# Classical and Quantum Cosmological Solutions in Teleparallel Dark Energy with Anisotropic Background Geometry

^{1}

^{2}

## Abstract

**:**

## 1. Introduction

## 2. Teleparallel Dark Energy

#### Anisotropic Spacetimes

## 3. Symmetry Analysis

#### 3.1. Noether’S Theorems

#### 3.2. Symmetry Classification

## 4. Classical Solutions

#### 4.1. Bianchi I Spacetime

#### 4.1.1. Arbitrary Parameters

#### 4.1.2. Case ${V}_{0}\left({\left(4+\lambda \right)}^{2}-3\omega \right)=0$

#### 4.2. Bianchi III & Kantowski-Sachs Spacetimes

## 5. The Wheeler-DeWitt Equation

#### 5.1. Quantum Operators from Symmetry Vectors

#### 5.2. Exact Solutions

## 6. Conclusions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Combi, L.; Romero, G.E. Is teleparallel gravity really equivalent to general relativity? Ann. Phys.
**2018**, 530, 1700175. [Google Scholar] [CrossRef] - Hayashi, K.; Shirafuji, T. New general relativity. Phys. Rev. D
**1979**, 19, 3524. [Google Scholar] [CrossRef] - Weitzenböck, R. Invarianten Theorie, Nordhoff, Groningen. 1923. Available online: https://quod.lib.umich.edu/cgi/t/text/text-idx?c=umhistmath;idno=ABV0733.0001.001 (accessed on 5 September 2020).
- Ferraro, R.; Fiorini, F. Modified teleparallel gravity. Phys. Rev. D
**2007**, 75, 084031. [Google Scholar] [CrossRef] - Ferraro, R.; Fiorini, F. Born-Infeld gravity in Weitzenböck spacetime. Phys. Rev. D
**2008**, 78, 124019. [Google Scholar] [CrossRef] - Bengochea, G.R.; Ferraro, R. Dark torsion as the cosmic speed-up. Phys. Rev. D
**2009**, 79, 124019. [Google Scholar] [CrossRef] - Krssak, M.; Van den Hoogen, R.J.; Pereira, J.G.; Boehmer, C.G.; Coley, A.A. Teleparallel Theories of Gravity: Illuminating a Fully Invariant Approach. Class. Quantum Grav.
**2019**, 36, 183001. [Google Scholar] [CrossRef] - Ilyas, M. f(T) cosmology with nonzero curvature. Int. J. Geom. Meth. Mod. Phys.
**2019**, 16, 1950149. [Google Scholar] [CrossRef] - Guo, W.-D.; Fu, Q.-M.; Zhang, Y.-P.; Liu, Y.-X. Thick brane in mimetic f(T) gravity. Phys. Rev. D
**2016**, 93, 044002. [Google Scholar] [CrossRef] - Bahamonte, S.; Dialektopoulos, K.F.; Escamilla-Rivera, C.; Gakis, V.; Hendry, M.; Said, J.L.; Mifsud, J.; Valentino, E.D. Teleparallel Gravity: From Theory to Cosmology. arXiv
**2021**, arXiv:2106.13793. [Google Scholar] - Guth, A. Inflationary universe. Phys. Rev. D
**1981**, 23, 347. [Google Scholar] [CrossRef] - Ratra, B.; Peebles, P.J.E. Cosmological consequences of a rolling homogeneous scalar field. Phys. Rev D
**1988**, 37, 3406. [Google Scholar] [CrossRef] - Basilakos, S.; Barrow, J.D. Hyperbolic inflation in the light of Planck 2015 data. Phys. Rev. D
**2015**, 91, 103517. [Google Scholar] [CrossRef] - Bertacca, D.; Matarrese, S.; Pietroni, M. Unified dark matter in scalar field cosmologies. Mod. Phys. Lett. A
**2007**, 22, 2893. [Google Scholar] [CrossRef] - Skugoreva, M.; Saridakis, E.N.; Toporensky, A. Late-time power-law stages of cosmological evolution in teleparallel gravity with nonminimal coupling. Phys. Rev. D
**2015**, 91, 044023. [Google Scholar] [CrossRef] - Motavalli, H.; Nouri, E. Cosmological dynamics of