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Abstract: Testing for mediation, or indirect effects, is empirically very important in many disciplines.
It has two obvious symmetries that the testing procedure should be invariant to. The ordered
absolute t-statistics from two ordinary regressions are maximal invariant under the associated groups
of transformations. Sobel’s (1982) Wald-type and the LR test statistic are both functions of this
maximal invariant and satisfy two logical coherence requirements: (1) size coherence: rejection at
level α implies rejection at all higher significance levels; and (2) information coherence: more (less)
evidence against the null implies continued (non) rejection of the null. The LR test statistic is simply
the smallest of the two absolute t-statistics, and we show that the LR test is the Uniformly Most
Powerful (information and size) Coherent Invariant (UMPCI) test. In short: the LR test for mediation
is simple and best.

Keywords: coherence; indirect effect; maximal invariant; Sobel; statistics

1. Introduction

Testing for mediation is empirically extremely important in many scientific disciplines.
For example, in psychology: Baron and Kenny [1], which has more than 100,000 citations;
in accounting: Coletti et al. [2]; in marketing: MacKenzie et al. [3]; in sociology: Alwin
and Hauser [4]; in economics: Huber [5], amongst many others. It has also generated
much methodological interest because it is a non-standard problem. Despite its great
popularity, Sobel’s original test has serious shortcomings, including extremely low re-
jection probabilities when the indirect effect is small or estimated with large variance.
See MacKinnon et al. [6] for an overview of various testing procedures. The aim of media-
tion testing is to establish if the causal mechanism of the effect that an independent variable
(X) has on a dependent variable (Y) is via a mediating variable (M). The most basic version
of the model with all variables in deviation from their means is:

Y = βX + θ2M + u, (1)

M = θ1X + v, (2)

where disturbances u and v are assumed to be independent, since Y does not influence M,
e.g., because of the experimental set up. The causal variable X affects Y via two different
pathways. The first is the direct effect of X on Y and is quantified by β. The second is the
indirect effect of X on Y via the mediating variable M. This mediation effect is quantified
by θ1θ2 and only exists if both θ1 and θ2 are non-zero. The null hypothesis of no mediation
is commonly expressed as:

H0 : θ1θ2 = 0,

but it is not a standard testing problem, since the null has a singular point in the origin
where the two axes (θ1 = 0 and θ2 = 0) cross (see Drton [7]) and the distribution of the test
statistic is non-standard as a result.
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The famous test by Sobel [8] is a Wald-type test that standardizes the estimator θ̂1θ̂2.
The test can be expressed in terms of the absolute values of ordinary t-statistics (|T1|, |T2|)
in (1) and (2). This renders a test that is invariant to the parameter value β and to the
variances of u and v. This is no coincidence: all invariant testing procedures that exploit all
the information in the data and the model must be based on (|T1|, |T2|) since it is a maximal
invariant as we will see below.

An obvious alternative to the Wald test is the Likelihood Ratio (LR) test, which pro-
vides an optimal test when the null and alternative are both simple. Testing for mediation,
however, involves composite null and alternative hypotheses, as well as nuisance param-
eters. The Neyman-Pearson lemma is not applicable, and no uniformly most powerful
test exists.

We show, nevertheless, that a uniformly most powerful test exists within a class of
procedures that are information coherent and invariant. Information coherence is the logical
requirement introduced in Section 3, that, when information against the null increases,
a test should continue to reject. It differs from the common size coherence that requires
the same when the size (maximum probability of a Type I error) is increased. Both these
coherency requirements are very mild. The LR test is the best coherent invariant test.
Establishing this result is the main contribution of this paper.

A likelihood analysis of the estimators and LR test for mediation requires a distribu-
tional assumption. We will assume a normal distribution for each observation 1 ≤ i ≤ n:
(ui, vi)

′∼I IN(0, diag(σ11, σ22)). This is convenient, but the analysis is also valid asymp-
totically without assuming normality of the errors, since the t-statistics used are still
asymptotically normal.

