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Abstract: A velocity-free state feedback fault-tolerant control approach is proposed for the rigid
satellite attitude stabilization problem subject to velocity-free measurements and actuator and sensor
faults. First, multiplicative faults and additive faults are considered in the actuator and the sensor.
The faults and system states are extended into a new augmented vector. Then, an improved sliding
mode observer based on the augmented vector is presented to estimate unknown system states and
actuator and sensor faults simultaneously. Next, a velocity-free state feedback attitude controller
is designed based on the information from the observer. The controller compensates for the effects
of actuator and sensor faults and asymptotically stabilizes the attitude. Finally, simulation results
demonstrate the effectiveness of the proposed scheme.

Keywords: attitude stabilization; fault reconstruction; fault-tolerant control; sliding mode observer;
state feedback

1. Introduction

As an important component of the satellite, the attitude control system plays a key role
in practical aerospace missions, such as space on-orbit services and spacecraft pointing and
turning. Numerous studies on attitude control methods have emerged, such as adaptive
variable structure control (VSC) [1,2], robust control [3–7], output feedback control [8,9],
time-delayed control [10], and finite-time control [11–13]. The premise of these control
methods is the assumption that there exists no actuator or sensor fault during satellite
maneuvers. However, due to the harsh space environment in satellite operation, actuator
and sensor faults are inevitable. If the designed attitude control system does not have the
ability to deal with the faults, it may lead to the failure of the target space missions or even
the destruction of the satellite [14]. Inspired by this problem, this work mainly studies the
fault tolerant control (FTC) of attitude stabilization guaranteed in the case of actuator and
sensor faults.

For actuator faults or sensor faults, some scholars have used observer methods to
estimate fault values. In [15], a fault-tolerant control method based on the iterative learning
observer was proposed. Fault-tolerant control and closed-loop control assignment were
achieved. In [16], a fixed-time observer was presented to estimate the lumped disturbances,
including actuator faults and external disturbances. At the same time, a fixed-time attitude
controller was presented according to the homogeneity, estimated disturbances, and inte-
gral sliding mode. For gyroscope constant deviation, a coupled quaternion filter and a bias
observer were employed to achieve attitude control in [17]. For the linear parameter varying
(LPV) system, a reduced-order LPV observer was considered to estimate unmeasured states
and sensor faults in [18], reducing the computation of full-order estimation. Refs. [19,20]
proposed an adaptive fault-tolerant attitude controller based on VSC. Compared with the
observer method, this method does not need accurate fault information and compensates
for fault effects by adaptive law. Different from model-based observers, some scholars have
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used the neural network algorithm to solve fault problems. In [21], the uncertain terms
and the fault boundary of the system were estimated by using the neural network and the
online update law, respectively. Based on estimations, a modified fault-tolerant control law
was designed to achieve global asymptotic stability of attitude. In [22], the recursive neural
network was considered to detect and isolate the actuator and sensor faults of the satellite
attitude subsystem. The impacts of component faults on the system were well solved in
the above literature, but either actuator faults or sensor faults were considered, without
discussing the simultaneous faults of both actuators and sensors. For the systems with
simultaneous actuator and sensor faults, some observation schemes have been proposed
in [23–26] and applied to the circuit model and the vehicle model.

The above methods require the satellite attitude and angular velocity to be measurable.
However, in practical applications, angular velocity measurements may not be available
due to sensor faults or reduced satellite costs [27]. Therefore, a velocity-free attitude control
system becomes the trend in satellite development. Considering the unavailability of
angular velocity measurements, a velocity-free attitude stabilization control scheme relying
solely on attitude information was presented in [28]. In [29–31], finite-time observers were
designed to estimate angular velocity, which was applied to attitude stability control [29,30]
and attitude synchronization control [31]. In [32], the finite-time observer based on the
neural network was used to obtain the unknown angular velocity. Compared with the
method in [29–31], it did not require accurate knowledge of the system model. To obtain the
angular velocity faster and more stably, based on the fixed-time theory in [33], a fixed-time
angular velocity observer was designed to complete satellite formation control in [34]. If
the actuator faults are also considered, the design of the control system encounters greater
challenges. In the face of actuator faults and velocity-free measurements, [35] designed
two finite-time observers and presented a fault-tolerant controller with attitude information
only. In [36], an adaptive fault-tolerant controller was proposed based on neural networks
using the information from the finite-time observer.