dark energy in teleparallel gravity. Int. J. Mod. Phys. D
**2022**, 31, 2250061. [Google Scholar] [CrossRef] - Hohmann, M.; Pfeifer, C. Scalar-torsion theories of gravity. II. L(T, X, Y, ϕ) theory. Phys. Rev. D
**2018**, 98, 064003. [Google Scholar] [CrossRef] - Hohmann, M. Scalar-torsion theories of gravity. III. Analogue of scalar-tensor gravity and conformal invariants. Phys. Rev. D
**2018**, 98, 064004. [Google Scholar] [CrossRef] - Paliathanasis, A. O(d, d) symmetry in teleparallel dark energy. Eur. Phys. J. Plus
**2021**, 136, 674. [Google Scholar] [CrossRef] - Paliathanasis, A. Complex Scalar Fields in Scalar-Tensor and Scalar-Torsion Theories. 2022; unpublished work. [Google Scholar]
- Wei, H. Dynamics of teleparallel dark energy. Phys. Lett. B
**2012**, 712, 430. [Google Scholar] [CrossRef] - Otalora, G. Scaling attractors in interacting teleparallel dark energy. J. Cosmol. Astropart. Phys.
**2013**, 7, 044. [Google Scholar] [CrossRef] - D’Agostino, R.; Luongo, O. Growth of matter perturbations in nonminimal teleparallel dark energy. Phys. Rev. D
**2018**, 98, 124013. [Google Scholar] [CrossRef][Green Version] - Geng, C.-Q.; Lee, C.-C.; Saridakis, E.N. Observational Constraints on Teleparallel Dark Energy. J. Cosmol. Astropart. Phys.
**2012**, 1, 002. [Google Scholar] [CrossRef] - Himmetoglu, B. Spectrum of perturbations in anisotropic inflationary universe with vector hair. J. Cosmol. Astropart. Phys.
**2010**, 3, 023. [Google Scholar] [CrossRef] - Colin, J.; Mohayaee, R.; Rameez, M.; Sarkar, S. Evidence for anisotropy of cosmic acceleration. Astron. Astroph.
**2019**, 631, L13. [Google Scholar] [CrossRef] - Paliathanasis, A.; Barrow, J.D.; Leach, P.G.L. Cosmological solutions of f(T) gravity. Phys. Rev. D
**2016**, 94, 023525. [Google Scholar] [CrossRef] - Skugoreva, M.A.; Toporensky, A.V. On Kasner solution in Bianchi I f(T) cosmology. Eur. Phys. J. C
**2018**, 78, 377. [Google Scholar] [CrossRef] - Skugoreva, M.A.; Toporensky, A.V. Anisotropic cosmological dynamics in f(T) gravity in the presence of a perfect fluid. Eur. Phys. J. C
**2019**, 79, 813. [Google Scholar] [CrossRef] - Tretyakov, P.V. Bianchi I cosmological solutions in teleparallel gravity. Mod. Phys. Lett. A
**2022**, 37, 2250046. [Google Scholar] [CrossRef] - Wanas, M.I.; Nashed, G.G.L.; Ibrahim, O.A. Bianchi type I f(T) gravitational theories. Chin. Phys.
**2016**, 25, 050401. [Google Scholar] [CrossRef] - Paliathanasis, A. Anisotropic spacetimes in f(T, B) theory I: Bianchi I universe. Eur. Phys. J. Plus
**2022**, 137, 887. [Google Scholar] [CrossRef] - Wald, R.M. Asymptotic behavior of homogeneous cosmological models in the presence of a positive cosmological constant. Phys. Rev. D
**1983**, 28, 2118. [Google Scholar] [CrossRef] - Laflamme, R.; Shellard, E.P.S. Quantum cosmology and recollapse. Phys. Rev. D
**1987**, 35, 2315. [Google Scholar] [CrossRef] - Louko, J. Fate of singularities in Bianchi type-I11 quantum cosmology. Phys. Rev. D
**1987**, 35, 3760. [Google Scholar] [CrossRef] - Grön, Ö. Transition of a Kantowski–Sachs cosmological model into an inflationary era. J. Math. Phys.