The joint density of (Y, M) given X can be written as:

fY,M|X(y, m|x; λ) = fY|M,X(y|m, x; λ1)× fM|X(m|x; λ2),

with λ1 = (β, θ2, σ11)
′, λ2 = (θ1, σ22)

′, and λ =
(
λ′1, λ′2

)′. The parameters λ1 and λ2
vary freely as a result of the triangular (recursive) structure of the model. The mediation
variable is the endogenous variable in (2), but is exogenous for θ2 in (1). There is no
feedback or causal relation from Y to M. This can easily be extended to include more
regressors/covariates. This will affect the degrees of freedom in finite samples, but not the
asymptotic distribution of the t-statistics. One could also use instrumental variables, but X
and M appear in both equations and in the standard setup u and v are independent because
of the experimental interpretation of M and, without it, parameters are not identified. The
log-likelihood given n independent observations is the sum of two Gaussian log-likelihoods
corresponding to (1) and (2):

`(λ) ∝ − 1
2σ11

n

∑
i=1

(yi − βxi − θ2mi)
2 − n

2
log(σ11)−

1
2σ22

n

∑
i=1

(mi − θ1xi)
2 − n

2
log(σ22). (3)

As a consequence, the Maximum Likelihood Estimators (MLEs) for θ1 and θ2 are the
usual OLS estimators for the two equations separately. The MLE for the full λ is minimal
sufficient, and its dimension is equal to the number of parameters. The model is a full
exponential model (see Van Garderen [9]), and the MLE is a complete sufficient statistic.
Inference on the parameters can, therefore, be based on the MLE without loss of information.
Randomization in the test procedure will lead to a loss of information and power. Hence,
we will not consider randomized tests or bootstrap procedures. Finally, the information
matrices will be block diagonal in λ1 and λ2 as well as in (β, θ2)

′, σ11, θ1, and σ22. As a
result the standard t-statistics, T1 and T2 for θ1 and θ2 are asymptotically independent and
normally distributed.

2. Symmetry and Invariance

It is clear that the problem has a number of symmetries and invariances. The null
hypothesis of no mediation θ1θ2 = 0 remains true or false if we:
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(i) Interchange θ1 and θ2;
(ii) Change the signs of θ1 or θ2;
(iii) Change the values of the nuisance parameters σ11, σ22, or β.

We want a test procedure that respects these symmetry and invariance properties. This
may not be straightforward because the distributions of test statistics will generally depend
on nuisance parameters, even under the null. Moreover, the t-statistics have different degrees
of freedom. We will first establish the maximal invariance of the two t-statistics under a
group of location-scale transformations in finite samples. This covers the invariance with
respect to nuisance parameters in (iii). Invariant procedures based on the minimal sufficient
statistics should depend on the t-statistics only, in finite samples as well as asymptotically.
By moving to the asymptotic normal distribution, we can abstract from the difference in
the degrees of freedom and consider the permutation invariance in (i) and the reflection
invariance in (ii).

The finite-sample distribution involves t-distributions with different degrees of free-
dom and is further complicated by the fact that the standard deviation of θ̂2, σθ̂2

, depends on
M. Even in finite samples, however, we can derive exact results that provide a strong justifi-
cation for restricting attention to the t-statistics. Proposition 1, derived in Hillier et al. [10],
is a particular case in point and establishes that T is a maximal invariant regardless of
sample size.

Proposition 1. The testing problem is invariant under the group K of transformations acting on(
β̂, θ̂2, s11, θ̂1, s22

)
defined by:(

β̂, θ̂2, s11, θ̂1, s22
)
→
(√

a1
(

β̂ + a0
)
,
√

a1/a2θ̂2, a1s11,
√

a2θ̂1, a2s22

)
,

a0 ∈ R, a1, a2 ∈ R+.

The induced group of transformations K̄ acting on the parameter space is defined by:

(β, θ2, σ11, θ1, σ22)→
(√

a1(β + a0),
√

a1/a2θ2, a1σ11,
√

a2θ1, a2σ22

)
The vector of t-statistics is a maximal invariant statistic under the group of transformations K:

T = (T1, T2)
′ =

(
θ̂1/

√
1

n− 2
s22(x′x)−1, θ̂2/

√
1

n− 3
s11/s22

)′
.