Although there are credible results for single fault and velocity-free measurements
in the above literature, the simultaneous occurrence of actuator faults, sensor faults, and
velocity-free measurements are not considered. When the above problems occur simulta-
neously, the controller design will face major challenges: (1) Velocity-free measurements
lead to the reduction of measurable information. (2) The simultaneous faults of actuator
and sensor lead to the complexity of fault information, which increases the difficulty of
fault detection and compensation. (3) Velocity-free measurements and sensor faults lead
to the lack of accurate attitude information. To solve these problems, a velocity-free state
feedback fault-tolerant control scheme is proposed in this paper. The main contributions of
this work are summarized as follows:

(a) An improved sliding mode observer is proposed to estimate system states and faults
simultaneously. Compared with the observer in [26], the steady-state performance
is improved.

(b) The multiplicative faults and additive faults of actuator and sensor are considered.
The designed scheme is able to tolerate the lumped faults. The controller presented
has a strong fault-tolerance ability such that the closed-loop attitude system is asymp-
totically stable.

(c) The proposed fault-tolerant control scheme does not require angular velocity mea-
surements, which reduces satellite mass and the cost of airborne sensors.

The remainder of this paper is organized as follows. In Section 2, satellite attitude
dynamics and actuator and sensor faults models are described. The required mathematical
preliminaries are also given in this part. In Section 3, the proposed improved sliding mode
observer and the state feedback fault-tolerant attitude controller are presented, respectively.
Numerical simulation is provided to demonstrate the effectiveness of the proposed scheme
in Section 4. Conclusions are given in Section 5.
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2. Preliminaries
2.1. Notations and Lemmas

In ∈ <n×n represents the identity matrix with a dimension n. 0n×m ∈ <n×m is an n
by m zero matrix. || · || stands for the induced norm of a matrix or the Euclidean norm of
a vector. λmin(·) and λmax(·) denote the minimum and maximum eigenvalues of a matrix,
respectively. For a given scalar α > 0 and a vector x = [ x1 x2 . . . xn ]

T ∈ <n,

the notation can be defined as follows: sigα(x) = [ sigα(x1) sigα(x2) · · · sigα(xn) ]
T ,

where sigα(xi) =|xi|αsgn(xi) and sgn(·) denotes the sign function.
The function Γ(x, α, β) is defined as

Γ(x, α, β) =

{
sgnα(x) ||x|| ≤ 1
sgnβ(x) ||x|| > 1

(1)

where x ∈ <n, 0 < α < 1, and β > 1.
For a given vector a = [ a1 a2 a3 ]

T ∈ <3, the notation a× indicates the skew-
symmetric matrix:

a× =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 (2)

Lemma 1 [33]. Consider the following nonlinear system of differential equations:

.
x = f(t, x), x(0) = x0 (3)

where x ∈ <n is the system state and f : <+ ×<n → <n is a continuous function defined in
an open neighborhood U of the origin. If there is a positive definite function V(x) : <n → <
satisfying

.
V(x) ≤ −(αVp(x) + βVq(x)) + ς, where α, β ∈ <+, 0 < p < 1, q > 1, and

0 < ς < ∞, the trajectory of Equation (3) is practical fixed-time stable. The settling time T for the
system to reach a steady state satisfies T ≤ 1/α(1− p) + 1/β(q− 1).

2.2. Satellite Attitude Dynamics Model

To describe the satellite attitude, three coordinate systems are commonly used: the
inertial fixed reference coordinate frame FI , the orbital coordinate frame Fo, and the
body-fixed coordinate frame Fb. The angular velocity ωr of the body-fixed coordinate
frame relative to the orbital coordinate frame is obtained by a yaw–pitch–roll sequence of
rotations. It can be described by [35]

ωr = R(Θ)
.

