µ)

3 f̄ ′′(µ) f̄ ′(µ)2 and γn = − f̄ ′′(µ)
2 f̄ ′(µ)

. In method (24), we use

the following approximation

βn =
f̄ ′′′(µ)

3 f̄ ′′(µ) f̄ ′(µ)2 ≈
N′′′3 (xn)

3N′′3 (xn)2N′3(xn)
(42)

γn = − f̄ ′′(µ)
2 f̄ ′(µ)

≈ −
N′′4 (wn)

2N′4(wn)
(43)

where N3(u) = N3(u; xn, yn−1, xn−1, wn−1) and N4(u) = N4(u; wn, xn, yn−1, xn−1, wn−1)
are Newton’s interpolating polynomial of third and fourth degrees, respectively. We obtain
the following with memory iterative method:

yn = xn −
f (xn)

f [xn, wn] + γn f (xn)
, wn = xn − βn f (xn)

2

xn+1 = yn −Q(tn)
f (yn)(1 + A

2 )

G(xn, wn, yn)
(44)

For method (34), we use the following approximation

βn =
f̄ ′′′(µ)

3 f̄ ′′(µ) f̄ ′(µ)2 ≈
N′′′4 (xn)

3N′4(xn)2N′′4 (xn)
(45)

γn = − f̄ ′′(µ)
2 f̄ ′(µ)

≈ −
N′′5 (wn)

2N′5(wn)
(46)

where N4(u) = N4(u; xn, zn−1, yn−1, xn−1, wn−1) and N5(u) = N5(u; wn, xn, zn−1, yn−1,
xn−1, wn−1) are Newton’s interpolating polynomial of fourth and fifth degree, respectively.
We obtain the following with-memory iterative method:

yn = xn −
f (xn)

f [xn, wn] + γn f (xn)
, wn = xn − βn f (xn)

2

zn = yn −Q(tn)
f (yn)(1 + A

2 )

F(xn, wn, yn)

xn+1 = zn − F(rn, sn)
f (zn)(1 + B

2 )

H(xn, wn, yn, zn)
(47)

Remark 2. Accelerating methods obtained by recursively calculated free parameter may also be
called self-accelerating methods. The initial value β0 and γ0 should be chosen before starting the
iterative process [14].

We are going to analyse the convergence behaviours of the with-memory methods.
If the sequence {xn} converges to the root µ of f with the order p, we write εn+1 ∼ ε

p
n,

where εn = xn − µ. To prove the order of convergence of methods (44) and (47), we use the
following lemma, introduced in [15].

Lemma 1. If βn =
N′′′3 (xn)

3N′3(xn)2N′′3 (xn)
and γn = −

N′′4 (wn)

2N′4(wn)
, n = 1, 2, 3, ..., the estimates

(−K3 + βnK2 f ′(µ)2) ∼ εn−1,y εn−1,w εn−1

and
K2 + γn ∼ εn−1,y εn−1,w εn−1
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hold.

Let us consider the following theorems.

Theorem 5. If an initial guess x0 is sufficiently close to the simple root µ of f (x) = 0, f is
real sufficiently differentiable function; then, the R-order of convergence of the method (44) is
at least 5.7075.

Proof. Let {xn} be a sequence of approximations generated by the with-memory iterative
method defined in (44). If the sequence converges to the root µ of f with order q, we obtain
the following:

εn+1 ∼ ε
q
n, where εn = xn − µ (48)

εn+1 ∼ (ε
q
n−1)

q = ε
q2

n−1 (49)

Let us assume that the iterative sequences wn and yn have the orders q1 and q2, respectively.
Then, Equation (48) gives the following:

εn,w ∼ (ε
q1
n ) = ε

qq1
n−1 (50)

εn,y ∼ (ε
q2
n ) = ε

qq2
n−1 (51)

By Theorem 3, we can write

εn,w ∼ εn (52)

εn,y ∼ (K2 + γn)εn (53)

εn+1 ∼ (−K3 + K2 f ′(µ)2βn)(K2 + γn)ε
4
n (54)

Using Lemma 1, we obtain the following:

εn,w ∼ εn ∼ ε
q
n−1 (55)

εn,y ∼ (K2 + γn)εn ∼ (εn−1,y εn−1,w εn−1)ε
2
n ∼ ε

2q+q1+q2+1
n−1 (56)

εn+1 ∼ (−K3 + K2 f ′(µ)2βn)(K2 + γn)ε
4
n ∼ (εn−1,y εn−1,w εn−1)

2ε4
n ∼ ε

4q+2q1+2q2+1
n−1 (57)

Comparing the power of εn−1 of Equations (50)–(55), (51)–(56) and (49)–(57), we obtain the
following system of equations

qq1 − q = 0 (58)

qq1 − 2q− q1 − q2 − 1 = 0 (59)

qq1 − 4q− 2q1 − 2q2 − 2 = 0 (60)

By solving this system of equations, we obtain q1 = 1, q2 = 2.8507 and q = 5.7015. Thus,
the proof is complete.