A parameter-space maximal invariant under the induced group K̄ is:

µ = (µ1, µ2)
′ =

(
θ1/
√

σ22(x′x)−1, θ2/
√

σ11

σ22/n

)′
.

The distribution of (T1, T2)
′ depends only on (µ1, µ2)

′.

This proposition justifies restricting the attention to the two t-statistics, even in finite
samples. The proof is given in Hillier et al. [10] and further establishes that T1 and T2 are
independent. The t-statistic T2 has one degree of freedom less than T1, since (1) has one
more variable than (2). This difference compromises the permutation symmetry but is
practically unimportant, unless the number of observations is small, for instance, less than
30. Throughout the rest of the paper, we will, therefore, use the limiting normal distribution
for the t-statistics. Hence, let µ = (µ1, µ2)

′ =
(
θ0

1/σθ1 , θ0
2/σθ2

)′ where θ0
1 , θ0

2 denote the
true parameter values and σθ1 , σθ2 the standard deviations of the OLS estimators, then

asymptotically: (T − µ)
d→ N(0, I2), but we continue as if this is the exact distribution and

state this explicitly in:
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Assumption 1. Gaussian Shift Experiment

T ∼ N(µ, I2)

Turning to symmetries (i) and (ii), let G1 be the group of permutations and G2 the
group of reflections or sign changes. The two groups only have the identity element in
common, and the full group G = G1×G2, generated by G1 and G2, has 2!22 = 8 elements.
The density after a sign change in Tk is obtained by a corresponding sign change in µk, and
density for a permutation of T is also obtained by permuting µ accordingly. Hence, for any
element g∈ G, we have g · T∼ N(g · µ, I2) or Pgµ[gT ∈ A] = Pµ[T ∈ A], so the distribution
is invariant; see Lehmann and Romano [11].

It is clear that the absolute order statistic, denoted (|T|(1), |T|(2)) with 0 ≤ |T|(1) ≤
|T|(2), is invariant because its value does not change by permuting or changing signs in T. It
is also maximal invariant because, for two T and T̃ such that (|T|(1), |T|(2)) = (|T̃|(1), |T̃|(2)),
this can only occur if the two elements in T̃ are a permutation of the two elements in T and
possible changes in signs of the elements. There must exist a transformation g = g1 · g2 ∈
G1 × G2 s.t. T̃ = g · T. The same argument holds for the ordered absolute parameter
(|µ|(1), |µ|(2)) since the group of transformations is the same on parameter and sample
space. We have, therefore, established the following:

Proposition 2. The testing problem H0 : µ1µ2 = 0 is invariant under the group of transformations
G = G1×G2 acting on T and µ, given Assumption 1. The absolute order statistic

(
|T|(1), |T|(2)

)
with 0 ≤ |T|(1) ≤ |T|(2) is a maximal invariant statistic, and the absolute order parameter(
|µ|(1), |µ|(2)

)
with 0 ≤ |µ|(1) ≤ |µ|(2) is a maximal invariant parameter under the group of

transformations G = G1×G2. The distribution of (|T|(1), |T|(2)) depends only on (|µ|(1), |µ|(2)).

Note that (|T|(1), |T|(2)) is a function of the complete sufficient statistics and, hence,
a maximal invariant that exploits all the information in the data. A randomized test or
another procedure that is not a function of (|T|(1), |T|(2)) cannot do better in terms of power.

For deriving the joint distribution of this maximal invariant (|T|(1), |T|(2)), first note
that if scalar T∼N(µ, 1), then |T| has the folded normal distribution (noncentral Chi-
distribution with one degree of freedom) with density:

f|T|(t, µ) = φ(t + µ) + φ(t− µ) =

√
2
π

exp(−(t2 + µ2)/2) cosh(µ t), for t ≥ 0, (4)

with φ(·) the standard normal density function. Second, |T1| and |T2| are independent and,
hence, by Equation (6) of Vaughan and Venables [12], we obtain after simplification:

Lemma 1. The density of the maximal invariant stated in Proposition 2 equals:

f|T|(1),|T|(2)(t1, t2, µ1, µ2) =
2
π
{cosh(t1µ1) cosh(t2µ2) + cosh(t1µ2) cosh(t2µ1)}