Θ =

 1 0 − sin θ
0 cos φ cos θ sin φ
0 − sin φ cos θ cos φ




.
φ
.
θ
.
ψ

 (4)

where Θ = [φ θ ψ ]T ∈ <3 is the attitude Euler angle vector. The angular velocity

ω =
[

ωx ωy ωz
]T ∈ <3 of the body frame with respect to the inertial frame in the

body frame is defined as
ω = ωr + ωO (5)

where

ωO = −

 cos θ sin ψ
cos φ cos ψ + sin φ sin θ sin ψ
− sin φ cos ψ + cos φ sin θ sin ψ

ω0 (6)
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Here, ω0 is the orbital angular velocity. Substituting Equations (4) and (6) into Equation (5)
and taking into account small Euler angle rotations, the attitude kinematics can be given by [21]

ω =
[

ωx ωy ωz
]T

=
[ .

φ−ω0ψ
.
θ −ω0

.
ψ + ω0φ

]T
(7)

The angular momentum is expressed as H = Ibω. In the case of considering the
gravity gradient torque and the external disturbance torque, the attitude dynamics model
of the rigid satellite can be described by [35]

Ib
.

ω + ω× Ibω = τ + τd + τg (8)

where τ = [τ1 τ2 τ3 ]T ∈ <3 is the total torque generated by the actuator, τd =

[τd1 τd2 τd3 ]T ∈ <3 is the external disturbance torque, and Ib = diag([ Ib1 Ib2 Ib3 ])
is the inertia matrix. In the case of a small attitude angle maneuver, the gravity gradient
torque τg = [ τg1 τg2 τg3 ]

T ∈ <3 can be approximated as

τg =
[
−3ω2

0(Ib2 − Ib3)φ −3ω2
0(Ib1 − Ib3)θ 0

]T (9)

Substituting Equations (7) and (9) into Equation (8) yields

Ib
..
Θ + a1

.
Θ + a0Θ = τ + τd (10)

Define a new state x = [ xT
1 xT

2 ]
T
= [ ΘT

.
Θ

T
]
T

. Then, Equation (10) can be
rewritten as: { .

x = Ax + Bτ + Dτd
y = Cx

(11)

where x ∈ <6, τ ∈ <3, τd ∈ <3, and y ∈ <6 denote system state, total torque, external
disturbance torque, and measurement output, respectively. The system parameter matrixes
A ∈ <6×6, B ∈ <6×3, D ∈ <6×3, and C ∈ <6×6 are defined as

a0 = ω2
0


4(Ib2 − Ib3) 0 0

0 3(Ib1 − Ib3) 0

0 0 Ib2 − Ib1

, a1 = ω0


0

0

Ib1 − Ib2 + Ib3

0

0

0

−Ib1 + Ib2 − Ib3

0

0

,

A =

[
03

−I−1
b a0

I3

−I−1
b a1

]
, B = D =

[
03

I−1
b

]
, c1 =


0 0 −ω0

0 0 0

ω0 0 0

, C =

[
I3 03

c1 I3

]
.

2.3. Faults Model

Referring to the definition of actuator faults in [36], the actuator faults can be divided
into multiplicative faults and additive faults with the form

τ = ρu + u f (12)

where u = [u1 u2 u3 ]T ∈ <3 represents the actuator commanded control torque;

ρ = diag([ ρ1 ρ2 ρ3 ]
T
) ∈ <3×3 denotes the degree of actuator failure, 0 < ρi ≤ 1,

where i = 1, 2, 3; and u f ∈ <3 stands for actuator additive faults. Equation (12) can be
rewritten as

τ = u + fa (13)

where the lumped actuator faults fa ∈ <3 can be defined as

fa = (ρ− I3)u + u f (14)

In this paper, the fault-tolerant control of the satellite is studied under the condition
of velocity-free measurements so that the actual measurement output only contains the
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attitude angle information. Considering partial failures and additive faults of the sensor,
the expression of measurement output can be defined as

ya = δy + y f (15)

where ya ∈ <3 is the actual output of the sensor; y f ∈ <3 is sensor additive faults; and

δ = diag([ δ1 δ2 δ3 ]
T
) ∈ <3×3 denotes the degree of sensor failure, 0 < δi ≤ 1, where

i = 1, 2, 3. Equation (14) can be rewritten as

ya = Cx + fs (16)

where the lumped sensor faults fs ∈ <3 can be defined as

fs = (δ− I3)y + y f (17)

Combined with Equations (13) and (16), the system dynamics with actuator and sensor
faults can be written as { .

x = Ax + B(u + fa) + Dτd
ya = Cx + fs

(18)

where fa ∈ <3 and fs ∈ <3 denote the lumped faults of the actuator and the lumped faults
of the sensor, respectively. The parameter matrix C = [ I3 03 ] ∈ <3×6. According to
Equation (18), the following assumptions are made:

Assumption 1. There exist positive constants kΘ and kω such that ||Θ|| ≤ kΘ and ||ω|| ≤ kω

for all t ≥ 0.

