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Abstract: To understand the nonlinear interaction between unsteady aerodynamic forces and the
kinematics of structures, we theoretically and numerically investigated the characteristics of lift
coefficients produced by a flapping thin flat plate controlled by the rotation axis position. The flat
plate was placed in a 2-D incompressible flow at a very low Reynolds number (Re = 300). We showed
that the behavior of the unsteady aerodynamic forces suggests the existence of a limit cycle. In
this context, we developed a Reduced Order Model (ROM) by resolving the modified van der Pol
oscillator using the Taylor development method and computational fluid dynamics (CFD) solutions.
A numerical solution was obtained by integrating the differential equation of the modified van
der Pol oscillator using the fourth-order Runge–Kutta method (RK4). The model was validated by
comparing this solution with the reformulated equation of the added mass lift coefficient. Using
CFD and ROM solutions, we analyzed the dependency of the unsteady lift coefficient generation
on the kinematics of the flapping flat plate. We showed that the evolution of the lift coefficient is
influenced by the importance of the rotation motion of the Leading Edge (LE) or Trailing Edge (TE),
according to the position of the rotation axis. Indeed, when the rotation axis is moved towards the
LE, the maximum and the minimum values of the lift coefficient are proportional to the downward
and upward motions respectively of the TE and the rotation axis. However, when the rotation axis is
moved towards the TE, the maximum and the minimum values of the lift coefficient are proportional
to the downward and upward motions respectively of the LE and the rotation axis.

Keywords: flapping flat plate; unsteady flow; modified van der Pol oscillator; added mass lift
coefficient; rotation axis; computational fluid dynamics (CFD)

1. Introduction

Symmetry plays a pivotal role in aerodynamics at a low Reynolds number [1–3]. In
recent years, industry has been involved in the production of biomimicking flying and
swimming robots as micro air and underwater vehicles at low Reynolds numbers. An
attractive research topic for both the biological and aerodynamic fields is the development
of vehicles with flapping wings [4–9]. The fluid flowing over these vehicles is very com-
plex because of its nonlinear interaction with the structure. Indeed, at a low Reynolds
number, airfoils produce oscillatory lift and thrust. So, a thorough understanding of the
unsteady aerodynamics and underlying phenomena are required to design effective control
methodologies for these vehicles.

To understand unsteady flow fields, studies on flapping thin-airfoil theory have been
previously conducted as seen in the literature [10–12]. In order to simplify the analytical
formulation of the unsteady flow surrounding flapping wings, researchers separate the
total aerodynamic load into many effects, such as the load due to the added-mass effect,
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the rotation-induced load, the translation-induced load, and the delayed stall/leading
edge vortex (LEV) [11,13–15]. Various researchers have discussed the added mass effect in
the context of the flight of insects [8,16–18]. This effect is proportional to the acceleration
of the fluid mass around the wing. The instantaneous force caused by the added mass
inertia is obtained by deriving the equation modeled by Sedov (1956) [19] acting on a
two-dimensional wing. Concerning the rotation-induced load, it has been shown that the
fast rotation of the wing during the modification of the flapping leads to the circulation
of the flow the opposite way, resulting in an increase in the lift [4]. Ellington (1984) [20]
and Fung (1993) [21] investigated the effect of the position of the rotational axis on the
amount of circulation and thus on the force produced by a rotating wing. They developed
an analytical expression linearly relating the aerodynamic force with the position of the
rotational axis. Later, this prediction was confirmed with a series of experiments. Dickinson
et al. (1999) [5] measured the total rotational circulation by systematically varying the
axis of rotation in which they changed the attachment point of the wing on the flapping
apparatus. They showed that when the axis of rotation is moved towards the trailing
edge, the rotational circulation decays. Consequently, this last changed its sign at one-
fourth of a chord length from the trailing edge of the wing. This result indicates that the
rotational circulation provokes the generation of force peaks during stroke reversal. Liu
et al. (2015) [22] explored the physical foundations of the unsteady thin-airfoil theory. They
developed a simple lift formula containing the vortex lift and the lift associated with the
fluid acceleration for the flapping wing. The fluid acceleration term contains the added
mass lift and other flow unsteady effects.