× e−(t
2
1+t2

2+µ2
1+µ2

2)/2, for 0 ≤ t1 ≤ t2. (5)

3. Test Statistics, Critical Regions, and Coherence

The previous section established that invariant test procedures should be based on the
ordered absolute t-statistic. The classic test by Sobel [8] and the LR test are both functions
of (|T|(1), |T|(2)). The Sobel test statistic is the square root of the Wald statistic W based on
θ̂1θ̂2 and its standard error derived by the delta method:
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√
W =

(
T2

1 T2
2

T2
1 + T2

2

)1/2

=
|T|(1)|T|(2)√
|T|2(1) + |T|

2
(2)

. (6)

The LR test statistic is easily obtained by maximizing the log-likelihood with and without
the restriction that either θ1 or θ2 is zero and:

LR = min{|T1|, |T2|} = |T|(1). (7)

An equivalent LR test can also be based on the minimum of two F-statistics f1 = T2
1 and

f2 = T2
2 .

In both cases, we reject when the test statistic is larger than the two-sided critical
value from a standard normal distribution. The rejection probability for both tests is mono-
tonically increasing in |µ|(2) under the null with |µ|(1) = 0. The size, i.e., the maximum
rejection probability under H0, is attained when |µ|(2) → ∞. The largest absolute t-value
will diverge in that case, and the Sobel and LR test simply reject when the smallest absolute
t-value is larger than the usual critical value, 1.96 for a 5% level test.

Rather than the one-dimensional test statistics, we can define tests in terms of their
critical region (CR) in the sample space of dimension two. The sample space for (|T1|, |T2|)
is the quadrant R2

+, and the sample space for the maximal invariant (|T|(1), |T|(2)) is an

octant in R2 : with T =
{
(|T|(1), |T|(2)) ∈ R2

+

∣∣∣0 ≤ |T|(1) ≤ |T|(2) ≤ ∞
}

. The LR critical
region is:

CRLR(α) =
{
T
∣∣∣zα/2 ≤ |T|(1) ≤ |T|(2) ≤ ∞

}
,

with zα/2 the (two-sided) critical value of standard normal variate, i.e., P[|Z| > zα/2] = α.
The boundary of the critical regions for the LR and Sobel test in the sample space for

(|T1|, |T2|) are given in Figure 1.

W0.01

LR0.01

W0.05

LR0.05

W0.10

LR0.10

0 1 2 3 4 5 6
→ |t1 |0

1

2

3

4

5

6

↑ |t2 |

1.64485

1.95996

2.57583

Figure 1. Boundaries ∂CR for Sobel-(Wald) and LR tests in R2
+, the sample space for |t|.
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Both the LR and Wald CR have two desirable properties. First, if they reject at level
α, then they also reject at any other level that is larger than α. Second, if evidence against
the null is accumulating by increasing one or both of the t-statistics, the tests will continue
to reject, and, if evidence is decreasing, they will continue to accept (not reject) the null
hypothesis. The first property we call size or α coherence, with α added to the usual term to
distinguish it from the second property we call information coherence. We formalize these
concepts next. This allows us to prove the main theorem that the LR is the most powerful
CR that respects both coherence properties.

Information and Size Coherence

In general, it is desirable for testing procedures to continue to reject if the evidence
against the null hypothesis is increased and to continue to accept (i.e., not reject) when
evidence against the null is decreasing. Thus, if a t-statistic for a single parameter in a
one-sided alternative is increasing and we reject for t = 2, then we should also want to reject
for t > 2 because this represents a value that is even less likely, more extreme, under the
null and commonly interpreted as more evidence against the null. In multivariate settings,
this is less trivial because no uniformly most powerful test exists, and the separate test
statistics might be correlated. Nevertheless, in the mediation case with H0 : θ1 = 0∨ θ2 = 0,
the two t-tests are independent, and it seems reasonable to require that one continues to
reject when either t1 and/or t2 is increasing in absolute value, since the information against
the null is strengthening, and continue to accept when either t1 and/or t2 is decreasing
towards 0, since the information against the null is weakened. We define a class of size α
critical regions that formalizes this requirement and show that the LR test is optimal in this
class of tests that respects information coherence. Consider CR and acceptance region (AR)
for (|T1|, |T2|) ∈ R2

+.