Assumption 2. The external disturbances and actuator and sensor faults satisfy ||τd|| ≤ rd,
||fs|| ≤ rs, ||fa|| ≤ ra, and ||

.
fa|| ≤ ra1, where rd > 0, rs > 0, ra > 0, and ra1 > 0 are known

constants. There is a known constant η > 0 such that rd + ra + rs + ra1 ≤ η.

Remark 1. For the feedback control problem, the assumption of bounded system states and distur-
bances is necessary. Due to the physical limitation of the equipment, the attitude of the satellite and
the output torque of the actuator are limited in practical engineering. If the external disturbance
is infinite, the attitude system will not be controllable. Similar assumptions also can be found in
related literature, such as Assumption 1 in [29] and Assumption 2 in [26].

2.4. Problem Statement

The objective of this work is stated as follows: for the satellite with simultaneous
actuator faults, sensor faults, and velocity-free measurements, the designed observer is
required to estimate the unknown system states and faults in real time. The velocity-free
fault-tolerant controller is provided to asymptotically stabilize the attitude, i.e., Θ→ 0 and
ω→ 0 , even in the presence of external disturbances and actuator and sensor faults.

3. Observer-Based State Feedback Attitude Controller Design

In this section, a velocity-free state feedback fault-tolerant attitude controller (VSFTC)
will be proposed to stabilize the attitude of the satellite. The structure of the closed-loop
system is shown in Figure 1. This control structure includes two modules: an improved
sliding mode observer is designed to estimate Θ, ω, fa, and fs and a velocity-free controller
is proposed by using the estimate information of the observer.
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Figure 1. The structure of the proposed fault-tolerant attitude control system without velocity
measurements.

3.1. Improved Sliding Mode Observer Design

According to Equation (18), the augmented system is constructed as follows:{
E

.
x = Ax + Bu + Dd

ya = Cx
(19)

where

x =

 x
fa
fs

, d =

 τd

fa +
.
da

fs

, E =

 I6 06×3 06×3
03×6 I3 03
03×6 03 03

, (20)

B =

[
B

06×3

]
, C = [ C 03 I3 ], (21)

A =

 A B 06×3
03×6 −I3 03
03×6 03 −I3

, D =

 D 06×3 06×3
03 I3 03
03 03 I3

 (22)

Let S = E + FC ∈ <12×12; F ∈ <12×3 is selected as

F =
[

0T
3 0T

3 0T
3 FT ]T (23)

where F = diag([ σ1 σ2 σ3 ]
T
) ∈ <3×3 and σi > 0, i = 1, 2, 3, such that S is non-singular.

Define A = S−1 A, B = S−1B, D = S−1D, and F = S−1F. Then Equation (19) can be
rewritten as { .

x = Ax + Bu + Dd + F
.
ya

ya = Cx
(24)

Let x̂ and ŷa be estimates of x and ya, respectively. The improved sliding mode
observer is proposed as follows:

.
x̂ = Ax̂ + Bu + D∆ + F

.
ya − LΓ(Ce, α, β)− kL(

.
ŷa −

.
ya) (25)

where e = x̂− x= [ eT
1 eT

2 eT
3 eT

4
]T is the system state error vector; 0 < α < 1, β > 1,

k > 0, and L = [ LT
1 LT

2 LT
3 LT

4 ]
T ∈ <12×3 are the gain matrixes; Li = li I3; li > 0,

where i = 1, 2, 3, 4; and ∆ is the compensation input. According to Assumption 2, ∆ is
designed as

∆ = −(η + ε)sgn(D
T

N−T Pe) (26)
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where ε > 0 is a small scalar quantity and N, P ∈ <12×12 is the parameter matrix to
be designed.