Brunton et al. (2013) [23] numerically and experimentally analyzed the dynamics of
pitching and plunging airfoils at a low Reynolds number. They developed reduced-order
models for the unsteady lift over a range of attack angles. These models were verified
by comparing them with measurements using large amplitude maneuvers and frequency
response plots. The reduced-order modeling of unsteady flows has an important role
which is to represent the dynamical system with a few degrees of freedom and to reduce
the complexity of the governing equation such as the Navier–Stokes equations. Functions
based on reduced-order modeling are calculated from the flow field data. To form a reduced
order model to reduce the nonlinear system significantly, the governing equations can
be projected onto these reduced basis functions [24,25]. Hartlen and Currie (1970) [26]
founded a limit cycle model based on the Rayleigh oscillator for the flow around a cylinder
restrained by springs in the stream-wise direction. Later, Marzouk et al. (2007) [27] used
numerical simulations of flow past a stationary circular cylinder to develop a reduced-order
model based on the van der Pol oscillator for the lift and drag coefficients. They proved that
this model matched the numerical simulation results in the time and the spectral domains.
Akhtar et al. (2009) [28] modeled lift and drag coefficients of flow past elliptic cylinders
with a generalized van der Pol–Duffing oscillator. Recently, Venkataraman et al. (2014) [29]
studied the existence condition of the limit cycle for the modified van der Pol oscillator.
By using the multiple scales method, they obtained a minimal model for vortex-shedding
from an aerofoil with a porous coating of flow-compliant feather-like actuators. They
noticed that this model helps understand the passive achievement of flow control. Khalid
et al. (2017) [30] revealed that aerodynamic forces produced by oscillating NACA-0012
airfoils are independent of the initial kinematic conditions suggesting the existence of a
limit cycle. Using numerical simulations, they analyzed the shedding frequencies close
to the excitation frequencies and modeled the unsteady lift force with a modified van
der Pol oscillator. The frequencies and the damping terms in the reduced-order model
(ROM) were estimated using the multiple scales method and steady-state spectral analysis
for computational fluid dynamics (CFD) solutions. Hafien et al. (2019) [31] developed a
reduced order model for the lift coefficient of an airfoil equipped with extrados and/or
trailing edge flexible flaps at low Reynolds number. This model was obtained by resolving
the modified van der Pol oscillator using the Taylor development method.
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In this research, we studied unsteady flow around a flapping flat plate at a very low
Reynolds number (Re = 300). First, we developed a reduced order model (ROM) of the
lift coefficient based on the modified van der Pol oscillator. Then, we reformulated the
equation of the added mass lift coefficient to conform it to this oscillator model. The
new form of the added mass lift coefficient was used to validate the ROM by resolving
the differential equation of the modified van der Pol oscillator by using the Runge-Kutta
(RK4) method. For the total lift coefficient, the parameters of the model were obtained by
using the Taylor development method and computational fluid dynamics (CFD) solutions.
Finally, we used the ROM and CFD results to study and analyze the effect of modifying the
rotation axis of the flapping flat-plate on vortex-shedding, and therefore on the unsteady
lift coefficient.

2. Reduced-Order Model

The behavior of a nonlinear system is characterized as a limit cycle when the response
of this system limits itself to a periodic, a quasiperiodic, or a chaotic attractor. This phe-
nomenon appears under the effect of an energy dissipation mechanism, which represents
a closed trajectory in the phase space [32]. Khalid et al. (2017) [30] tested the oscillating
airfoil lift for various initial conditions. They showed that the initial kinematic states do
not have an effect on the dynamic system. This proves that the unsteady aerodynamic
coefficients of an oscillating airfoil describe the behavior of a limit cycle. Researchers have
previously concluded that the van der Pol oscillator is the more accurate representation of
the lift coefficient [33].

The general form of the van der Paul oscillator is described as [34]:

∂2x
∂t2 + x = c

∂x
∂t

+ α1x2 + α2x
∂x
∂t

+ α3

(
∂x
∂t

)2
+ β1x3 + β2x2 ∂x

∂t
+ β3x

(
∂x
∂t

)2
+ β4

(
∂x
∂t

)3
(1)

where c, αi, and βi are the coefficient of linear damping, the coefficients of quadratic
nonlinear terms, and the coefficients of cubic nonlinear terms, respectively.

Venkataraman (2013) [35] studied the condition of existence of the limit cycle for the
general van der Pol oscillator. He showed that this oscillator can define the lift coefficient
oscillation, which is characterized by a limit cycle when: α1 = 0, α2 = 0, α3 = 1, β2 = 0, and
β4 = −1, see Table 1.

Table 1. Dependence of limit cycle existence on the nonlinearities in Equation (1) [35].

Case α1 α2 α3 β2 β3 Existence of Limit Cycle

1 1 0 0 −1 0 No

2 1 0 0 0 −1 No

3 0 1 0 −1 0 Yes

4 0 1 0 0 −1 Limit cycle exists only for initial
conditions with ∂x/∂t negative or zero.

5 0 0 1 −1 0 No

6 0 0 1 0 −1 Yes

Consequently, the van der Pol oscillator can be written as [35]:

∂2x
∂t2 + w2x = µ

∂x
∂t

+ β

(
∂x
∂t

)2
− α

(
∂x
∂t

)3
(2)

where w, µ, β, and α are the parameters of the modified van der Pol oscillator.
By using the Taylor development method, resolving the modified van der Pol oscillator

shows that: y = γ1exp(−iwt) + γ2exp(iwt), y = ∂x/∂t, see detail in [31]. Hence, by using the
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particular solutions y = γs·sin(wt)+ γc·cos(wt) and x = Cl −
_
Cl0 (Cl is the lift coefficient) in

Equation (2), we show that:

Cl(t) =
_
Cl0 +

_
Ac cos(wt) +

_
As sin(wt) +

_
Ac2 cos2(wt) +

_
Acs cos(wt) sin(wt) +

_
As2 sin2(wt)

+
_
Ac3 cos3(wt) +

_
Ac2s cos2(wt) sin(wt) +

_
Acs2 cos(wt) sin2(wt) +

_
As3 sin3(wt)

(3)

where
_
Ac =

µγc−γs
w2

_
As =

µγs+γc
w2

_
Ac2 = βγ2

c
w2

_
Acs = 2 βγcγs

w2
_
As2 = βγ2

c
w2

_
Ac3 = − αγ3

c
w2

_
Ac2s = − αγ2

c γs
w2

_
Acs2 = − αγcγ2

s
w2

_
As3 = − αγ3

s
w2

and
wt = 2π·St·t∗

Replacing sini(wt)·cosj(wt) (i, j = 0, 1, 2, 3; 1 < i + j ≤ 3) with their expressions as a
function of sin(nwt) and/or cos(nwt) (n = 0,1, 2, 3), we show that:

Cl(t) =
Cl0 + A1c cos(wt) + A1s sin(wt) + A2c cos(2wt) + A2s sin(2wt) + A3c cos(3wt) + A3s sin(3wt)

(4)

where

Cl0 =
_
Cl0 + 1

2 (
_
Ac2 +

_
As2)

A1c =
_
Ac +

1
4 (3

_
Ac3 +

_
Acs2)

A1s =
_
As +

1
4 (

_
Ac2s + 3

_
As3)

A2c =
1
2 (

_
Ac2 −

_
As2)

A2s =
1
2

_
Acs

A3c =
1
4 (

_
Ac3 −

_
Acs2)

and
A3s =

1
4
(3

_
Ac2s −

_
As3)

Thus, (see Appendix A)

Cl(t) = Cl0 + |A1| sin(wt + ϕ1) + |A2| sin(2wt + ϕ2) + |A3| sin(3wt + ϕ3) (5)

where

Ai = Aic· cos(Artg(
Ais
Aic

)) + Ais· sin(Artg(
Ais
Aic

))ϕi = Artg(
Aic
Ais

)± nπ

and n = 0, 1, 2, 3, . . .
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3. ROM for the Added Mass Lift Coefficient (Clma)

Analytical modeling of aerodynamic efforts of oscillating airfoils can be classified
into three groups: steady state models, quasi-steady models and unsteady models. Due
to the difficulties of modeling unsteady aerodynamic forces in a single term, researchers
developed quasi-steady models which separate these forces into many parts. von Kármán
and Sears (1938) [36] expressed, in one of the first studies, the unsteady lift as a sum of the
quasi-steady Kutta–Joukowski lift, the added-mass lift, and the wake-induced contribution.
Later, based on experimental, computational and theoretical studies, researchers showed
that the lift in flapping wings was improved by various mechanisms such as the Weis-
Fogh’s “clap and fling” mechanism [37], the delayed stall/leading edge vortex (LEV) [7],
the added mass effect [18,19], the Kramer effect/rotational lift [8,38], etc. Recently, Wang
et al. (2016) [39] proposed a quasi-steady model that included four aerodynamic loading
terms for a flapping wing lift: translation load, rotation load, coupling (translation +
rotation) load, and the added-mass effect. In this section, we show that the added mass
lift coefficient (Clma) can be reformulated in order to conform Equation (5) to exhibit a
behavior similar to the reduced order model based on the modefied van der Pol oscillator
(2). This helps to analyze and understand the underlying physics of the nonlinear system
for total lift.

We consider a flapping thin flat plate with a chord c, placed in the flow field with
free stream velocity U∞ at a very low Reynolds number (Re = 300). The kinematics of the
two-dimensional flat plate is defined as (see Figure 1):

θ(t) = θm + θ0 cos(wt) and z(t) = z0 sin(wt) (6)

where θ(t), θm, and θ0 are the instantaneous angle of attack (AOA), the time-averaged
AOA, and the pitching amplitude, respectively. z(t) and z0 are the instantaneous vertical
position of the center of the plate and the heaving amplitude. w = 2πf (f = 1/T is the
flapping frequency).
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Figure 1. Schematic of flapping flat plate kinematics.

Using the equation expressed by Seldov (1965) [19] for the aerodynamic force due to
the added mass effect of a thin airfoil, we show that Clma can be written as:

Clma =
1

2U2
∞

πc
[

z′′ − 1
2

cθ′′
]

cos(θ) (7)

where
z′′ (t) = −w2z0 sin(wt)

θ′′ (t) = −w2θ0 cos(wt)

and
cos(θ) = cos(θm + θ0 cos(wt))

The added mass force has a significant contribution to the total aerodynamic force of
the flapping wings during and near the stroke reversals [10]. Researchers show that the
added mass is dependent on this frequency and amplitude of flapping wings [40].
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3.1. Reformulation of the Clma Equation

