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Abstract: We consider the Cauchy problem of the three-dimensional primitive equations of geo-
physics. By using the Littlewood–Paley decomposition theory and Fourier localization technique,
we prove the global well-posedness for the Cauchy problem with the Prandtl number P = 1 in
variable exponent Fourier–Besov spaces for small initial data in these spaces. In addition, we prove
the Gevrey class regularity of the solution. For the primitive equations of geophysics, our results can
be considered as a symmetry in variable exponent Fourier–Besov spaces.
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1. Introduction

The primitive equations of geophysics are a fundamental mathematical model that
describes the dynamics of the oceans and atmosphere on a large-scale. For more study of
these equations and their applications, see the monographs [1–3]. The vast atmospheric
and oceanic circulations, as geophysical flows, apart from obeying the fundamental rules of
fluid mechanics, are also influenced by the essential properties of the Earth. The effects of
Earth’s rotation and the stratification of density caused by gravity are the main properties
that differentiate fluid flow in the oceans and atmosphere.

The rotation produces the Coriolis force, which mathematically results in the occur-
rence of the Poincare wave. Waves generated by Poincare are dispersive and travel rapidly
inside the region. Additionally, the Coriolis effect generates fluid vertical rigidity, which is
explained in the Taylor–Proudman theorem. The theorem states that when a fluid rotates
fast, all particles on the same vertical have the same horizontal velocity.

Gravity has a tendency to pull the denser fluid downwards and the light fluid up in
the same direction. The fluid has a steady stratified structure under equilibrium conditions
and consists of horizontal layers that are stacked vertically. Gravity makes systematic
attempts to restore equilibrium as fluid motions disrupt it. The Brunt–Vaisala frequency and
buoyancy are used to determine the importance of these stratifications. Small perturbations
result in the generation of additional dispersive waves known as internal gravity waves. In
geophysical fluids, an interesting situation occurs when there is a significant interaction
between rotation and stratification, but neither is dominating.

On this basis, the large motions of the oceans and atmosphere are generally formulated
by the following 3D primitive equations:

at + µ∆a + (a · ∇)a + Ωe3 × a +∇p = ωϑe3 (t, y) ∈ (0, ∞)×R3,
ϑt + ν∆ϑ + (a · ∇)ϑ = −M2a3 (t, y) ∈ (0, ∞)×R3,
diva = 0 (t, y) ∈ (0, ∞)×R3,

(1)
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where a and p denote the unknown velocity field and pressure of the fluid. A scalar function
ϑ represents the density fluctuation in the fluid, while a0 is the given initial velocity field
that satisfies ∇ · a = 0. ω, µ and ν are positive constants related to gravity, viscosity and
diffusivity, respectively. The Coriolis parameter Ω ∈ R denotes the speed of rotation around
the vertical unit vector e3 = (0, 0, 1). M ≥ 0 is the stratification parameter represents the
Brunt–Visala wave frequency. The ratios P := µ

ν and B := Ω
M represents the Prandtl number

and the “Burgers”number of geophysics, respectively. The derivation of the equations
and more explanations related to their physical foundation can be found in [4,5] and the
references therein.

If M = 0, Ω = 0 and ϑ = 0, Equation (1) is reduced to the following 3D incompressible
Navier–Stokes (NS) equations{

at + µ∆a + (a · ∇)a +∇p = 0 (t, y) ∈ (0, ∞)×R3,
diva = 0 (t, y) ∈ (0, ∞)×R3.

(2)

The mathematical theory of Equation (2) comes from the well-known article by Jean
Leray [6], which studies the global existence of NS equations with respect to weak solutions,
but the uniqueness and regularity question are still open in three dimensions (3D). The first
well-posedness result of Equation (2) was obtained by Fujita and Kato [7], which shows the
local well-posedness when the Hβ(R3) with β ≥ 1

2 and global well-posedness belonging to

H
1
2 (R3) when the initial data are small. This solution was further extended to a family of

function spaces. For a detailed study in this direction, see [8–10]. It is important to note

that results related to well-posedness are proved in Ḃ
−1+ 3

ρ
ρ,r (R3) for 1 ≤ r ≤ ∞, 1 ≤ ρ < ∞

for 1 ≤ r ≤ ∞, 1 ≤ ρ < ∞ by Cannone et al. [8], Koch and Tataru [9] in BMO−1 and
Lei [10]. However, Bourgain and Pavlović [11] studied the ill-posedness of Equation (2) in
Ḃ−1,∞

q (R3) for 1 ≤ q ≤ ∞ and Yoneda [12] in Ḟ−1
∞,r(R3) for 2 < r ≤ ∞.