By defining z = x̂− Fya + kL(ŷa − ya), Equation (25) can be rewritten as{ .
z = Az + Bu + D∆ + A(F + kL)ya − kALŷa − LΓ(Ce, α, β)

x̂ = z + (F + kL)ya − kLŷa
(27)

where z ∈ <12 is the system state and x̂ is the system output.
According to Equations (24) and (25), the estimation errors can be given by

.
e = Ae + D∆− Dd− LΓ(Ce, α, β)− kLC

.
e (28)

Define a matrix N = I12 + kLC ∈ <12×12. According to the definition of L and
Equation (21), N is a non-singular matrix. Then, Equation (28) can be rewritten as

.
e = N−1(Ae + D∆− Dd− LΓ(Ce, α, β)) (29)

Theorem 1. Consider the plant (18) subject to the actuator faults (14), sensor faults (17), and the
external disturbances under Assumption 2. If the observer is designed according to Equation (27), there
exist appropriate gain matrixes L ∈ <12×3, P ∈ <12×12 > 0, and Q ∈ <12×12 > 0, satisfying:

(A− LC)
T

N−T P + PN−1(A− LC) + Q ≤ 0 (30)

such that the estimated statesx̂converges asymptotically to its actual statesxand the error dynamic
system of Equation (29) is ultimately uniformly bounded.

Proof of Theorem 1. Define a Lyapunov function V1 = eT Pe. The time derivative of V1
along the trajectories of the error dynamics in Equation (29) leads to

.
V1 = 2eT PN−1 Ae + 2eT PN−1D∆− 2eT PN−1Dd− 2eT PN−1LΓ(Ce, α, β) (31)

According to Equation (1), Γ(x, α, β) is a piecewise function. We discuss
.

V1 in
two parts: Part 1 (||Ce|| ≤ 1) and Part 2 (||Ce|| > 1).

Part 1: ||Ce|| ≤ 1. Based on Equation (1), Equation (31) can be rewritten as

.
V1 = 2eT PN−1 Ae + 2eT PN−1D∆− 2eT PN−1Dd − 2eT PN−1Lsigα(Ce) (32)

Since ||Ce|| ≤ 1 and 0 < α < 1, we have ||C e|
∣∣
α ≥ ||Ce|| . Substituting it into

Equation (32) yields

.
V1 ≤ 2eT PN−1 Ae− 2eT PN−1LCe + 2eT PN−1D∆− 2eT PN−1Dd (33)

According to Assumption 2,
∣∣∣∣d∣∣∣∣ ≤ η. If the inequality in Equation (30) holds,

substituting Equation (26) into Equation (33), we have

.
V1 ≤ 2eT PN−1 Ae− 2eT PN−1LCe + 2eT PN−1D∆ + 2η||eT PN−T D||
≤ eT((A− LC)

T
N−T P + PN−1(A− LC))e + 2||eT PN−T D||(−(ε + η) + η)

≤ −eTQe− 2ε||eT PN−T D||
(34)

From the standard inequality for quadratic forms, we obtain λmin(Q)||e||2 ≤ V1 ≤ λmax(Q)||e||2.
For ε > 0, the inequality in Equation (34) can also be rewritten as

.
V1 ≤ −λmin(Q)||e|

∣∣∣2 ≤ 0 (35)
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Part 2: ||Ce|| > 1. Based on Equation (1), Equation (31) can be rewritten as

.
V1 = 2eT PN−1 Ae + 2eT PN−1D∆− 2eT PN−1Dd− 2eT PN−1Lsigβ(Ce) (36)

Since ||Ce|| > 1and β > 1, we have ||C e|
∣∣
β ≥ ||Ce|| . Substituting it into Equation (36) yields

.
V1 ≤ 2eT PN−1 Ae− 2eT PN−1LCe + 2eT PN−1D∆− 2eT PN−1Dd (37)

Following the same procedure in Part 1,
.

V1 satisfies

.
V1 ≤ −λmin(Q)||e|

∣∣∣2 ≤ 0 (38)

With the combination of Part 1 and Part 2, we have
.