Lemma 2. If βn =
N′′′4 (xn)

3N′4(xn)2N′′4 (xn)
and γn = −

N′′5 (wn)

2N′5(wn)
, n = 1, 2, 3, ..., the estimates

(−K3 + βnK2 f ′(µ)2) ∼ εn−1,z εn−1,y εn−1,w εn−1

and
K2 + γn ∼ εn−1,z εn−1,y εn−1,w εn−1

hold.

Theorem 6. If an initial guess x0 is sufficiently close to the simple root µ of f (x) = 0, f is real
sufficiently differentiable function; then, the R-order of convergence of the method (47) is at least 11.
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Proof. Let {xn} be a sequence of approximations generated by the with-memory iterative
method defined in (44). If the sequence converges to the root µ of f with order q, we obtain
the following equation:

εn+1 ∼ ε
q
n, where εn = xn − µ (61)

εn+1 ∼ (ε
q
n−1)

q = ε
q2

n−1 (62)

Let us assume that the iterative sequences wn, yn and zn have the order q1, q2 and q3,
respectively. Then, Equation (61) gives the following:

εn,w ∼ (ε
q1
n ) = ε

qq1
n−1 (63)

εn,y ∼ (ε
q2
n ) = ε

qq2
n−1 (64)

εn,z ∼ (ε
q2
n ) = ε

qq3
n−1 (65)

By Theorem 4, we can write

εn,w ∼ εn (66)

εn,y ∼ (K2 + γn)εn (67)

εn,z ∼ (−K3 + K2 f ′(µ)2βn)(K2 + γn)ε
4
n (68)

εn+1 ∼ K4(γn + K2)
2
(

βnK2 f ′(µ)2 −K3

)
ε8

n (69)

Using Lemma 1, we obtain the following:

εn,w ∼ εn ∼ ε
q
n−1 (70)

εn,y ∼ (K2 + γn)εn ∼ (εn−1,z εn−1,y εn−1,w εn−1)ε
2
n ∼ ε

2q+q1+q2+q3+1
n−1 (71)

εn,z ∼ (−K3 + K2 f ′(µ)2βn)(K2 + γn)ε
4
n ∼ (εn−1,z εn−1,y εn−1,w εn−1)

2ε4
n

∼ ε
4q+2q1+2q2+2q3+2
n−1 (72)

εn+1 ∼ K4(γn + K2)
2
(

βnK2 f ′(µ)2 −K3

)
ε8

n ∼ (εn−1,z εn−1,y εn−1,w εn−1)
3ε8

n

∼ ε
8q+3q1+3q2+3q3+3
n−1 (73)

Comparing the power of εn−1 of Equations (63)–(70), (64)–(71), (65)–(72) and (62)–(73), we
obtain the following system of equations:

qq1 − q = 0 (74)

qq1 − 2q− q1 − q2 − q3 − 1 = 0 (75)

qq1 − 4q− 2q1 − 2q2 − 2q3 − 2 = 0 (76)

qq1 − 8q− 3q1 − 3q2 − 3q3 − 3 = 0 (77)

By solving this system of equations, we obtain q1 = 1, q2 = 3, q3 = 6 and q = 11. Thus,
the proof is complete.

4. Numerical Results

In this section, we consider the peculiar attitude of the introduced iterative methods
(4) and (16) over the existing methods having the same order of convergence. To demon-
strate the behaviours of the newly defined methods, we apply the methods to several
numerical examples. For comparison, we consider the following methods:
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Fourth-order method (M4th(a)) introduced by Chun et al. [16]:

yn = xn −
2
3

f (xn)

f ′(xn)

xn+1 = xn −
16 f (xn) f ′(xn)

−5 f ′(xn)2 + 30 f ′(xn) f ′(yn)− 9 f ′(yn)
(78)

Fourth-order method (M4th(b)) introduced by Singh et al. [17]:

yn = xn −
2
3

f (xn)

f ′(xn)

xn+1 = xn −
(

17
8
− 9 f ′(yn)

4 f ′(xn)
+

9
8

(
f ′(xn)

f ′(yn)

)2)(
7
4
− 3

4
f ′(yn)

f ′(xn)

)
f (xn)

f ′(xn)
(79)