If Ω 6= 0, M = 0 and ϑ = 0, Equation (1) reduces to 3D incompressible NS equations
with Coriolis force{

at + µ∆a + (a · ∇)a + Ωe3 × a +∇p = 0 (t, y) ∈ (0, ∞)×R3,
diva = 0 (t, y) ∈ (0, ∞)×R3.

(3)

The global well-posedness of Equation (3) has also received a great interest, for more
study in this direction, see [4,13]. In particular, Giga et al. [14] proved the global well-
posedness of Equation (3) for small initial data in FM−1

0 (R3), Hieber and Shibata [15] in

H
1
2 (R3), Fang et al. [16] in FḂ

2− 3
ρ

ρ,r (R3) when 1 ≤ r < ∞ and 1 < ρ ≤ ∞, Konieczny and
Yoneda [17] in FḂ−1

1,1 (R
3) ∩ FḂ0

1,1(R
3), Iwabuchi and Takada [18] and in FḂ−1

1,2 (R
3).

In this paper, we consider the Cauchy problem for 3D primitive equations of geophysics.
at + µ∆a + (a · ∇)a + Ωe3 × a +∇p = gϑe3 (t, y) ∈ (0, ∞)×R3,
ϑt + ν∆ϑ + (a · ∇)ϑ = −M2v3 (t, y) ∈ (0, ∞)×R3,
diva = 0, (t, y) ∈ (0, ∞)×R3,
a(y, 0) = a0, ϑ(y, 0) = ϑ0 y ∈ R3,

(4)

where v0 and θ0 are the given initial data.
The following is a brief review of the existence of solutions to Equation (4). Chemin [19]

established the global well-posedness of Equation (4) using very careful energy calculations
for initial data belonging to Ḣ1(R3) ∩ Ḣ1(R3), assuming that Ω = M2 is sufficiently large.
Babin et al. [4] obtained the global solvability of Equation (4) in Hβ(T3) with β ≥ 3

4 for
small initial data and large enough M. Koba et al. [20] obtained the global well-posedness to
Equation (4) by considering P = 1 in Ḣ

1
2 (R3) ∩ Ḣ1(R3). Additionally, they established the

global existence to the solution of Equation (4), when the initial data are small and belonging
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to Ḣ
1
2 (R3). Iwabuchi et al. [21] recently proved the well-posedness to Equation (4) with

P = 1 for the large oscillatory component of initial data belonging to Ḣβ(R3)( 1
2 < β ≤ 5

8 )

and the small quasi-geostrophic component belonging Ḣ
1
2 (R3) with sufficiently large M,

by utilizing the full dispersion effect of stratification and rotation. When the rotation is fast,
Charve and Ngo [22] proved the global well-posedness for primitive equations. Recently,
Abbassi et al. [23] obtained the local well-posedness and global well-posedness results
of Equation (4) for small initial data belonging to Fourier–Besov–Morrey spaces. We can
conclude from the above-mentioned results that there is a significant difference in the well-
posedness of Equation (4) and the incompressible NS Equation (2) or the incompressible NS
equations with Coriolis force (3). Motivated by [17,18,22], we can extend the well-posedness
results of Equations (2) or (3) to the Equation (4).

In this paper, the global well-posedness of the Equation (4) is considered in variable
exponent Fourier–Besov space FḂβ(·)

ρ(·),q. As these spaces are symmetric, the results proved
in this work also have the property of symmetry. The space of variable integrability,
also known as Lebesgue space Lρ(·)(Rn), originated with the article of Orlicz [24], and
was further studied by Musielak [25] and Nakano [26]; however, the present development
started with the papers of Kovaik and Rakosnik [27]. It has received a great deal of attention
in harmonic analysis, as evidenced by [28,29]. For more study in this direction, we refer
the readers to [30] and the references therein. In addition to the theoretical study, these
function spaces have significant uses in image processing [31], fluid dynamics [32], and
partial differential equations [33].

Throughout the paper, we write f . g to represent f ≤ Cg, where C is a positive
constant. In Section 2, we give definitions of some important function spaces and some
useful propositions related to variable exponent function spaces. In Section 3, we establish
the global well-posedness result. In Section 4, the analyticity of global solution is obtained.

2. Preliminaries

First, we give an overview of some important harmonic analysis related to the variable
exponent function spaces.