V1 ≤ 0 when Equation (30)
holds. According to the Lyapunov stability theorem, the errors system in Equation (29) is
asymptotically stable. This completes the proof of Theorem 1. �

3.2. Velocity-Free State Feedback Fault-Tolerant Attitude Controller Design

The parameter matrix of the observer in Equation (25) is expressed as follows:

A =


A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

, B =


B1

B2

B3

B4

, D =


D1

D2

D3

D4


where Ai,j ∈ R3×3, Bi ∈ R3×3, and Di ∈ R3×3, where i, j = 1, 2, 3, 4. According to

the parameter setting in Equations (11) and (19), A1,2 = I3 and A2,3 = B2 = I−1
b . By

decomposing Equation (25), the differential forms of attitude angle estimation x̂1 and
attitude angle velocity estimation x̂2 can respectively be described as

.
x̂1 = x̂2 − L1Γ(Ce, α, β)− kL1C

.
e (39)

.
x̂2 = A2,1x̂1 + A2,2x̂2 + I−1

b f̂a + I−1
b u + D2∆− kL2C

.
e− L2Γ(Ce, α, β) (40)

Based on Theorem 1, the following assumption is proposed:

Assumption 3. The feedback term Γ(Ce, α, β) + k(
.
ŷa −

.
ya) of Equation (25) can rewritten as

Γ(Ce, α, β) + kC
.
e. There exists a positive scalar ke, satisfying ||Γ(Ce, α, β) + kC

.
e
∣∣∣∣ ≤ ke, for all

t ≥ 0.

Remark 2. It has been proved in Theorem 1 that the observer errors system is asymptotically stable,
which means that both e and

.
e can converge to neighbors of zero. Therefore, the observer feedback

term Γ(Ce, α, β) + kC
.
e is bounded. Assumption 3 is reasonable.

Theorem 2. Consider the satellite attitude model (18) with the actuator, sensor faults, and velocity-
free measurements. Based on the observer in Equation (27), the controller is designed as

u = Ib(−A2,1x̂1 − A2,2x̂2 − D2∆ + L2Γ(Ce, α, β) + kL2C
.
e

+g1( pk2ξ1 + qk3ξ2)(−x̂2 + L1Γ(Ce, α, β) + kL1C
.
e)

−g1(γ1sigp(s) + γ2sigq(s) + γ3s + g1x̂1))− f̂a

(41)

where ξ1 = diag(
∣∣x̂1
∣∣p−1) , ξ2 = diag(

∣∣x̂1
∣∣q−1) , ki, γi > 0 (i = 1, 2, 3), p ∈ (0, 1), q > 1,

and g1 = 1/k1; s is defined as follows:

s = k1x̂2 + k2sigp(x̂1) + k3sigq(x̂1) (42)
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Then, the estimated attitude angle and the estimated attitude angular velocity converge
to a steady state within a fixed time. According to Theorem 1, the observer dynamic error is
asymptotically stable. Therefore, the satellite attitude system asymptotically stabilizes.

Proof of Theorem 2. Using Equations (39) and (40), the time derivative of s becomes

.
s = k1

.
x̂2 + pk2ξ1

.
x̂1 + qk3ξ2

.
x̂1

= k1(A2,1x̂1 + A2,2x̂2 + I−1
b f̂a + I−1

b u + D2∆− L2Γ(Ce, α, β)− kL2C
.
e)

+(pk2ξ1 + qk3ξ2)(x̂2 − L1Γ(Ce, α, β)− kL1C
.
e)

(43)

Substituting Equation (41) into Equation (43) yields

.
s = −γ1sigp(s)− γ2sigq(s)− γ3s− g1x̂1 (44)

Then, define a new state vector ζ = [ sT x̂T
1 ]

T . Choose a candidate Lyapunov
function as V2 = ζTζ. Computing its time derivative by using Equations (39) and (44) gives

.
V2 = 2

.
ζ

T
ζ = 2sT s . + 2x̂T

1
.
x̂

= 2sT(−γ1sigp(s)− γ2sigq(s)− γ3s− g1x̂1) + 2x̂T
1(x̂2 − L1Γ(Ce, α, β)− kL1C

.
e)

(45)

The expression x̂2 = g1(s− k2sigp(x̂1)− k3sigq(x̂1)) can be obtained by Equation (42).
Substituting it into Equation (45) yields