Definition 1. Information Coherence. Cα is the class of all information coherent critical regions
of size α defined by the property that, with δ1, δ2 ∈ R+

(i) for any CR ∈ Cα if (|T1|, |T2|) ∈ CR⇒ (|T1|+ δ1, |T2|+ δ2) ∈ CR,
or, equivalently,

(ii) for any AR ∈ Cα if (|T1|, |T2|) ∈ AR⇒ (|T1| − δ1, |T2| − δ2) ∈ AR.

Traditional (α) coherence is a property of a family of CRs when the size of the test
varies, but information coherence considers a fixed α and varying values of the test statistics.

Definition 2. Size Coherence. A family of CR(α) indexed by its size α is size or α coherent iff
CR(α) ⊆ CR(α̃)⇔ α ≤ α̃.

A smaller significance level requires more extreme observations and, hence, a smaller
CR. Note that the definition of α coherence does not require the definition of the statistics
involved, but information coherence uses explicit statistics.

We show in Appendix A that a family of information coherent CRs has the following
properties, with ∂CR the boundary of CR in R2

+ that separates the CR from the AR, and
cv1(t) and cv2(t) the critical values for |T1| and |T2|, respectively, either simultaneously or
conditional on the other:

Proposition 3. Any CR ∈ Cα and its boundary ∂CR have the following topological and statistical
properties:

(i) CR is simply connected.
(ii) ∂CR is a continuous plane curve.
(iii) ∂CR is monotonically weakly decreasing.
(iv) ∂CR can be parametrically represented globally as ∂CR(τ) = (cv1(τ), cv2(τ)) using a

one-dimensional τ ∈ R, and locally as ∂CR(t1) = (t1, cv2(t1)) if not vertical, and/or
∂CR(t2) = (t2, cv1(t2)) if not horizontal.
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(v) The class Cα contains critical regions that may not be convex, but no critical regions that are
strictly concave.

(vi) A test with CR ∈ Cα can only be size correct and admissible if limt1→∞ cv2(t1) = zα/2.

Proposition 3 is instrumental in proving the optimality of the LR test and showing
that the Sobel and LR tests are information and size coherent.

Proposition 4. The Sobel (Wald) test and LR test of size α, both respect

- information coherence: CR√W(α), CRLR(α) ∈ Cα as well as
- size coherence: CRLR(α) ⊂ CRLR(α̃) and CR√W(α) ⊂ CR√W(α̃) iff α̃ > α.

This result only states that both tests share two desirable properties, but does not
imply that both tests are equally good. The power of the LR is much better than Sobel’s
test, which suffers from extremely low power when the mediation effect is small or is
inaccurately estimated. In fact, the LR test is better than any other coherent test in Cα,
which we are now able to state and prove in the main theorem of the paper.

Theorem 1. The LR test of size α is the uniformly most powerful test in Cα.

Proof. The CRLR(α) = {min{|T1|, |T2|} ≥ za/2} sets the critical value for the cv1(t2) =
zα/2 for all t2 ≥ t1 ≥ 0, which is the smallest value that cv1 can take for all values of
t2 while still being size-correct according to (iii) and (iv) of Proposition 3. Analogously,
cv2(t1) = zα/2 for all t1 ≥ t2. So CRLR(α) is the closure of Cα and any member CR(α) ⊆
CRLR(α). Hence, P[CRLR(α) | Ha] is larger than for any other CR(α) ∈ Cα that is not equal
to CRLR(α) a.s. This holds uniformly for all values of µ under H0.

This optimality property of the LR test is derived under coherence requirements that
are very weak: it seems more than reasonable to require that any test continues to reject if
more extreme outcomes are observed or if the level of the test is increased.

4. Discussion and Conclusions

This paper has exploited the symmetry present in the mediation testing hypothesis
H0 : θ1θ2 = 0 and used invariance arguments to reduce the sample space to an eighth of
R2. We have developed a coherence framework to formulate and analyze the requirement
that increasing or decreasing information against the null leads to coherent decisions. We
call tests or CRs with this property information coherent, which is distinct from the more
standard (size) coherent property that tests may possess. The Sobel test is both information
and size coherent, but has very poor null rejection and power properties.