Definition 1. For the measurable function ρ(·), let

P0 :=
{

ρ(·) : Rn → (0, ∞); 0 < p− = esssup
y∈Rn

ρ(y), esssup
y∈Rn

ρ(y) = p+ < ∞
}

.

The variable exponent Lebesgue space is:

Lρ(·)(Rn) =
{

a : Rn → R is measurable,
∫
Rn
|a(y)|ρ(y)dx < ∞

}
with norm

‖a‖Lρ(·) = in f
{

α > 0 :
∫
Rn

( |a(y)|
α

)ρ(y)
dx ≤ 1

}
.

To distinguish between constant and variable exponents, we use the notation ρ for
constant exponents and ρ(·) for variable exponents. In addition, (Lρ(·)(Rn), ‖a‖Lρ(·)) is a
Banach space.

Definition 2. Let ρ(·), q(·) ∈ P0(Rn), the mixed variable exponent Lebesgue-sequence space is
the set of all sequences {aj}j∈Z of measurable functions in Rn such that

‖{a}j∈Z‖lq(·)
(

Lρ(·)
) := in f

{
λ > 0, $

lq(·)
(

Lρ(·)
)({ aj

λ

}
j∈Z

)
≤ 1

}
< ∞,
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where

$
lq(·)
(

Lρ(·)
)({a}j∈Z

)
:= ∑

i∈Z
in f
{

λj > 0,
∫
Rn

({ aj(y)

λ
1

q(y)
j

})ρ(y)
≤ 1

}
.

Note that, if q+ < ∞, then $
lq(·)
(

Lρ(·)
)({a}j∈Z

)
:= ∑j∈Z ‖aj|q(·)‖

L
ρ(·)
q(·)

.

The Lρ(·) does not have the same desired properties like Lρ as it is not translation
invariant. To ensure the boundedness of Hardy–Littlewood maximal operator on Lρ(·)(Rn),
it is assumed that the standard conditions given below are satisfied.

(i) Locally log-Hölder continuous: For any y, x ∈ Rn, there exists a constant Clog(ρ)
such that

|ρ(y)− ρ(x)| ≤
Clog(ρ)

log(e + |y− x|−1)
, x 6= y;

(ii) Globally log-Hölder continuous: For all y ∈ Rn, there exists a constant independent
of y and some other constant Clog(ρ) such that

|ρ(y)− p∞| ≤
Clog(ρ)

log(e + |y|) .

The set of all functions ρ(·) : Rn → R satisfies (i) and (ii) is denoted by Clog(Rn).

Definition 3. Let β(·) ∈ Clog(Rn) and ρ(·), q(·) ∈ P0(Rn) ∩ Clog(Rn). The variable exponent
homogeneous Besov space Ḃβ(·)

ρ(·),q(·) is

Ḃβ(·)
ρ(·),q(·) =

{
a ∈ D′(Rn); ‖a‖

Ḃβ(·)
ρ(·),q(·)

< ∞
}

with norm
‖a‖
Ḃβ(·)

ρ(·),q(·)
=
∥∥∥{2js(·)∆̇ja

}
j∈Z

∥∥∥
$

lq(·)(Lρ(·))

.

The space D′(Rn) represents the dual space of

D(Rn) =
{

a ∈ T (Rn) :
(

Dαa
)
(0) = 0, ∀α

}
.

Definition 4. Let β(·) ∈ Clog(Rn) and ρ(·), q(·) ∈ P0(Rn) ∩ Clog(Rn). The homogeneous
variable exponent Fourier–Besov space FḂβ(·)

ρ(·),q(·) is defined by

FḂβ(·)
ρ(·),q(·) =

{
a ∈ D′(Rn); ‖a‖

FḂβ(·)
ρ(·),q(·)

< ∞
}

with norm
‖a‖
FḂβ(·)

ρ(·),q(·)
=
∥∥∥{2js(·)∆̇ia

}
j∈Z

∥∥∥
$

lq(·)(Lρ(·))

.

Definition 5. For 1 ≤ r, γ ≤ ∞ and T ∈ (0, T], the variable exponent of Chemin–Lerner type in
a homogeneous Fourier–Besov space Lγ

(
0, T;FḂβ(·)

ρ(·),r
)

is defined by

Lγ
(
0, T;FḂβ(·)

ρ(·),r
)
=
{

a ∈ D′(Rn); ‖a‖
Lγ
(

0,T;FḂβ(·)
ρ(·),r

) < ∞
}
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with norm

‖a‖
Lγ
(

0,T;FḂβ(·)
ρ(·),r

) = ( ∑
j∈Z

∥∥2js(·)∆̇ja
∥∥r

Lγ
T Lρ(·)

) 1
r
.