**1986**, 27, 1490. [Google Scholar] [CrossRef] - Tsamparlis, M.; Paliathanasis, A. Symmetries of Differential Equations in Cosmology. Symmetry
**2018**, 10, 233. [Google Scholar] [CrossRef] - Halder, A.K.; Paliathanasis, A.; Leach, P.G.L. Noether’s Theorem and Symmetry. Symmetry
**2018**, 10, 744. [Google Scholar] [CrossRef] - De Witt, B.S. Quantum Theory of Gravity. I. The Canonical Theory. Phys. Rev.
**1967**, 160, 1113. [Google Scholar] [CrossRef] - Zampeli, A.; Pailas, T.; Terzis, P.A.; Christodoulakis, T. Conditional symmetries in axisymmetric quantum cosmologies with scalar fields and the fate of the classical singularities. J. Cosmol. Astropart. Phys.
**2016**, 1605, 066. [Google Scholar] [CrossRef] - Peres, A. Critique of the Wheeler-DeWitt Equation; Harvey, A., Ed.; On Einstein’s Path; Springer: New York, NY, USA, 1999. [Google Scholar]
- Modak, B.; Kamilya, S.; Biswas, S. Evolution of dynamical coupling in scalar tensor theory from Noether symmetry. Gen. Relativ. Gravit.
**2000**, 32, 1615. [Google Scholar] [CrossRef] - Sanyal, A.K. Noether and some other dynamical symmetries in Kantowski—Sachs model. Phys. Lett. B
**2002**, 524, 177. [Google Scholar] [CrossRef] - Motavali, H.; Golshani, M. Exact solutions for cosmological models with a scalar field. Int. J. Mod. Phys. A
**2002**, 17, 375. [Google Scholar] [CrossRef][Green Version] - Camci, U.; Kucukakca, Y. Noether symmetries of Bianchi I, Bianchi III, and Kantowski-Sachs spacetimes in scalar-coupled gravity theories. Phys. Rev. D
**2007**, 76, 084023. [Google Scholar] [CrossRef] - Dimakis, N.; Christodoulakis, T.; Terzis, P.A. FLRW metric f(R) cosmology with a perfect fluid by generating integrals of motion. J. Geom. Phys.
**2012**, 77, 97. [Google Scholar] [CrossRef] - Dimakis, N.; Giacomini, A.; Jamal, S.; Leon, G.; Paliathanasis, A. Noether symmetries and stability of ideal gas solutions in Galileon cosmology. Phys. Rev. D
**2017**, 95, 064031. [Google Scholar] [CrossRef] - Bluman, G.W.; Kumei, S. Symmetries of Differential Equations; Springer: New York, NY, USA, 1989. [Google Scholar]
- Olver, P.J. Applications of Lie Groups to Differential Equations; Springer: New York, NY, USA, 2000. [Google Scholar]
- Paliathanasis, A.; Tsamparlis, M. The geometric origin of Lie point symmetries of the Schrödinger and the Klein—Gordon equations. Int. J. Geom. Methods Mod. Phys.
**2014**, 11, 1450037. [Google Scholar] [CrossRef][Green Version]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Paliathanasis, A.
Classical and Quantum Cosmological Solutions in Teleparallel Dark Energy with Anisotropic Background Geometry. *Symmetry* **2022**, *14*, 1974.
https://doi.org/10.3390/sym14101974

**AMA Style**

Paliathanasis A.
Classical and Quantum Cosmological Solutions in Teleparallel Dark Energy with Anisotropic Background Geometry. *Symmetry*. 2022; 14(10):1974.
https://doi.org/10.3390/sym14101974

**Chicago/Turabian Style**

Paliathanasis, Andronikos.
2022. "Classical and Quantum Cosmological Solutions in Teleparallel Dark Energy with Anisotropic Background Geometry" *Symmetry* 14, no. 10: 1974.
https://doi.org/10.3390/sym14101974