In the year 2019, Francisco et al. developed the following method (M4th(c)) [18]:

yn = xn −
f (xn)

f ′(xn)

xn+1 = xn −
f 2(xn) + f (xn) f (yn) + 2 f 2(yn)

f (xn) f ′(xn)
(80)

Ekta et al. introduced the following method (M4th(d)) [19] in 2020:

yn = xn −
2
3

f (xn)

f ′(xn)

xn+1 = xn −
4 f (xn)

f ′(xn) + 3 f ′(yn)

(
1 +

(
f (xn)

f ′(xn)

)3)
− 9

16

(
g(xn)

f ′(xn)

)2( f (xn)

f ′(xn)

)3

(81)

where g(xn) =
f ′(xn)

(
f ′(xn)− f ′(yn)

)
f (xn)

Eighth-order method (M8th(a)) developed by Petkovic et al. [20] is given as follows:

yn = xn −
f (xn)

f ′(xn)

zn = xn −
(

t2
n −

f (xn)

f (yn)− f (xn)

f (xn)

f ′(xn)

)
(82)

xn+1 = zn −
f (zn)

f ′(xn)

(
φ(tn) +

f (zn)

f (yn)− f (zn)
+

4 f (zn)

f (xn)

)
(83)

where φ(tn) = 1 + 2tn + 2t2
n − t3

n with tn =
f (yn)

f (xn)
. Cordero A. et al. developed the

following eighth-order method (M8th(b)) [21]:

yn = xn −
f (xn)

f ′(xn)
,

zn = yn −
f (xn)2

( f (xn)− f (yn))2
f (yn)

f ′(xn)

xn+1 = zn − (H(tn, sn))
f (zn)

f ′(xn)
, (84)
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where H(tn, sn) = 1 + 2tn + 4t2
n + 6t3

n + sn + 4tnsn with tn =
f (yn)

f (xn)
and sn =

f (zn)

f (yn)
.

Another eighth-order method (M8th(c)) developed by Cordero A. et al. [21] is written as
follows:

yn = xn −
f (xn)

f ′(xn)
,

zn = yn −
f (xn)2

( f (xn)− f (yn))2
f (yn)

f ′(xn)

xn+1 = zn − (H(tn, sn))G(vn)
f (zn)

f ′(xn)
, (85)

where H(tn, sn) = 1 + 2tn + 4t2
n + 6t3

n + sn + 2tnsn and G(vn) = 1 + 2vn with tn =
f (yn)

f (xn)
,

sn =
f (zn)

f (yn)
and vn =

f (zn)

f (xn
. Abbas H. M. et al. developed the following eighth-order

method (M8th(d)) [22]:

yn = xn −
f (xn)

f ′(xn)

zn = xn + (β− 1)
f (xn) f ( f (xn)− f (yn))

f ′(xn)( f (xn)− 2 f (yn))

− β

(
f (xn)

f ′(xn)
+

f (yn)
(

f (xn)3 + f (yn)2 f (xn) +
1
2 f (yn)3)( f (xn + f (yn))

)2

f ′(xn) f (xn)5

)
xn+1 = zn −

f (zn)

q′(zn)
. (86)

where q′(zn) = a1 + 2a2(z− xn) + 3a3(zn − xn),

a1 = f ′(xn)

a2 =
f [yn, xn, xn](zn − xn)− f [zn, xn, xn](yn − xn)

zn − yn

a3 =
f [zn, xn, xn]− f [yn, xn, xn]

zn − yn

The following nonlinear equations are taken as test functions, and their corresponding
initial guesses are also given:

Example 1: f1(x) = e6x + 0.1441e2x − 2.079e4x − 0.333, x0 = −0.2
Example 2: f2(x) = sin2x− x2 + 1, x0 = 1.4
Example 3: f3(x) = e(x3−x) − cos(x2 − 1) + x3 + 1, x0 = −1.65
Example 4: f4(x) = sin(−3xcos(

√
x)), x0 = 0.2

Example 5: f5(x) = x3 − 3x22−x + 3x4−x − 8−x, x0 = 0.8
Example 6: f6(x) = (sinx−

√
2

2 )(x + 1), x0 = 0.8

In Tables 1–6, we provide the errors of two consecutive iterations | xn − xn−1 | after
the fourth iteration; modulus value of approximate root after fourth iteration, i.e., | xn |
with 17-significance digits; and the residual error, i.e., | f (xn)| after fourth iteration. We
provide the computational order of convergence [23], which is formulated by

COC =

log | f (xn)

f (xn−1)
|

log | f (xn−1)

f (xn−2)
|

(87)
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We also provide the CPU running time for each method. The elapsed CPU times are
computed by selecting | f (xn) |≤ 10−1000 as the stopping condition. Note that CPU running
time is not unique and depends entirely on the computer’s specification; however, here,
we present an average of three performances to ensure the robustness of the methods.
The results are carried out with Mathematica 12.2 software on a 2.30 GHz Intel(R) Core(TM)
i3-8145U CPU with 4 GB of RAM running Windows 10.