Proposition 1. The following estimates hold for variable exponent function spaces.
(1) Hölder’s inequality[29]. Let P(R)n is the set of all measurable functions ρ : Rn → [1, ∞) and
ρ(·), q(·), r(·) ∈ P(R)n such that esssup

y∈Rn
ρ(y) = p+ < ∞ and 1

r(y) =
1

ρ(y) +
1

q(y) . Then,

‖ab‖Lr(·)(Rn) = ‖a‖Lρ(·)(Rn)‖b‖Lq(·)(Rn).

(2) Sobolev Embedding [34]. Let s0(·), s1(·) ∈ L∞ with s0(·) ≥ s1(·) and p0(·), p1(·), q(·) ∈
P(Rn). If 1

q(·) and s0(·)− n
p0(·)

= s1(·)− n
p1(·)

are Locally log-Hölder continuous, then

Ḃs0(·)
p0(·),q(·)

↪→ Ḃs1(·)
p1(·),q(·)

.

(3) ([34]) Let s0(·), s1(·) ∈ L∞ with s0(·) ≥ s1(·) and p0(·), p1(·), q(·) ∈ P(Rn). If 1
q0(·)

, 1
q1(·)

and s0(·)− n
p0(·)

= s1(·)− n
p1(·)

+ ε(y) are Locally log-Hölder continuous, where esssup
y∈Rn

ε > 0,

then
Ḃs0(·)

p0(·),q0(·)
↪→ Ḃs1(·)

p1(·),q1(·)
.

Proposition 2. ([35]) Let β > 0, 1 ≤ γ, γ1, γ2, ρ, q, r, σ ≤ ∞, 1
σ = 1

ρ + 1
r and 1

γ = 1
γ1

+ 1
γ2

.
Then,

‖ab‖LγḂβ
σ,q

. ‖a‖Lγ1 Ḃβ
ρ,q
‖b‖Lγ2 Lr + ‖b‖Lγ1 Ḃβ

ρ,q
‖a‖Lγ2 Lr .

3. The Well-Posedness

In this section, we first convert Equation (4) to an equivalent integral form. We refer
the readers to [20] for a comprehensive derivation of the equivalent integral form.

By setting
M := M

√
ω, u := (u1, u2, u3, u4) := (a1, a2, a3,

√
ωϑ/M), u0 := (u1

0, u2
0, u3

0, u4
0) :=

(a1
0, a2

0, a3
0,
√

ωθ0/M) and ∇̃ := (∂1, ∂2, ∂3, 0), Equation (4) can be written as follows:
ut +A u +Bu + ∇̃p = −(u · ∇̃) (t, y) ∈ (0, ∞)×R3,
∇̃ · u = 0, (t, y) ∈ (0, ∞)×R3,
u(y, 0) = u0 y ∈ R3,

(5)

where

A :=


−µ∆ 0 0 0

0 −µ∆ 0 0
0 0 −µ∆ 0
0 0 0 −µ∆

 , B :=


0 −Ω 0 0
Ω 0 0 0
0 0 0 −M
0 0 M 0

.

In order to solve Equation (4), we consider the following integral equation

u(t) = SΩ,M(t)u0 +
∫ t

0
SΩ,M(t− T )P∇̃ · (u⊗ u)dT , (6)

where the Helmholtz projection onto the divergence-free vector fields P̃ := (P̃mn)4×4 is
given by

P̃mn =

{
δmn + RmRn 1 ≤ m, n ≤ 3,
δmn otherwise.
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In addition, SΩ,M(·) represents the Stokes–Coriolis Stratification to the corresponding
linear equations of (1.2) using the Fourier transform under the assumption of µ = ν, which
can be explicitly written as:

SΩ,M(t)u = F−1[cos(Ω
|η|′
|η| t)N1 + sin(Ω

|η|′
|η| t)N2 + N3] ∗ (e−µ∆tu),

where
|η| :=

√
η2

1 + η2
2 + η2

3 , |η|′ :=
√
M2η2

1 +M2η2
2 + Ω2ξ2

3

and

N1 =



Ω2η2
3

|η|′2
0 −M

2η1η3

|η|′2
ΩMη2η3

|η|′2

0 Ω2η2
3

|η|′2
−M

2η2η3

|η|′2
−ΩMη1η3

|η|′2

−Ω2η1η3

|η|′2
−Ω2η2η3

|η|′2
M2(ξ2

1+ξ2
2)