The LR test is much better than the Sobel test, and this paper shows the LR test to be
the best possible of all tests that satisfy the basic coherence requirements. The optimality
lends support to Perlman and Wu [13] on their preference for the LR test.

Nevertheless, the LR test has some serious shortcomings, like the Sobel test, when
detecting deviations from H0. In particular, when both θ1 and θ2 are close to 0, or are
estimated inaccurately, it is extremely conservative and the power deteriorates and goes to
α2 when µ→ (0, 0)′.

The bootstrap does not provide an answer because of the (strong) dependency on the
nuisance parameter. Of course, it may provide small-sample corrections and avoid asymp-
totic approximations and strong distributional assumptions. However, bootstrap versions
of the LR and Sobel test still lack power and are neither size nor information coherent.

Van Garderen and Van Giersbergen [14] show there is an opportunity to gain power
without violating the size condition by adding a small area near the diagonal where the
opportunity to detect deviations from H0 are best. It is uniformly more powerful than the
LR test, but is not in Cα since the boundary ∂CR is monotonically increasing and, hence,
violating property (iii) of Proposition 3. Therefore, the LR test remains the optimal coherent
choice for mediation testing. It is simple and best.
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Appendix A. Proofs

Throughout this Appendix we use:

t = (t1, t2)
′, v = (v1, v2)

′ ∈ R2, |t| = (|t1|, |t2|)′, δ = (δ1, δ2)
′ ∈ R2

+.

In order to prove the properties of CR ∈ Cα and its boundary, we first note from the
definition of Cα that if |t| ∈ CR ⊆ R2

+, then CR also contains the top right quarter defined
by the intersection of two half-planes:

Q(|t|) =
{

v ∈ R2|v1 ≥ |t1|, v2 ≥ |t2|
}

,

i.e., a quarter with |t| as its bottom left corner. The interior of Q(|t|) will be denoted:

Qo(|t|) =
{

v ∈ R2|v1 > |t1|, v2 > |t2|
}

.

Proposition A1. In Definition 1, the conditions on CR and AR, i.e., (i) and (ii), are equivalent.

Proof. If there is a |t| ∈ CR and a δ = (δ1, δ2) ∈ R2
+ such that |t̃| = (|t1|+ δ1, |t2|+ δ2) ∈

AR, then there is an element in AR such that |t̃| − δ ∈ CR. So for any |t| for which (i) does
not hold, there is an |t̃| for which (ii) does not hold. Similarly, (i) cannot hold if (ii) does not
hold. Hence, (i) and (ii) are equivalent.

Proof of Proposition 3. Topological and statistical properties (i)–(vi).

Property (i). Any CR ∈ Cα is simply connected.

Proof. If |t|, |t̃| ∈ CR then a path connecting the two points can be constructed inside
Q(|t|) ∪ Q(|t̃|). This path can be a single straight line if |t| ∈ Q(|t̃|) or |t̃| ∈ Q(|t|), with
|t1| ≥ |t̃1| ∧ |t2| ≥ |t̃2| or |t̃1| ≥ |t1| ∧ |t̃2|, respectively. If |t1| > |t̃1| and |t2| < |t̃2|, then a
path by two linear parts exists: first, (|t1|, |t2|)→ (|t1|, |t̃2|) linearly, by a linear contraction
C : [0, 1]×R → R2 :(λ, |t2|) 7→ (|t1|, |t2|+ λ(|t̃2| − |t2|)). This line piece lies in Q(|t|) by
definition since |t2|+ λ(|t̃2| − |t2|) > |t2| and |t1| is fixed. Any closed path γ : S 7→ Q(|t|),
with S ⊆ R, can be shrunk to (|t1|, |t̃2|). Second, (|t1|, |t̃2|) → (|t̃1|, |t̃2|) linearly, which
lies in Q(|t̃|) because |t1| > |t̃1| and |t̃2| is fixed. Any closed path γ : S 7→ Q(|t̃|) can be
shrunk to (|t1|, |t̃2|). For |t1| < |t̃1| and |t2| > |t̃2|, the result can be shown analogously but
moving first from (|t̃1|, |t̃2|)→ (|t̃1|, |t2|) and then from (|t̃1|, |t2|)→ (|t1|, |t2|). Combining
these two results, we have that any closed path γ : S 7→ Q(|t|) ∪ Q(|t̃|) can be shrunk
to (max(|t1|, |t̃1|), max(|t2|, |t̃2|)). There are no holes and the genus of Q(|t|) ∪Q(|t̃|) is 0.
Hence, CR ∈ Cα is simply connected.