For a low angle of attack θ, cos(θ) can be writen as a function of cos(wt) and cos(2wt),
as shown here (see Appendix B):

cos(θm + θ0 cos(wt)) =
^
A0 +

^
A1 cos(wt) +

^
A2 cos(2wt) (8)

where
^
A0 =

1
2

cos(θm)(cos(θ0) + 1);
^
A1 = − sin(θm) sin(θ0) and

^
A2 =

1
2

cos(θm)(cos(θ0)− 1) (9)

Using Equation (8), we show that:

z′′ cos(θ) = −w2z0

[
(
^
A0− 1

2

^
A2) sin(wt) +

1
2

^
A1 sin(2wt) +

1
2

^
A2 sin(3wt)

]
(10)

θ′′ cos(θ) = −w2θ0

[
1
2

^
A1 + (

^
A0 +

1
2

^
A2) cos(wt) +

1
2

^
A1 cos(2wt) +

1
2

^
A2 cos(3wt)

]
(11)

Introducing Equations (10) and (11) into Equation (7), we have:

Clma(t) = Clma0 + Am1,s sin(wt) + Am1,c cos(wt) + Am2,s sin(2wt) + Am2,c cos(2wt)
+Am3,s sin(3wt) + Am3,c cos(3wt)

(12)

where
Clma0 = 1

8U2
∞

w2πc2θ0
^
A1

Am1,c =
1

4U2
∞

w2πc2θ0(
^
A0 + 1

2

^
A2)

Am1,s = − 1
2U2

∞
w2πcz0(

^
A0− 1

2

^
A2)

Am2,c =
1

8U2
∞

w2πc2θ0
^
A1

Am2,s = − 1
4U2

∞
w2πcz0

^
A1

Am3,c =
1

8U2
∞

w2πc2θ0
^
A2

Am3,s = − 1
4U2

∞
w2πcz0

^
A2

Finally, we obtain a new form of Clma identical to Equation (5) that was obtained by
resolving the van der Pol oscillator model (2):

Clma(t) = Clma0 + |Am1| sin(wt + ϕm1) + |Am2| sin(2wt + ϕm2) + |Am3| sin(3wt + ϕm3) (13)

where

Ami = Amic· cos(Artg(
Amis
Amic

)) + Amis· sin(Artg(
Amis
Amic

))ϕmi = Artg(
Amic
Amis

)± nπ

Table 2 shows the parameters of Equations (12) and (13) that describe the added mass
lift coefficient (Clma(t)) after reformulation in the case of St = fc/U∞ = 0.6; θm = 10◦; θ0 = 30◦;
and z0 = 0.25c (these values will be used for the continuation of this work). It is clear that
the approached form of Clma(t) defined in Equation (13) agrees well with the exact form of
Equation (7) (see Figure 2).
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Table 2. Parameters of Equations (12) and (13) for St = fc/U∞ = 0.6; θm = 10◦; θ0 = 30◦; and z0 = 0.25c.

Clma0 Am1,s Am1,c Am2,s Am2,c Am3,s Am3,c

−0.253 −5.309 5.1752 0.2422 −0.2536 0.184 −0.1926
Clma0 Am1 Am2 Am3 φm1 φm2 φm3
−0.253 7.41405 −0.3506 −0.2663 π − 0.7726 2π − 0.808 2π − 0.808
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Figure 2. Comparison between the approached (12) and the exact (7) forms of the added mass lift
coefficient for St = fc/U∞ = 0.6; θm = 10◦; θ0 = 30◦; and z0 = 0.25c: evolution of the lift coefficient
as a function of wt (left) and FFT Power Spectral Density of the lift coefficient as a function of the
dimensionless frequency f * = c/U∞t (right).

3.2. Validation of the ROM with the RK4 Method

In order to validate the proposed reduced order model, we used the fourth-order
Runge–Kutta method (RK4) to numerically integrate the modified van der Pol oscillator
(12). This solution is verified for the particular case; the added mass lift coefficient for
St = 0.6; θm = 10◦; θ0 = 30◦; and z0 = 0.25c.

Now, by putting the ordinary differential Equation (2) in the vector Z(x, y, t) =(
x

y = x′

)
, we obtain:

Z′ = F(Z; t) =
(

y
−w2x + µy + βy2 − αy3

)
; Z(0) =

(
x(0)
y(0)

)
and Z′(0) =

(
x′(0)
y′(0)

)
(14)

Using the Runge-Kutta-4 method, we have:

Zn+1 = Zn +
h
6
(K1 + 2K2 + 2K3 + K4) (15)

where for n = 1, 2, 3, . . . 

h = tn+1 − tn

K1 = F(Zn; tn)

K2 = F(Zn + h/2K1; tn+1/2)

K3 = F(Zn + h/2K2; tn+1/2)

K4 = F(Zn + hK3; tn+1)

(16)
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Using Equation (14) we show that:

K1 =

(
K1x = yn

K1y = −w2xn + µyn + βy2
n − αy3

n

)
(17)