|η|′2
0

ΩMη2η3

|η|′2
−ΩMη1η3

|η|′2
0 M2(η2

1+η2
2)

|η|′2


,

N2 =


0 − Ω2η2

3
|η||η|′

Ωη2η3
|η||η|′

Mη1η3
|η||η|′

Ω2η2
3

|η||η|′ 0 −Ωη1η3
|η||η|′

Mξ1η3
|η||η|′

−Ωη2η3
|η||η|′

Ωη1η3
|η||η|′ 0 M2(η2

1+η2
3)

|η||η|′

−Mη1η3
|η||η|′ −Mη2η3

|η||η|′
M2(η2

1+ξ2
3)

|η||η|′ 0

,

N3 =



M2η2
3

|η|′2
−M

2η1η2

|η|′2
0 −ΩMη2η3

|η|′2

−M
2η1η2

|η|′2
M2η2

1
|η|′2

0 ΩMη1η3

|η|′2
0 0 0 0

−ΩMη2η3

|η|′2
ΩMη1η3

|η|′2
0 Ω2η2

3
|η|′2

.

It is clear that a non-vanishing N j
kl satisfies the following condition, if we denote

(k, l)-th element of matrix Nj(η) by by N j
kl(η)

|Nl
jk| ≤ 2 for η ∈ R3, j = 1, 2, 3 and k, l = 1, 2, 3, 4.

In order to get the global well-posedness and analyticity of the viscous primitive
equations of geophysics in critical variable exponent Fourier–Besov spaces, we use the
following lemma on the existence of fixed point solutions.

Lemma 1 ([36]). Let Y be a Banach space with norm ‖ · ‖ and H : Y×Y → Y is a bounded linear
operator that satisfies ‖H(a, b)‖ ≤ ϕ‖a‖‖b‖ for all a, b ∈ Y and a positive constant ψ. Then, the
equation y = x + H(a, b) has a solution y ∈ Y such that 4ϕ‖y‖ < 1 for any x ∈ Y. Particularly,
there is a solution such that ‖y‖ ≤ 2‖x‖ and it is the only one such that ‖y‖ < 1

2ϕ .

Considering the integral form in Equation (6), we have to make a priori estimates
to prove our main result. In the lemma given below, we prove the linear estimate for
Equation (6).

Lemma 2. Let ρ(·), p1(·) ∈ P(Rn) for p1(·) ≤ ρ(·), β(·) ∈ Clog(Rn), 1 ≤ γ, q ≤ ∞,

I = [0, T), T ∈ (0, ∞] and u0 ∈ FḂ
β(·)+ 3

ρ′(·)
ρ(·),q , then∥∥∥SΩ,M(t)u0

∥∥∥
Lγ1 (I;FḂ

β(·)+ 3
ρ′(·) +

2
γ1

p1(·),q
)

.
∥∥∥u0

∥∥∥
FḂ

β(·)+ 3
ρ′(·)

ρ(·),q

.



Symmetry 2022, 14, 165 7 of 12

Proof. Since SΩ,M is a bounded Fourier multiplier, it can be simply estimated by an
absolute constant. Let ρ∗ = ρ(y)p1(y)

ρ(y)−p1(y)
, by using Proposition 1 and considering p1(·) ≤ ρ(·),

we obtain∥∥∥SΩ,M(t)u0

∥∥∥
Lγ1 (I;FḂ

β(·)+ 3
ρ′(·) +

2
γ1

p1(·),q
)

=
∥∥∥∥∥∥2

j(β(·)+ 3
ρ′1(·)

+
2β
γ1

)
ϕie−t|·|2 û0

∥∥∥
Lγ1 (I;Lp1(·))

∥∥∥
lq

.
∥∥∥ ∑

k=0,±1

∥∥∥2
j(β(·)+ 3

ρ′(·) )ϕiû0

∥∥∥
Lρ(·)

∥∥∥2
j( 3

ρ′1(·)
− 3

ρ′(·)+
2β
γ1

)
ϕj+ke−t|·|2 û0

∥∥∥
Lγ1 (I;Lρ∗ )

∥∥∥
lq

.
∥∥∥ ∑

k=0,±1

∥∥∥2
j(β(·)+ 3

ρ′(·) )ϕjû0

∥∥∥
Lρ(·)

∥∥∥2j 2
γ1 e−t22β(j+k)

∥∥∥
Lγ1 (I)

∥∥∥2
3j( 1

ρ′1(·)
− 1

ρ′(·) )ϕj+k

∥∥∥
Lρ∗

∥∥∥
lq

.
∥∥∥ ∑

k=0,±1

∥∥∥2
3j( 1

ρ′1(·)
− 1

ρ′(·) )ϕj+k

∥∥∥
Lρ∗

∥∥∥2
j(β(·)+ 3

ρ′(·) )ϕjû0

∥∥∥
Lρ(·)

∥∥∥
lq

.
∥∥∥∥∥∥2

j(β(·)+ 3
ρ′(·) )ϕjû0

∥∥∥
Lρ(·)

∥∥∥
lq

=
∥∥∥u0

∥∥∥
FḂ

β(·)+ 3
ρ′(·)

p1(·),q

.