Remark 3. For the methods defined in (4) (NPM4th) and (16) (NPM8th), we chose the following

weight functions Q(tn) = 1+ 2tn +
9
2

t2
n and G(tn, sn) = 2tn + sn + 5t2

n +
5
2

t3
n +

9
2

t2
nsn +

53
4

t4
n.

For the methods defined in (24) (NPMDF4th) and (34) (NPMDF8th), we chose Q(tn) = 1 and
G(rn, sn) = 1− 1

2 s2. With-memory methods (44) and (47) are denoted NPMWM1 and NPMWM2,
respectively, in the tables.

From the results in Tables 1–6, we observe that the newly presented methods are
highly competitive, with the errors obtained in the different results being highly accurate
as compared with the other existing methods and better than them in all cases.

Table 1. Convergence behaviour on f1.

Methods | xn | | xn− xn−1 | | f (xn)| COC CPU

Without Memory
M4th(a) 0.16960654770953905 1.65× 10−4 5.51× 10−13 3.37 0.535
M4th(b) 0.16960643807598997 6.79× 10−4 2.15× 10−10 2.90 0.424
M4th(c) 0.16960507315213785 1.18× 10−3 2.88× 10−9 2.54 0.535
M4th(d) 0.16960625449338888 8.18× 10−3 5.75× 10−10 2.76 0.465
NPM4th 0.16960654801221716 1.29× 10−3 4.11× 10−14 3.72 0.422
NPMDF4th 0.16960654801221716 5.08× 10−23 1.25× 10−87 4 0.404
M8th(a) 0.16960654799121610 4.61× 10−9 8.56× 10−56 7.86 0.495
M8th(b) 0.16960654799121610 7.51× 10−10 2.41× 10−62 7.90 0.585
M8th(c) 0.16960654799121610 5.60× 10−11 1.73× 10−71 7.93 0.497
M8th(d) 0.16960654799121609 1.35× 10−3 1.34× 10−20 7.40 0.498
NPM8th 0.16960654799121610 1.42× 10−15 1.86× 10−109 7.94 0.485
NPMDF8th 0.16960654799121610 6.57× 10−174 1.92× 10−1378 8 0.491

With Memory β = 0.01 γ = −1
NPMWM1 0.16960654799121610 8.0433× 10−8 2.7561× 10−30 4.6 0.172
NPMWM2 0.16960654799121610 3.2484× 10−32 6.8778× 10−298 9.76 0.092

Table 2. Convergence behaviour on f2.

Methods | xn | | xn− xn−1 | | f (xn)| COC CPU

Without Memory
M4th(a) 1.4044916482153412 4.95× 10−152 1.31× 10−605 4 0.354
M4th(b) 1.4044916482153412 4.68× 10−148 1.62× 10−589 4 0.256
M4th(c) 1.4044916482153412 4.47× 10−143 2.33× 10−569 4 0.348
M4th(d) 1.4044916482153412 2.58× 10−152 9.25× 10−607 4 0.364
NPM4th 1.4044916482153412 2.23× 10−173 4.22× 10−692 4 0.234
NPMDF4th 1.4044916482153412 1.33× 10−151 8.16× 10−604 8 0.206
M8th(a) 1.4044916482153412 9.16× 10−1116 1.84× 10−8919 8 0.254
M8th(b) 1.4044916482153412 7.48× 10−1130 2.33× 10−9032 8 0.374
M8th(c) 1.4044916482153412 2.12× 10−1139 7.07× 10−9109 8 0.253
M8th(d) 1.4044916482153412 3.16× 10−1157 1.00× 10−9251 8 0.254
NPM8th 1.4044916482153412 3.78× 10−1291 4.14× 10−10325 8 0.136
NPMDF8th 1.4044916482153412 5.34× 10−1169 3.18× 10−9346 8 0.246

With Memory β = 0.01 γ = −1
NPMWM1 1.4044916482153412 9.7384× 10−317 1.0013× 10−1631 5.15 0.024
NPMWM2 1.4044916482153412 2.0364× 10−2087 0.1234× 10−20000 9.8 0.022
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Table 3. Convergence behaviour on f3.