K2 =

(
K2x = yn + 1/2hK1y

K2y = −w2(xn + 1/2hK1x) + µ(yn + 1/2hK1y) + β(yn + 1/2hK1y)
2 − α(yn + 1/2hK1y)

3

)
(18)

K3 =

(
K3x = yn + 1/2hK2y

K3y = −w2(xn + 1/2hK2x) + µ(yn + 1/2hK2y) + β(yn + 1/2hK2y)
2 − α(yn + 1/2hK2y)

3

)
(19)

K4 =

(
K4x = yn + hK3y

K4y = −w2(xn + hK3x) + µ(yn + hK3y) + β(yn + hK3y)
2 − α(yn + hK3y)

3

)
(20)

So, finally we obtain:{
xn+1 = xn + h/6(K1x + 1/2K2x + 1/2K3x + K4x)
yn+1 = yn + h/6(K1y + 1/2K2y + 1/2K3y + K4y)

and
{

x0 = x(0)
y0 = y(0)

(21)

We replace x and y by Cl and ∂Cl/∂t respectively to determine the lift coefficient
time histories of the oscillating flat plate. To determine the linear damping, the quadratic
nonlinear and the cubic nonlinear coefficients of the modified van der Pol oscillator (µ, β,
and α), we introduce the analytical expression of the lift coefficient (4) into the differential
Equation (2):

∂2Cl
∂t2 = −w2Cl + µ

∂Cl
∂t

+ β

(
∂Cl
∂t

)2
− α

(
∂Cl
∂t

)3
(22)

where Cl, ∂Cl/∂t, and ∂2Cl/∂t2 are:

Cl = Cl0 + A1c cos(wt) + A1s sin(wt) + A2c cos(2wt) + A2s sin(2wt)
+A3c cos(3wt) + A3s sin(3wt)

∂Cl
∂t = w

[
−A1c sin(wt) + A1s cos(wt)− 2A2c sin(2wt) + 2A2s cos(2wt)

−3A3c sin(3wt) + 3A3s cos(3wt)

]
∂2Cl
∂t2 = −w2

[
A1c cos(wt) + A1s sin(wt) + 4A2c cos(2wt) + 4A2s sin(2wt)+

9A3c cos(3wt) + 9A3s sin(3wt)

] (23)

Moreover, we calculate (∂Cl/∂t)2 and (∂Cl/∂t)3 and neglect the amplitude proportional
to the frequencies nw when n > 3. We show that:

(
∂Cl
∂t

)2
= w2

 A0 + A1c cos(wt) + A1s sin(wt) + A2c cos(2wt) + A2s sin(2wt)

+A3c cos(3wt) + A3s sin(3wt)


(

∂Cl
∂t

)3
= w3

 A0 + A1c cos(wt) + A1s sin(wt) + A2c cos(2wt) + A2s sin(2wt)

+A3c cos(3wt) + A3s sin(3wt)

 (24)

where 

A0 = 1
2 (A2

1c + A2
1s) + 2(A2

2c + A2
2s) +

9
2 (A2

3c + A2
3s)

A1c = 2(A1s A2s + A1c A2c) + 3(A2s A3s + A2c A3c)

A1s = 2(A1c A2s − A1s A2c) + 3(A2c A3s − A2s A3c)

A2c =
1
2 (A2

1s − A2
1c) + 3(A1s A3s + A1c A3c)

A2s = −A1c A1s + 3(A1c A3s − A1s A3c)

A3c = A1s A2s − A1c A2c

A3s = −(A1c A2s + A1s A2c)

(25)
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A0 =

[
3( 1

2 A2s(A2
1s − A2

1c) + A2c A1c A1s + 9(A1s A2s A3s + A1c A2s A3s + A1c A2s A3c

+A1c A2c A3s)

]
(26)

A1c =

[
3
4 A1s(A2

1s + A2
1c) +

9
2 (A1c A1s A3c + A3s(A2

1s − A2
1c)) + 6A1s(A2

2s + A2
2c)

+ 27
2 A1s(A2

3s + A2
3c) + 9(A2

2s A3s + 2A2s A2c A3c − A2
2c A3s)

]
(27)

A1s =

[
− 3

4 A1c(A2
1s + A2

1c) +
9
2 (A1c A1s A3s − A3c(A2

1s − A2
1c))− 6A1c(A2

2s + A2
2c)

− 27
2 A1c(A2

3s + A2
3c) + 9(A2

2s A3c − 2A2s A2c A3s − A2
2c A3c)

]
(28)

A2c =

[
3A2s(A2

1c + A2
1s) + 6A2s(A2

2s + A2
2c) + 27A2s(A2

3s + A2
3c)+

9(A1s A2s A3s + A1c A2s A3s − A1c A2s A3c + A1c A2c A3s)

]
(29)

A2s =

[
−3A2c(A2

1c + A2
1s)− 6A2c(A2

2s + A2
2c)− 27A2c(A2

3s + A2
3c)−

9(−A1s A2s A3c + A1s A2c A3s − A1c A2s A3s − A1c A2c A3c)

]
(30)