The following fact has been used in the above estimate:

∑
k=0,±1

∥∥∥2
3j( 1

ρ′1(·)
− 1

ρ′(·) )ϕj+k

∥∥∥
Lρ∗

= ∑
k=0,±1

∥∥∥2
3j( 1

ρ′1(·)
− 1

ρ′(·) )ϕj+k

∥∥∥
L

ρ(·)p1(·)
ρ(·)−p1(·)

= ∑
k=0,±1

inf
{

α > 0 :
∫ ∣∣∣23j( 1

ρ′1(·)
− 1

ρ′(·) )ϕj+k

α

∣∣∣ ρ(·)p1(·)
ρ(·)−p1(·) dx ≤ 1

}
= ∑

k=0,±1
inf
{

α > 0 :
∫ ∣∣∣ ϕj+k

α

∣∣∣ ρ(·)p1(·)
ρ(·)−p1(·) 2−3jdx ≤ 1

}

= ∑
k=0,±1

inf
{

α > 0 :
∫ ∣∣∣ ϕj+k

α

∣∣∣ ρ(2j ·)p1(2
j ·)

ρ(2j ·)−p1(2
j ·) dx ≤ 1

}
. C.

Theorem 1. Let ρ(·) ∈ Clog(Rn) ∩ P0(Rn), 2 ≤ ρ(·) ≤ 6, 1 ≤ q < 3 and γ ∈ [1, ∞].

Then, there exists a positive constant ε such that for any u0 ∈ FḂ
−1+ 3

ρ′(·)
ρ(·),q (Rn) that satisfies

‖u0‖
FḂ
−1+ 3

ρ′(·)
ρ(·),q (Rn)

< ε, Equation (1) has a unique global solution

u ∈ Lγ(R+;FḂ
−1+ 3

ρ′(·)+
2
γ

ρ(·),q ) ∩ Lγ(R+; Ḃ
1
2+

2
γ

2,q ) ∩ L∞(R+; Ḃ
1
2
2,q)

such that

‖u‖
Lγ(R+ ;FḂ

−1+ 3
ρ′(·) +

2
γ

ρ(·),q )∩Lγ(R+ ;Ḃ
1
2 +

2
γ

2,q )∩L∞(R+ ;Ḃ
1
2
2,q)

. ‖u0‖
FḂ
−1+ 3

ρ′(·)
ρ(·),q

. (7)
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Proof. We define

Z := Lγ(R+;FḂ
−1+ 3

ρ′(·)+
2
γ

ρ(·),q ) ∩ Lγ(R+; Ḃ
1
2+

2
γ

2,q ) ∩ L∞(R+; Ḃ
1
2
2,q)

and we shall prove that the following is a contraction mapping.

Ψ : u→ SΩ,M(t)u0 +
∫ t

0
SΩ,M(t− T )P∇̃ · (u⊗ u)dT . (8)

Next, we can write∥∥∥Ψ
∥∥∥
Z
≤
∥∥∥SΩ,M(t)u0

∥∥∥
Z
+
∥∥∥ ∫ t

0
SΩ,M(t− T )P∇̃ · (u⊗ u)dT

∥∥∥
Z

(9)

= I1 + I2.