Methods | xn | | xn− xn−1 | | f (xn)| COC CPU

Without Memory
M4th(a) 1 4.52× 10−29 1.00× 10−113 4.00 0.126
M4th(b) 1 7.77× 10−29 9.90× 10−113 4.00 0.145
M4th(c) 1 3.78× 10−46 7.08× 10−182 4.00 0.124
M4th(d) 1 9.66× 10−13 7.00× 10−48 4.00 0.133
NPM4th 1 6.94× 10−46 4.35× 10−183 4.00 0.156
NPMDF4th 1 6.94× 10−36 4.35× 10−103 4.00 0.156
M8th(a) 1 9.19× 10−294 3.21× 10−2344 8.00 0.146
M8th(b) 1 9.35× 10−285 5.80× 10−2272 8.00 0.138
M8th(c) 1 3.42× 10−285 1.50× 10−2275 8.00 0.106
M8th(d) 1 2.09× 10−303 2.47× 10−2422 8.00 0.096
NPM8th 1 4.95× 10−309 1.62× 10−2466 8.00 0.086
NPMDF8th 1 6.94× 10−246 4.35× 10−1083 8.00 0.156

With Memory β = 0.01 γ = −1
NPMWM1 1 1.9552× 10−22 2.8585× 10−112 5.15 0.029
NPMWM2 1 1.9867× 10−157 2.9811× 10−1508 9.62 0.050

Table 4. Convergence behaviour on f4.

Methods | xn | | xn− xn−1 | | f (xn)| COC CPU

M4th(a) 0 3.20× 10−35 2.30× 10−138 4 0.309
M4th(b) 0 1.74× 10−35 2.35× 10−139 4 0.308
M4th(c) 0 3.46× 10−28 5.87× 10−110 4 0.496
M4th(d) 0 6.96× 10−28 1.40× 10−108 4 0.336
NPM4th 0 4.82× 10−36 1.18× 10−141 4 0.203
NPMDF4th 0 8.84× 10−33 8.39× 10−128 4 0.291
M8th(a) 0 2.82× 10−148 5.84× 10−1180 8 0.226
M8th(b) 0 2.52× 10−176 4.20× 10−1404 8 0.336
M8th(c) 0 1.39× 10−184 2.76× 10−1470 8 0.406
M8th(d) 0 2.53× 10−195 3.06× 10−1557 8 0.386
NPM8th 0 9.63× 10−213 8.01× 10−1696 8 0.276
NPMDF8th 0 5.56× 10−230 4.70× 10−1834 8 0.323

With Memory β = 0.01 γ = −1
NPMWM1 0 12.0284× 10−62 1.4865× 10−318 5.16 0.035
NPMWM2 0 1.0723× 10−434 2.9811× 10−4000 9.62 0.043

Table 5. Convergence behaviour on f5.

Methods | xn | | xn− xn−1 | | f (xn)| COC CPU

Without Memory
M4th(a) 0.94679089869251303 1.10× 10−16 1.19× 10−63 4 0.676
M4th(b) 0.94679089869251303 1.61× 10−14 8.70× 10−55 4 0.587
M4th(c) 0.94679089869251303 1.21× 10−23 4.96× 10−95 4 0.596
M4th(d) 0.94679089869251303 2.44× 10−28 5.58× 10−110 4 0.477
NPM4th 0.94679089869251303 1.93× 10−49 2.50× 10−195 4 0.406
NPMDF4th 0.94679089869251303 2.81× 10−50 2.44× 10−198 4 0.450
M8th(a) Divergence
M8th(b) 0.94679089869251303 3.21× 10−304 6.99× 10−2426 8 0.636
M8th(c) 0.94679089869251303 9.50× 10−286 3.03× 10−2278 8 0.646
M8th(d) 0.94679089869251303 1.39× 10−300 4.44× 10−2397 8 0.597
NPM8th 0.94679089869251303 1.12× 10−309 4.48× 10−2471 8 0.424
NPMDF8th 0.94679089869251303 1.80× 10−255 9.51× 10−2038 8 0.571

With Memory β = 0.01 γ = −1
NPMWM1 0.94679089869251303 12.0284× 10−62 1.4865× 10−318 5.16 0.034
NPMWM2 0.94679089869251303 1.0723× 10−434 2.9811× 10−4000 9.62 0.024
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Table 6. Convergence behaviour on f6.