.
V2 = −2(γ1sTsigp(s) + γ2sTsigq(s) + γ3sTs + g1sT x̂1 − g1x̂T

1s + g1k2x̂T
1sigp(x̂1)

+ g1k3x̂T
1sigq( x 1̂) + x̂T

1L1(Γ(Ce, α, β) + kC
.
e))

≤ −2χ1ζTsigp(ζ)− 2χ2ζTsigq(ζ)− 2x̂T
1L1(Γ(Ce, α, β) + kC

.
e)

≤ −2χ1V2
α1 − 2χ2V2

β1 − 2x̂T
1L1(Γ(Ce, α, β) + kC

.
e)

(46)

where α1 = (1 + p)/2, β1 = (1 + q)/2, χ1 = min{γ1, g1k2}, and χ2 = min{γ2, g1k3}.
According to Assumption 1 and Theorem 1, there exists k4 > 0 such that ||x̂1|| ≤ k4. By
Assumption 3, the upper bound of the term x̂T

1 L1(Γ(Ce, α, β) + kC
.
e) is obtained:

x̂T
1L1(Γ(Ce, α, β) + kC

.
e) ≤ l1||x̂T

1 || ||Γ(Ce, α, β) + kC
.
e
∣∣∣∣ ≤ l1k4ke < ∞ (47)

Substituting Equation (47) into Equation (46) yields

.
V2 ≤ −2χ1V2

α1 − 2χ2V2
β1 + υ (48)

where υ = 2l1k4ke. From the definitions of p and q, α1 and β1 satisfy 0 < α1 < 1 and β1 > 1,
respectively. According to Lemma 1, if the controller is chosen as Equation (41), s and x̂1
will converge in the neighborhood of zero within a fixed time. The systems in Equations
(39) and (40) are practical fixed-time stable. Moreover, the setting time T is given by

T ≤ Tmax =
1

2χ1(1− α1)
+

1
2χ2(β1 − 1)

(49)

Theorem 1 proves that the observer errors are asymptotically stable, which means that
the satellite attitude is asymptotically stable. Thus, the argument stated in Theorem 2 holds
and the proof is completed. �

4. Simulation Results

In this section, simulation results are presented to verify the effectiveness of the
proposed observer (Equation (27)) and VSFTC (Equation (41)). Consider a small angular
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maneuvering satellite with actuator and sensor faults without velocity information. The
inertia matrix is

Ib = diag([ 18.73 20.77 23.63 ]
T
)kg ·m2 (50)

The initial attitude angle is chosen as

Θ(0) = x1(0) = [ 0.0859 −0.1628 0.1109 ]
Trad (51)

The initial velocity is chosen as

ω(0) = x2(0) = [ −0.0415 0.0496 −0.0557 ]
T rad/s (52)

The satellite orbital angular velocity is ω0 = 0.0012 rad/s. The external disturbance
torque is set as follows:

τd = 1.5× 10−5 ×

 3 cos(ω0t) + 1
1.5 sin(ω0t) + 3 cos(ω0t)

3 sin(ω0t) + 1

Nm (53)

The initial values of observer system states are x̂(0) = [ 0T yT
a ]

T .
Non-gyroscopic attitude sensors are equipped to measure the attitude angle Θ. A zero-

mean Gaussian random noise with the variance of 1 × 10−5 is added to the attitude
sensors model. The parameters of Equation (27) are chosen as η = 0.5, ε = 0.0001,
σ1 = σ2 = σ3 = 40, l1 = 7.68, l2 = 0.66, l3 = 0.09, l4 = 6.44, k = 0.001, α = 0.6, and β = 1.4.
The gains for the observer scheme in [26] are set as η = 0.5, ε = 0.0001, σ1 = σ2 = σ3 = 40,
and L =

[
7.68I3 0.66I3 0.09I3 6.44I3

]T . The gains for the controller in Equation (41)
are set as γ1 = 1.4, γ2 = 0.84, γ3 = 0.7, k1 = 1, k2 = k3 = 1.1, p = 0.9, and q = 1.4.