Properties (ii) and (iii). The boundary ∂CR of any CR ∈ Cα is a continuous plane
curve that is monotonically (weakly) decreasing in the sense that, if t, t̃ ∈ ∂CR, then
t̃1 ≥ t1 ⇔ t̃2 ≤ t2, but may be non-differentiable at infinitely many points.

Proof. If |t| ∈ ∂CR of any CR ∈ Cα, then any |t̃| with |t̃1| ≥ |t1| and |t̃2| = |t2| is either on
the boundary ∂CR or in the interior of CR. This implies that the boundary for this value of
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|t̃1| is equal or below |t2| and, therefore, weakly decreasing. That the boundary is a plane
curve and continuous follows from Lemma A1 below, and the construction of the paths in
the proof of the simple connectedness. The curve can be a step function with an infinite
number of infinitesimal steps.

Property (iv). ∂CR can be parametrically represented globally as ∂CR(τ) = (cv1(τ), cv2(τ))
and locally as ∂CR(t1) = (t1, cv2(t1)) if not vertical and/or ∂CR(t2) = (t2, cv1(t2)) if not hori-
zontal.

Proof. By properties (i)–(iii) and their proofs, it follows immediately that we can param-
eterize the boundary as a continuous function of a one-dimensional parameter τ. If the
boundary is not vertical, we can locally use |t1| as parameter and, if the boundary is not
horizontal, then we can locally use |t2| as parameter. Where it is vertical, the boundary
associates a given |t1| with a set of points for |t2|, and, when it is horizontal, it associates a
set of points |t1| with a given |t2|.

Property (v). The class Cα contains critical regions that may not be convex, but no
critical regions that are strictly concave.

Proof. Cα contains CRs with step function boundaries. They are not convex. Nonconcavity
is obvious since ∂CR is monotonically (weakly) decreasing.

Property (vi). A test can only be size correct and admissible if limt1→∞ cv2(t1) = zα/2.

Proof. The boundary ∂CR is weakly decreasing, and the critical value for |t2| will be
smallest when |t1| → ∞. So we can define the minimum and limiting value:

cv∗2 = min
|t1|≥0

cv2(|t1|) = lim
|t1|→∞

cv2(|t1|).

and, similarly, cv∗1 = min cv1(|t2|) = lim|t2|→∞ cv1(|t2|). The normal distribution N(µ, 1)

has survival function Sµ(c) = 1
2 −

1
2 erf

(
(c− µ)/

√
2
)

,, which has the property that for any
fixed finite 0 ≤ c < ∞ :

lim
µ→∞

∫ ∞

c
f (t, µ)dt = lim

µ→∞
Sµ(c) = 1 (A1)

Without loss of generality, we can set µ2 = 0 under H0 and write the Null Rejection
Probability (NRP) as a function of µ1 :

NRP(µ1) = P(Reject | µ1) =
∫ ∞

cv∗1

∫ ∞

cv2(|t1|)
f (|t1|; µ1) f (|t2|)dt2dt1

=
∫ ∞

cv∗1
f (|t1|; µ1)

∫ ∞

cv2(|t1|)
f (|t2|)dt2dt1

=
∫ ∞

cv∗1
f (|t1|; µ1)S0(cv2(|t1|))dt1.