Methods | xn | | xn− xn−1 | | f (xn)| COC CPU

Without Memory
M4th(a) 0.78539816339744831 5.62× 10−143 2.72× 10−571 4 0.386
M4th(b) 0.78539816339744831 6.37× 10−143 4.53× 10−571 4 0.276
M4th(c) 0.78539816339744831 1.23× 10−152 8.13× 10−610 4 0.256
M4th(d) 0.78539816339744831 2.23× 10−118 3.05× 10−471 4 0.266
NPM4th 0.78539816339744831 6.85× 10−153 7.50× 10−611 4 0.126
NPMDF4th 0.78539816339744831 1.53× 10−124 3.60× 10−496 4 0.185
M8th(a) 0.78539816339744831 6.32× 10−1110 1.19× 10−8877 8 0.136
M8th(b) 0.78539816339744831 3.07× 10−1110 5.99× 10−8879 8 0.256
M8th(c) 0.78539816339744831 6.51× 10−1111 2.40× 10−8884 8 0.166
M8th(d) 0.78539816339744831 4.56× 10−1113 9.48× 10−8904 8 0.276
NPM8th 0.78539816339744831 2.30× 10−1113 5.77× 10−8904 8 0.126
NPMDF8th 0.78539816339744831 1.31× 10−1056 3.52× 10−8449 8 0.242

With Memory β = 0.01 γ = −1
NPMWM1 0.78539816339744831 1.0051× 10−210 6.6067× 10−1085 5.16 0.013
NPMWM2 0.78539816339744831 1.6485× 10−1566 5.2790× 10−15073 9.62 0.024

Applications on Real-World Problem

Here, we take some real-world problems from other papers:

Problem 1. Projectile Motion Problem: This problem expresses motion of the projectile, it is
represented by the following nonlinear equation (see more details in [7])

f (x) = h +
v2

2g
− gx2

2v2 − w(x) (88)

where h is height of the tower from which the projectile is launched, v is initial velocity of the
projectile, g is acceleration due to gravity and w(x) is the impact function. In particular, we choose
w(x) = 0.4x, h = 10 m, v = 20 m/s, g = 9.8 m/s2 and x0 = 30.

Table 7 shows that the convergence behaviour of newly introduced methods performs
better than that of the other existing methods.

Table 7. Convergence behaviour on projectile motion problem.

Methods | xn | | xn− xn−1 | | f (xn)| COC CPU

Without Memory
M4th(a) 14.614565956915786 5.18× 10−27 1.55× 10−109 4 0.086
M4th(b) 14.614565956915786 3.74× 10−24 6.34× 10−98 4 0.068
M4th(c) 14.614565956915786 8.85× 10−22 3.30× 10−88 4 0.076
M4th(d) Divergence
NPM4th 14.614565956915786 1.98× 10−40 1.25× 10−203 5 0.046
NPMDF4th 14.614565956915786 1.47× 10−26 7.49× 10−104 4.00 0.021
M8th(a) 14.614565956915786 1.02× 10−162 1.01× 10−1304 8 0.096
M8th(b) 14.614565956915786 8.86× 10−169 2.21× 10−1353 8 0.066
M8th(c) 14.614565956915786 9.14× 10−177 2.10× 10−1417 8 0.038
M8th(d) 14.614565956915786 2.86× 10−188 1.05× 10−1509 8 0.056
NPM8th 14.614565956915786 3.67× 10−262 1.09× 10−2364 9 0.026
NPMDF8th 14.614565956915786 1.50× 10−77 6.71× 10−693 9.00 0.041

With Memory β = 0.01 γ = −1
NPMWM1 14.614713726401837 1.0051× 10−21 6.6067× 10−105 5.16 0.034
NPMWM2 14.614713726401837 1.6485× 10−156 5.2790× 10−1503 9.62 0.023

Problem 2. Height of a moving object: An object falling vertically through the air is subjected
to viscous resistance as well as the force of gravity (see [24] Ch2, p-66). Let us assume that the
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object with mass m is dropped from a height s0 and that the height of the object after t seconds is
represented by the following equation:

s(t) = s0 −
mg
k

t +
m2g
k2 (1− e−

kt
m ) (89)

where k represents coefficient of air resistance in lb-s/ft and g is the acceleration due to gravity.
To solve Equation (89), we choose s0 = 300 f t, m = 0.25 lb and k = 0.1 lb-s/ft. We have to find the
time taken for the object to reach the ground. We rewrite Equation (89) in the following nonlinear
form

f (x) = 300− 80.425x + 2.010625
(

1− e
−

x
2.5

)
, x0 = 3 (90)

Table 8 shows that the convergence behaviour of newly introduced methods performs
better than that of the other existing methods.

Table 8. Convergence behaviour on height of a moving object problem.