A3c =

[
1
4 A1s(A2

1s − 3A2
1c) +

9
2 (A2

1s + A2
1c)A3s + 3(A1s A2

2s − A1s A2
2c + A1c A2c A2s)+

18(A2
2s + A2

2c)A3s +
81
4 (A2

3s + A2
3c)A3s

]
(31)

A3c =

[
1
4 A1c(A2

1s − 3A2
1c)−

9
2 (A2

1s + A2
1c)A3c + 3(A1c A2

2s − A1c A2
2c − A1s A2c A2s)−

18(A2
2s + A2

2c)A3c − 81
4 (A2

3s + A2
3c)A3c

]
(32)

For the lift coefficient generated with added mass, we show that µ = 0.604, β =−0.0116,
and α = 0.00159. The initial conditions Cl(0) and Cl’(0) were calculated from the analytical
expression of the added mass lift coefficient (12). By using these values in equation system
(21), the Runge-Kutta-4 method allows us to determine the time history of Clma. The
comparison between the analytical expression (12) and the solution obtained by resolution
of the van der Pol oscillator model using the Runge-Kutta-4 method (ROM R-K4) shows
the validation of the proposed reduced order model (see Figure 3).
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Figure 3. Comparison of the solutions from analytical expression (12) and the ROM R-K4: evolution
of the lift coefficient as a function of wt (left) and FFT Power Spectral Density of the lift coefficient as
a function of the dimensionless frequency f* = c/U∞t (right).

4. CFD Study

The use of a computational tool helps to quickly estimate the response of the physical
part of nonlinear systems. In this section we employed the data obtained from numerical
simulations using ANSYS-Fluent in order to calculate the proposed reduced-order model
parameters. The CFD solver and the analytical solution of the van der Pol equation were
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used as the first step towards the development of the reduced-order models for the total
lift coefficient of the flapping flat plate.

4.1. Numerical Model

We considered a thin flat plate with a chord c placed in the flow field at a Reynolds
number equal to 300. To avoid the effect of disturbances on the boundaries, the radius of
the C-type domain was kept at 12.5c, so, the computational domain consisted of 12.5c, at:
the top, bottom, upstream, and downstream of the flapping flat plate, see Figure 4.
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Figure 4. Boundary conditions of the computational domain.

The flow past the flapping flat plate is simulated by solving the 2D incompressible
Navier–Stokes equations using the finite volume method. The differential form of the
conservation equations of mass and momentum are [ANSYS-Fluent]:

∂ui
∂xi

= 0 (33)

∂ui
∂t

+ uj
∂ui
∂xj

= −1
ρ

∂p
∂xi

+
∂

∂xj

(
υ

∂ui
∂xj

)
(34)

where ui is the velocity, p is the pressure, ρ is the fluid density, and υ is the kinematic
viscosity of the fluid.

A second-order upwind scheme is employed for the spatial discretization of the
convection terms of the transport equations. A second-order implicit method is used
to approximate the temporal discretization of the governing equations. The algorithm
of the pressure–velocity coupling used is “PISO”. An irregular grid was used for the
computational domain. We employed 300 nodes around the flat plate and 19,138 cells in
the domain. In the region near the moving flat plate, we used dynamic mesh techniques
(Remeshing and Smoothing methods) to accord the instantaneous position of the plate.
The kinematics of the latter is defined by a user-defined function (UDF) written in C-
language and coupled with the Fluent-Macros. As mentioned in the last section (§3.1), the
instantaneous AOA and the instantaneous vertical position of the axis of rotation are:

θ(t) = 10◦ + 30◦ cos(wt)h(t) = 1/4c· sin(wt)
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4.2. Validation of the CFD Results

We conducted a test series to verify and validate the numerical results obtained from
the computational model. First, we verified the independence between the numerical
solution and the time-step size as well as the mesh refinement. After that, the present
results were validated with the computational results of other researchers.

Concerning the verification of the numerical solver focused on its self-consistency,
three different levels of time step size dt and grid refinement were tested for six distinct
cases. For T = 200dt, we used three grids: grid 1 with 16,560 cells (200 nodes around
the flat plate), grid 2 with 19,138 cells (300 nodes around the flat plate), and grid 3 with
21,700 cells (400 nodes around the flat plate). Next, using grid 2, we tested three time step
sizes: dt1 = T/100, dt2 = T/200, and dt3 = T/400. Figure 5a,b shows the evolution of the lift
coefficient as a function of the dimensionless time t/T for the different tested cases. It is
clear that the simulation results were not significantly affected by the grid refinement and
time step size. Grid 2 and dt2 yielded a stable solution and will be used in the continuation
of this paper. In order to validate our computational model, we compared the time history
of the present lift coefficient computed using CFD-Fluent with those obtained by Liu
et al. (2015). We noted that the lift coefficient oscillation was independent of the initial
conditions. Good agreement was obtained between the present results and the results from
the literature for St = 0.06 and St = 0.6, see Figure 5c,d.
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with the literature results [22]. The axis of rotation of the flapping flat plate is placed at one-fourth of
the chord from the leading edge (Xc = 0.25c).
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4.3. Results and Discussion