To estimate I1, consider the hypothesis ρ(·) ≥ 2 and Lemma 2, we obtain∥∥∥SΩ,M(t)u0

∥∥∥
Lγ(R+ ,FḂ

−1+ 3
ρ′(·) +

2
γ

ρ(·),q )

.
∥∥∥u0

∥∥∥
FḂ
−1+ 3

ρ′(·)
ρ(·),q

,

∥∥∥SΩ,M(t)u0

∥∥∥
Lγ(R+ ,FḂ

1
2 +

2
γ

2,q )
.
∥∥∥u0

∥∥∥
FḂ
−1+ 3

ρ′(·)
ρ(·),q

,

∥∥∥SΩ,M(t)u0

∥∥∥
L∞(R+ ,FḂ

1
2
2,q)

.
∥∥∥u0

∥∥∥
FḂ
−1+ 3

ρ′(·)
ρ(·),q

,

Hence, we obtain ∥∥∥SΩ,M(t)u0

∥∥∥
Z
.
∥∥∥u0

∥∥∥
FḂ
−1+ 3

ρ′(·)
ρ(·),q

< ε. (10)

To estimate I2, let ρ̄(·) = 2ρ(·)
2−ρ(·) , using Propositions 1 and 2, we have

∥∥∥ ∫ t

0
SΩ,M(t− T )P∇̃ · (u⊗ u)dT

∥∥∥
Lγ(R+ ;FḂ

−1+ 3
ρ′(·) +

2
γ

ρ(·),q )

.
∥∥∥∥∥ ∫ t

0
2

j(−1+ 3
ρ′(·)+

2
γ )ϕje−(t−T )|·|

2 ̂∇̃ · (u⊗ u)dT
∥∥
Lγ(R+ ;Lρ(·))

∥∥∥
lq

.
∥∥∥∥∥ ∫ t

0
‖2j( 3

ρ′(·)+
2
γ )ϕje−(t−T )|·|‖Lρ̄(·)‖∆j(u⊗ u)‖

L
6
5

dT
∥∥
Lγ(R+)

∥∥∥
lq

.
∥∥∥∥∥ ∫ t

0
2j( 2

γ +
5
2 )e−(t−T )2

2i‖2−3j 1
ρ̄(·) ϕj‖Lρ̄(·)‖∆j(u⊗ u)‖

L
6
5

dT
∥∥
Lγ(R+)

∥∥∥
lq

.
∥∥∥∥∥2j( 2

γ +
1
2 )‖∆i(u⊗ u)‖

L
6
5

∥∥
Lγ(R+)

∥∥e−t22j
22j∥∥

L1(R+)

∥∥∥
lq

. ‖u‖
Lγ(R+ ;Ḃ

5
2 +

2
γ

2,q )
‖u‖L∞(R+ ;L3)

. ‖u‖
Lγ(R+ ;Ḃ

1
2 +

2
γ

2,q )
‖u‖

L∞(R+ ;Ḃ
1
2
2,q)

. (11)

Likewise, we have∥∥∥ ∫ t

o
SΩ,M(t− T )P∇̃ · (u⊗ u)dT

∥∥∥
Lγ(R+ ;FḂ

1
2 +

2
γ

ρ(·),q )

. ‖u‖
Lγ(R+ ;Ḃ

1
2 +

2
γ

2,q )
‖u‖

L∞(R+ ;Ḃ
1
2
2,q)

, (12)
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and ∥∥∥ ∫ t

o
SΩ,M(t− T )P∇̃ · (u⊗ u)dT

∥∥∥
Lγ(R+ ;FḂ

1
2
ρ(·),q)

. ‖u‖
Lγ(R+ ;Ḃ

1
2 +

2
γ

2,q )
‖u‖

L∞(R+ ;Ḃ
1
2

2,q)
. (13)

Hence, we obtain∥∥∥ ∫ t

o
SΩ,M(t− T )P∇̃ · (u⊗ u)dT

∥∥∥
Z
. ‖u‖Z‖u‖Z . (14)

Using the inequalities (10) and (14) in (9), we can get∥∥∥Ψ(u)
∥∥∥
Z
≤ C1

∥∥∥u0

∥∥∥
FḂ
−1+ 3

ρ′(·)
ρ(·),q

+ C2‖u‖Z‖u‖Z

≤ C1

∥∥∥u0

∥∥∥
FḂ
−1+ 3

ρ′(·)
ρ(·),q

+ C2ε2
0.

Choosing ε0 < 1
2max{C1,C2}

and for any u0 ∈ FḂ
−1+ 3

ρ′(·)
ρ(·),q with

‖u0‖
FḂ
−1+ 3

ρ′(·)
ρ(·),q

<
ε0

2max{C1, C2}
,

we get ∥∥∥Ψ(u)
∥∥∥
Z
≤ ε0

2
+

ε0

2
= ε0.

By applying Lemma 1, we can directly obtain that Equation (4) has a global unique
solution with ‖u0‖

FḂ
−1+ 3

ρ′(·)
ρ(·),q

< ε for sufficiently small ε.