Methods | xn | | xn− xn−1 | | f (xn)| COC CPU

Without Memory
M4th(a) 3.7496042636030085 6.06× 10−137 7.44× 10−550 4 0.326
M4th(b) 3.7496042636030085 6.08× 10−137 7.55× 10−550 4 0.260
M4th(c) 3.7496042636030085 3.91× 10−165 5.10× 10−664 4 0.233
M4th(d) 3.7496042636030085 9.97× 10−9 7.92× 10−31 4 0.186
NPM4th 3.7496042636030085 2.55× 10−165 9.14× 10−665 4 0.196
NPMDF4th 3.7496042636030085 2.55× 10−105 9.14× 10−605 4 0.196
M8th(a) 3.7496042636030085 4.04× 10−1192 4.35× 10−9546 8 0.206
M8th(b) 3.7496042636030085 1.00× 10−1196 1.42× 10−9582 8 0.232
M8th(c) 3.7496042636030085 5.23× 10−1197 7.71× 10−9585 8 0.226
M8th(d) 3.7496042636030085 1.88× 10−1193 8.96× 10−9557 8 0.196
NPM8th 3.7496042636030085 1.40× 10−1196 2.04× 10−9586 8 0.167
NPMDF8th 3.7496042636030085 1.40× 10−1194 2.04× 10−9580 8 0.167

With Memory β = 0.01 γ = −1
NPMWM1 3.7496042636030085 1.2464× 10−19 1.1482× 10−102 5.16 0.023
NPMWM2 3.7496042636030085 9.8794× 10−60 5.7594× 10−583 9.71 0.026

Problem 3. Fractional Conversion: Fractional conversion of nitrogen hydrogen feed to ammonia at
500 ◦C temperature and 250 atm. pressure is given by the following nonlinear equation (see [25,26]):

f(x) = −0.186− 8x2(x− 4)2

4(x− 2)3 (91)

Equation (91) can be reduced to a polynomial of degree four

f (x) = x4 − 7.79075x3 + 14.7445x2 + 2.511x− 0.164, x0 = 0.22 (92)

Table 9 shows that the convergence behaviour of the newly introduced methods
performs better than that of the other existing methods.
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Table 9. Convergence behaviour on fractional conversion problem.

Methods | xn | | xn− xn−1 | | f (xn)| COC CPU

Without Memory
M4th(a) 0.27775954284172066 6.76× 10−68 4.79× 10−268 4 0.023
M4th(b) 0.27775954284172066 3.95× 10−65 7.59× 10−257 4 0.020
M4th(c) 0.27775954284172066 3.22× 10−60 5.16× 10−237 4 0.019
M4th(d) 0.27775954284172066 6.90× 10−64 6.90× 10−252 4 0.023
NPM4th 0.27775954284172066 2.62× 10−82 3.09× 10−326 4 0.019
NPMDF4th 0.27775954284172066 1.88× 10−10 2.70× 10−38 4.14 0.029
M8th(a) 0.27775954284172066 1.42× 10−447 1.80× 10−3572 8 0.036
M8th(b) 0.27775954284172066 4.61× 10−454 1.82× 10−3624 8 0.036
M8th(c) 0.27775954284172066 8.78× 10−463 2.38× 10−3694 8 0.036
M8th(d) 0.27775954284172066 1.14× 10−360 3.29× 10−2870 8 0.037
NPM8th 0.27775954284172066 3.88× 10−495 1.26× 10−3953 8 0.035
NPMDF8th 0.27775954284172066 2.13× 10−15 1.32× 10−115 8.14 0.046

With Memory β = 0.01 γ = −1
NPMWM1 0.27775954284172066 8.6899× 10−157 1.3916× 10−810 5.16 0.027
NPMWM2 0.27775954284172066 3.1158× 10−1278 1.2697× 10−14052 11.0 0.032

Problem 4. Open channel flow: Open channel flow is a problem to find the depth of water in
a rectangular channel for a given quantity of water; the problem is represented by the following
nonlinear equation (see [25,27]):

f (x) =
√

sbx
n

(
bx

b + 2x

) 2
3
− F (93)

where F represents water flow, which is formulated as F =

√
sbx
n

r
2
3 . s is the slope of the channel, a

is the area the channel, r is the hydraulic radius of the channel, n is Manning’s roughness coefficient
and b is the width of the channel. Taking the different values of the parameters as F = 14.15 m3/s
b = 4.572 m, s = 0.017 and n = 0.0015, we obtain the following equation

f (x) =
0.5961x
0.0015

(
4.572x

4.572 + 2x

) 2
3
− 14.15, x0 = 0.4 (94)

Table 10 shows that convergence behaviour of newly introduced method performs
better than that of the other existing methods.

Table 10. Convergence behaviour on open channel flow problem.