To validate the proposed reduced order model, we compared the lift solution of the
van der Pol oscillator model with those from the CFD. We studied temporal profiles and
the harmonics in the spectra of the unsteady lift for three different rotation axis positions:
Xc = 0.25c; Xc = 0.425c, and Xc = 0.65c (see Figure 6). It is clear that the ROM does not
only accurately capture the numerical simulation results in the time domain but also in the
spectral domain. The curves obtained from the spectral analysis show that the amplitudes
that were proportional to the frequencies nSt when n > 3 were neglected in the ROM
compared to the CFD model. Table 3 shows the constant parameters of Equation (18)
obtained from the modified van der Pol oscillator model for the lift coefficient in all the
studied cases. We notice that the mean value of the lift coefficient Cl0 increased when
the rotation axis gets closer to the leading edge. However, the amplitudes A1, A2, and A3
increased when the rotation axis moved away from the middle of the flat. The ROM and
the CFD model enabled us to determine the phases which were proportional to the main,
second, and third Strouhal numbers (φ1, φ2, and φ3) for each position of the rotation axis:
φi(0.25) < φi(0.425) < φi(0.65).

Table 3. Parameters of Equations (18) for: Xc = 0.25c; Xc = 0.425c; and Xc = 0.65c.

Xc/c Cl0 A1 A2 A3 φ1 φ2 φ3

0.25 2.03178 4.62199 0.55519 0.70305 3.94 = π + 0.798 1.46075 1.97423
0.425 1.78581 1.69849 0.48224 0.59702 4.903 = π + 1.761 2.465 2.537
0.65 1.6568 4.29421 0.56994 0.72215 6.493 = 2π + 0.2153 2.9754 2.821

For Xc = 0.25c, the speed of the trailing Edge (TE) is more important than the Leading
Edge (LE). For this reason, the minimum value of the lift coefficient (Clmin) is proportional to
the upward motion of the TE and the rotation axis of the flat plate. However, the maximum
value Clmax is proportional to their downward motion (see Figure 7). Conversely, the speed
of the TE is less important compared to the LE for Xc = 0.65c. Consequently, Clmin and Clmax
are proportional to the upward and downward motions, respectively, of the LE and the
rotation axis of the flat plate (see Figure 7). This explains the difference between the phases
φ1(0.25) = π + 0.798 and φ1(0.65) = 2π + 0.2153 (see Table 3). Concerning the case where
Xc = 0.425c, it can be seen from Figure 7 that the lift coefficient has two maximum and two
minimum values during each oscillation cycle. On the one hand, Clmin1(t/T = 0.11) and
Clmax2(t/T = 0.55) are proportional to the upward and downward motions, respectively,
of the TE and the rotation axis of the flat plate. On the other hand, Clmax1(t/T = 0.38) and
Clmin2(t/T = 0.83) are proportional to the downward and upward motions, respectively, of
the LE and the rotation axis. This proves for the case where Xc = 0.425c that the movements
of the LE and the TE have the same effect on the lift coefficient evolution due to the close
distance between the rotation axis and the middle of the flat plate.

A reverse von Karman Vortex Street is produced in the wake during the oscillation
of the thin-airfoil. This leads to the generation of periodic aerodynamic forces in nature
including several harmonics of the vortex shedding frequency. Consequently, the modifica-
tion of the lift coefficient characteristic is caused by the modification of the flow topology.
When the flat plate oscillates, a von-Karman vortex street (clockwise rotating vortices) or
reverse von-Karman Vortex Street (counterclockwise rotating vortices) is generated in the
wake. The instability in the boundary layer forms the Leading Edge Vortices (LEV).
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These vortices move downstream and detach from the flat plate before reaching the
Trailing Edge (TE), see Figure 7. Depending on the rotation axis position, which affects the
kinematics of the flapping flat plate, the Leading Edge and Trailing Edge vortices (LEV
and TEV) interact in the wake. It is clear that when the rotation axis nears the leading
edge (Xc = 0.25c), stronger TEVs were produced. However, as shown in Figure 7, when
the rotation axis nears the trailing edge (Xc = 0.65c), the stronger LEVs appear in both the
extrados and intrados of the flat plate. As a result, the couples of the counter-rotating
vortices, LEV and TEV, are close to each other in the wake region behind the flapping flat
plate for Xc = 0.65c. However, for the Xc = 0.25c case, the vortices push away from each
other, see Figure 8.
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between the unsteady lift coefficient and the flow topology.
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Figure 8. Contours of the instantaneous vorticity-field (dimensionless velocity-Curl w.c/U varying
between −2.2 and 2.2) in the wake region behind the flapping flat plate for different rotation axis
positions: Xc = 0.25c; Xc = 0.425c and Xc = 0.65c.