4. Gevrey Class Regularity

Next, we prove Gevrey class regularity for the solution of Equation (4). The analyt-
icity related to the NS equations has been studied by many authors. For more results
in this direction, we refer [37,38]. The lemma given below is very important to get the
spatial analyticity.

Lemma 3 ([39]). For all x, y ∈ Rn and 0 < s ≤ t < ∞, the following inequality holds

t|x|
1
2 − 1

2
(t2 − s2)|x| − s|x− y|

1
2 − s|y|

1
2 ≤ 1

2
.

Theorem 2. Let ρ(·) ∈ Clog(Rn) ∩ P0(Rn), 2 ≤ ρ(·) ≤ 1, 1 ≤ q < 3, then, there exists a

positive constant ε such that for any initial data u0 ∈ FḂ
−1+ 3

ρ′(·)
ρ(·),q satisfying ‖u0‖

FḂ
−1+ 3

ρ′(·)
ρ(·),q

< ε.

Equation (4) has an analytic unique solution u in the sense that

‖e
√

t|D|u‖
Lγ(R+ ;FḂ

−1+ 3
ρ′(·) +

2
γ

ρ(·),q )∩Lγ(R+ ;FḂ
1
2 +

2
γ

2,q )∩L∞(R+ ;FḂ
1
2

2,q)

. ‖u0‖
FḂ
−1+ 3

ρ′(·)
ρ(·),q

.
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Proof. Assuming g(t, y) = e
√

t|D|u(t, y) and considering Equation (6), we get

g(t, y) = e
√

t|D|SΩ,M(t)u0 +
∫ t

0
e
√

t|D|SΩ,M(t− T )P∇̃ · (u⊗ u)dT .

It is easy to obtain that∥∥∥g(t, y)
∥∥∥
Lγ(R+ ;FḂ

−1+ 3
ρ′(·) +

2
γ

ρ(·),q )

≤
∥∥∥e
√

t|D|SΩ,M(t)u0

∥∥∥
Lγ(R+ ;FḂ

−1+ 3
ρ′(·) +

2
γ

ρ(·),q )

+
∥∥∥ ∫ t

0
e
√

t|D|SΩ,M(t− T )P∇̃ · (u⊗ u)dT
∥∥∥
Lγ(R+ ;FḂ

−1+ 3
ρ′(·) +

2
γ

ρ(·),q )

.
∥∥∥∥∥∥e
√

t|η|−t|η|22
i(−1+ 3

ρ′1(·)
+ 2

γ )
ϕiû0

∥∥∥
Lγ(R+ ;Lρ(·))

∥∥∥
lq

+
∥∥∥∥∥∥2

i( 3
ρ′(·)+

2
γ )ϕi

∫ t

0
e−

1
2 (t−T )|η|

2
∫
Rn

e
√

t|η|− 1
2 (t−T )|η|

2−
√
T (|η−ζ|+|ζ|)

̂(
∇̃ · (u(η − ζ, T )∇̃Pu(ζ, T )

)
dζdT

∥∥∥
Lγ(R+ ;Lρ(·))

∥∥∥
lq

.

Using e
√

t|η|− 1
2 t|η|2 = e

1
2 (
√

t|η|−1)2+ 1
2 ≤ e

1
2 and by Lemma 3, we get

.
∥∥∥∥∥∥e−

1
2 t|η|22

i(−1+ 3
ρ′(·)+

2
γ )ϕiû0

∥∥∥
Lγ(R+ ;Lρ(·))

∥∥∥
lq

+
∥∥∥∥∥∥2

i( 3
ρ′(·)+

2
γ )ϕi

∫ t

0
e−

1
2 (t−T )|η|

2 ̂(
∇̃ · (u(η − ζ, T )∇̃Pu(ζ, T )

)
dT
∥∥∥
Lγ(R+ ;Lρ(·))

∥∥∥
lq

.

The rest of the proof follows the same argument as Theorem 1, the details are therefore
omitted.

5. Conclusions

We studied the primitive equations of geophysics in variable exponent Fourier–Besov
spaces. Young’s inequality is a significant tool to determine the global well-posedness of
these kind of equations. Recently, Abbassi et al. [23] obtained the local well-posedness
and global well-posedness results of Equation (4) for small initial data in Fourier–Besov–
Morrey spaces. In order to obtain the global well-posedness result, we cannot use Young’s
inequality in variable exponent function spaces. In this paper, we overcame this problem
and obtained the global well-posedness results of Equation (4) for small initial data a0
belonging to the homogeneous variable exponent in Fourier–Besov spaces. Furthermore,
we proved the Gevrey class regularity of the solution.
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