Consider the two cases where cv∗2 is below or above zα/2

(a) In case cv∗2 < zα/2 there will exist a ε > 0 such that cv∗2 = zα/2 − ε . The survival
function is monotonically decreasing so S0(cv∗2) = S0(zα/2 − ε) > α. Hence:

NRP(µ) =
∫ ∞

cv∗1
f (|t1|; µ)S0(cv2(|t1|))dt1 > α

∫ ∞

cv∗1
f (|t1|; µ)dt1,

The last term converges to 1 when µ→ ∞ by Equation (A1), and we have limµ→∞ NRP(µ)
> α. The size condition is, therefore, violated.
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(b) In case cv∗2 > zα/2 there will exist a ε > 0 such that cv∗2 = zα/2 + ε and limµ→∞ NRP(µ)
< α. Choosing cv2(|t1|) = zα/2 (the LR test with size α) has limλ→∞ NRP(µ) = α and
dominates any test with cv∗2 > zα/2 in terms of power. The same arguments hold for
cv∗1 , so, for a size α test to be admissible, it must satisfy cv∗1 = cv∗2 = zα/2.

Lemma A1. Given four corner points of any regular square in R2
+,

t(1) = (t1, t2), t(2) = (t1, t2 + ε), t(3) = (t1 + ε, t2 + ε), t(4) = (t1 + ε, t2),

for any real ε > 0, at least one corner is not on the boundary.

Proof. Since |t|(1) is the bottom left corner and |t|(3) the top right, |t|(3) ∈ Qo(|t|(1)). Hence,
if |t|(1) is on the boundary, then |t|(3) ∈ CR\∂CR and not all four points can be on the
boundary.

The number of points could be zero if the square is entirely inside AR or CR. There
could be two points on the boundary: |t|(1) and |t|(2) (vertical), |t|(1) and |t|(4) (horizontal),
or |t|(2) and |t|(4) (strictly decreasing). There could be three points on the boundary if it
contains the path from |t|(2) vertically down via |t|(1) horizontally to |t|(4).

Proof of Proposition 3. In order to show that Sobel and LR tests are information coherent,
we prove that the tests are (weakly) increasing in |t1| and |t2|. The CR for the Sobel test is:

CR√W(α) =

|t| ∈ R2
+

∣∣∣∣∣∣
√

W ≡ |t1||t2|√
|t1|2 + |t2|2

> zα/2


The partial derivative ∂

√
W

∂|t1|
= |t2|3 ·

(
|t1|2 + |t2|2

)−3/2
> 0 since |t2| > 0 a.s. So

√
W is

increasing in |t1| and by symmetry
√

W is increasing in |t2| for any |t| ∈ R2
+. Hence, if√

W > zα/2 for |t|, then the test will continue to reject for |t̃| with one of its elements larger
than |t| since

√
W̃ >

√
W > zα/2. This shows information coherence for fixed α, and α

coherence when α is varying since CR√W(α) ⊂ CR√W(α̃) if α < α̃⇔ zα/2 > zα̃/2.
The CR for the LR test is:

CRLR(α) =
{
|t| ∈ R2

+|LR ≡ min{|t1|, |t2|} > zα/2

}
LR is never decreasing in |t1| or |t2|. That zα/2 is the correct critical value in both cases
follows from the fact that W → |t2| as |t1| → ∞ (and |t1| as |t2| → ∞) and LR = |t2| as
|t1| → ∞ (and |t1| as |t2| → ∞). The marginal distribution of |t1| (or |t2|) is the folded
standard normal distribution with critical value zα/2.

Alternative Proof of Main Theorem 1. The boundary ∂CRLR(α) is defined by the quar-
ter Q

(
(zα/2, zα/2)

′
)

. The corner (zα/2, zα/2)
′ contains the smallest values for |t1| and |t2|

such that the NRP does not exceed α, even as (µ1, µ2) → (0, ∞) or (µ1, µ2) → (∞, 0)
and cv1(|t2|) = zα/2 = cv2(|t1|) for all |t1|, |t2|. Any other CR ∈ Cα, CR ⊂ CRLR(α)
since it could not satisfy the size condition if cv∗1 < zα/2 by Proposition 3 (vi). Hence,
P[CR] < P[CRLR(α)] unless CR = CRLR a.s. This holds under the null as well as under the
alternative, so CRLR(α) is at least as powerful as any other test in Cα. The LR test of size α
is the most powerful test in Cα.
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