This modification in the flow topology leads to: the decrease in the mean lift coefficient
when the rotation axis is further away from the leading edge; the increase in the oscillation
amplitudes, Ai, of the unsteady lift coefficient when the rotation axis is further away
from the middle of the flat plate; the modification of the phases, φi, as a function of the
importance of the rotation speed of the TE or LE.

5. Conclusions

In this paper we have studied the 2D incompressible flow at Reynolds number
Re = 300 and Strouhal number St = 0.6 past a flapping flat plate. Three kinematic cases
were studied: flapping flat plate with rotation axis positions: Xc = 0.25c, Xc = 0.425c, and
Xc = 0.65c. We developed a Reduced Order Model based on the modified van der Pol
oscillator to characterize the behavior of the nonlinear unsteadiness of the lift coefficient as
a limit cycle. The equation of the added mass lift coefficient was reformulated to exhibit
the reduced order model (ROM). Using the fourth-order Runge–Kutta method (RK4) we
numerically integrated the differential equation of the modified van der Pol oscillator.
Good agreement was obtained between this solution and the reformulated equation of
the added mass lift coefficient. For the total lift coefficients, the results obtained from
the ROM agree well with those obtained from the CFD both in the temporal and spectral
domains. The modification of the rotation axis position, which affects the rotation speed of
the Leading Edge and the Trailing Edge of the flat plate, leads to the modification of the
flow topology as well as the characteristics of the unsteady aerodynamic forces. Based on
the CFD and ROM solutions we showed that: the mean lift coefficient decreases when the
rotation axis moves further away from the leading edge; the oscillation amplitudes, Ai, of
the unsteady lift coefficient increase when the rotation axis moves further away from the
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middle of the flat plate; and the phases, φi, are modified proportionally to the importance
of the rotation speed of the TE or LE.
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Appendix A

We consider the equation:

Ac· cos(x) + As· sin(x) = A· sin(x + ϕ) (A1)

where x is the variable term and Ac, As, A, and φ are constant parameters.
At x = xm, A·sin(xm + φ) achieves its maximum (or minimum) value, thus:

d
dx

(Ac· cos(x) + As· sin(x))xm = 0 and sin(xm + ϕ) = ±1 (A2)

So

xm = Atg
(

As

Ac

)
and xm + ϕ =

π

2
± nπ (A3)

where n = 0, 1, 2, 3, . . .
Finally by replacing x by xm = Atg(As/Ac) in (A1) we obtain:

A = Ac· cos(Artg(
As

Ac
)) + As· sin(Artg(

As

Ac
)) and ϕ = Artg(

Ac

As
)± nπ (A4)

Appendix B

Defining the function f (x) = cos(θm + θ0 cos(x)):

f (x) = cos(θm) cos(θ0 cos(x))− sin(θm) sin(θ0 cos(x)) (A5)

Using the Taylor development, we have:

f (x) = cos(θm)
∞
∑

n=0
(−1)n θ2n

0 cos2n(x)
(2n)! )− sin(θm)

∞
∑

n=0
(−1)n θ2n+1

0 cos2n+1(x)
(2n+1)! )

= cos(θm)

(
1− θ2

0 cos2(x)
2

)
− sin(θm)(θ0 cos(x))+

cos(θm)
∞
∑

n=2
(−1)n θ2n

0 cos2n(x)
(2n)! )− sin(θm)

∞
∑

n=1
(−1)n θ2n+1

0 cos2n+1(x)
(2n+1)! )

(A6)

Replacing cos2(x) by 0.5(1 + cos(2x)), we obtain:

f (x) = cos(θm)

(
1−

θ2
0

4

)
− sin(θm)θ0 cos(x)− cos(θm)

θ2
0

4
cos(2x) +

_
E0(x) (A7)

where
_
E0(x) =

∞

∑
n=0

sin(θm + n
π

2
)

θn+3
0 cosn+3(x)

(n + 3)!
(A8)



Symmetry 2022, 14, 88 17 of 19

We know that:

cos(θ0) = 1−
θ2

0
2
+

∞

∑
n=2

(−1)n θ2n
0

(2n)!

and

sin(θ0) = θ0 +
∞

∑
n=1

(−1)n θ2n+1
0

(2n + 1)!

Thus, we can obtain the solution with error estimation
^
E(x):

cos(θm + θ0 cos(x)) =
^
A0 +

^
A1· cos(x) +

^
A2· cos(2x) (A9)

where
^
A0 =

1
2

cos(θm)(cos(θ0) + 1);
^
A1 = − sin(θm) sin(θ0) and

^
A2 =

1
2

cos(θm)(cos(θ0)− 1) (A10)

and the error estimations

^
E(x) =

_
E0(x)− cos(θm)

∞

∑
n=2

(−1)n θ2n
0 cos2(x)
(2n)!

+ sin(θm)
∞

∑
n=1

(−1)n θ2n+1
0 cos(x)
(2n + 1)!

(A11)

This error is negligible for low angles θm and θ0. In Figure A1, we display the error

estimations
^
E and

_
E0 for x = 0, θm = 10◦ θ0 = 30◦ and n varying between 0 and 20.
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