Methods | xn | | xn− xn−1 | | f (xn)| COC CPU

Without Memory
M4th(a) 0.13839748098511792 2.11× 10−27 9.06× 10−104 4 0.151
M4th(b) 0.13839748098511792 1.66× 10−25 4.74× 10−96 4 0.066
m4th(c) 0.13839748098511792 9.11× 10−24 6.68× 10−89 4 0.055
M4th(d) 0.13839748098511792 2.58× 10−26 3.50× 10−99 4 0.062
NPM4th 0.13839748098511792 1.84× 10−31 1.09× 10−120 4 0.051
NPMDF4th 0.13839748098511792 1.88× 10−30 2.70× 10−138 4.14 0.029
M8th(a) 0.13839748098511792 7.45× 10−164 5.03× 10−1299 8 0.066
M8th(b) 0.13839748098511792 1.14× 10−165 1.20× 10−1313 8 0.060
M8th(c) 0.13839748098511792 3.85× 10−172 1.50× 10−1365 8 0.063
M8th(d) 0.13839748098511792 7.04× 10−190 8.13× 10−1508 8 0.061
NPM8th 0.13839748098511792 3.49× 10−197 3.29× 10−1567 8 0.060
NPMDF8th 0.13839748098511792 2.13× 10−156 1.32× 10−1515 8.14 0.046

With Memory β = 0.01 γ = −1
NPMWM1 0.13839748098511792 8.7820× 10−25 4.0868× 10−121 5.16 0.029
NPMWM2 0.13839748098511792 2.5875× 10−65 8.9327× 10−618 9.62 0.034
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5. Basins of Attraction

In this section, we discuss the dynamical behaviours of the without-memory iterative
methods in the complex plane. This gives useful information about the stability and
reliability of the iterative methods. Here, we compare the stability of the introduced
methods with other methods. For the comparison, we apply the iterative methods to the
complex polynomial of orders four and three, p1(z) = z4 − 1 and p2(z) = z3 + z. We take
a square D = [−3, 3]× [−3, 3] ∈ C of 601× 601 grid points and lay on a colour to each
point z ∈ D, according to the roots corresponding to which the method starting from z
converges. The roots of the polynomial are represented by the white dots. We spot the
point z—where the methods diverge from a root with the tolerance 10−4 and a maximum
iteration 100—as black, and these black points are considered as divergent points. In the
basins of attraction of each iterative method, a brighter colour region indicates that the
iterative method converges to the root in the minimum number of iterations and a darker
region indicates that the method needs more iterations to converge towards the root.

The basins of attraction of fourth-order iterative methods on polynomials p1(z) and
p2(z) are given in Figure 1. Figures 2 and 3 are the basins of attraction of eighth-order
iterative methods on polynomials p1(z) and p2(z), respectively. From the figures, we can
observe that the newly presented methods produce competitive basins and perform better
than the other methods in some cases.

(a) M4th(a), p1(z) (b) M4th(b), p1(z) (c) M4th(c), p1(z)

(d) M4th(d), p1(z) (e) NPM4th, p1(z) (f) NPMDF4th, p1(z)

Figure 1. Cont.
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(g) M4th(a), p2(z) (h) M4th(b), p2(z) (i) M4th(c), p2(z)

(j) M4th(d), p2(z) (k) NPM4th, p2(z) (l) NPMDF4th, p2(z)

Figure 1. Basins of attraction for fourth-order methods for p1(z) and p2(z).

(a) M8th(a), p1(z) (b) M8th(b), p1(z) (c) M8th(c), p1(z)

(d) M8th(d), p1(z) (e) NPM8th, p1(z) (f) NPMDF8th, p1(z)

Figure 2. Basins of attraction for eighth-order methods for p1(z).
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(a) M8th(a), p2(z) (b) M8th(b), p2(z) (c) M8th(c), p2(z)

(d) M8th(d), p2(z) (e) NPM8th, p2(z) (f) NPMDF8th, p2(z)

Figure 3. Basins of attraction for eighth-order methods for p2(z).

6. Conclusions

We have introduced the fourth and eighth-order without-memory iterative methods
and with-memory methods of orders 5.7 and 11. The weight function and divided differ-
ence techniques are used to develop the without-memory methods. The derivative-free
with-memory iterative methods are developed using two accelerating parameters, which
are computed using Newton interpolating polynomials, thereby increasing the order of
convergence from 4 to 5.7 for two-step and from 8 to 11 for three-step methods without any
additional function evaluation. The presented methods are compared with other existing
methods using some examples of nonlinear equations. The results given in the tables
clarify the competitive nature of the presented methods in comparison with the existing
methods and will be valuable in finding an adequate estimate of the exact solution of
nonlinear equations. The current work can be extended to find solutions of multivariate
nonlinear equations.
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