4.1. Observer-Based PD Controller Simulation

In this part of the simulation, the performance of the proposed observer (Equation (27))
is compared with the observer method in [26]. The observer parameters in [26] are consis-
tent with the above sets in this paper. To better display the effectiveness of the proposed
observer, a PD controller is set as

u = −3I3x̂1 − 5I3x̂2 (54)

For a satellite without angular velocity measurements, the lumped faults, including
multiplicative faults and additive faults, are designed as

fa =



fa1 =

{
−0.15

0.2 sin(0 .35t)− 0.1

fa2 =

{
0.2

0.2 sin(0.35t)− 0.1 cos(0.15t)

fa3 =

{
0.1 sin(0.25t)

0.15

50 ≤ t < 75
75 ≤ t < 150
50 ≤ t < 75
75 ≤ t < 150
0 ≤ t < 100

100 ≤ t < 150

(ρ− I3)u =


−0.15u1
−0.2u2
−0.3u3

0 ≤ t < 75
0 ≤ t < 75
0 ≤ t < 75

(55)

fs =


0.02 sin(0 .025πt) + 0.1
0.03 sin(0.02πt) + 0.05

0.025 cos(0.015πt) + 0.06

0 ≤ t ≤ 200
0 ≤ t ≤ 200
0 ≤ t ≤ 200

(δ− I3)ya =


−0.25ya1
−0.4ya2
−0.3ya3

0 ≤ t ≤ 200
0 ≤ t ≤ 200
0 ≤ t ≤ 200

(56)

where ui and yai represent the triaxial component of u and ya, respectively, and t is in seconds.
The curves in Figures 2 and 3 illustrate the time response of attitude estimation

errors e1 and angular velocity estimation errors e2 by two observers. It can be clearly
seen from Figures 2 and 3 that the observation errors of Θ and ω under the observer in
Equation (27) can respectively converge to

∣∣e1i
∣∣≤ 2× 10−5 and

∣∣e2i
∣∣≤ 2× 10−6 within 2.8 s;
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the observation errors of Θ and ω under the observer in [26] can respectively converge to∣∣e1i
∣∣≤ 3× 10−4 and

∣∣e2i
∣∣≤ 2× 10−5 within 16 s.
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Figures 4 and 5, respectively, show the reconstruction errors of the observer in
Equation (27) and the observer in [26] for actuator faults fa and sensor faults fs. It can
be seen in Figures 4a and 5a that the reconstruction using the proposed observer is achieved
accurately within 2.8 s with steady-state accuracies of

∣∣e3i
∣∣, ∣∣e4i

∣∣≤ 2× 10−5 . In Figure 4b,
the observer in [26] also shows good reconstruction performance, and the actuator faults
converge to

∣∣e3i
∣∣≤ 1× 10−4 at 2.8 s. Figure 5b shows that the reconstruction of sensor faults

under the observer in [26] can converge to
∣∣e4i
∣∣≤ 3× 10−4 within 16 s. The summary can

also be found in Table 1.
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Table 1. The comparison results of the observer in Equation (27) and the observer in [26].

Observer (Equation (27)) Observer in [26]
Ultimate Bound Settling Time Ultimate Bound Settling Time

e1 (rad) 2× 10−5 2.8 3× 10−4 16
e2 (rad/s) 2× 10−6 2.8 2× 10−5 16
e3 (Nm) 2× 10−5 2.8 1× 10−4 2.8
e4 (rad) 2× 10−5 2.8 3× 10−4 16
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To give a more instructive comparison of the two observers, the function X(t) = ||e(t)||
is defined motivated by [29] and its time response is shown in Figure 6. From Figure 6, it
is obvious that the proposed observer (Equation (27)) provides a faster convergence rate
than the observer in [26]. In Figures 7 and 8, the steady-state error performances of the two
observers are shown during the same fault period. The observer proposed has a higher
steady-state accuracy than the observation scheme in [26].
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the observer in [26]. (a) Actuator faults reconstruction errors; (b) sensor faults reconstruction errors.

4.2. VSFTC Simulation

To verify the applicability of the observation method, the actuator faults are redefined
in this section. The sensor faults follow Equation (57). Due to the accurate reconstruction of
the actuator and sensor faults supplied by Equation (27), the controller in Equation (41) can
completely compensate for the effects of actuator and sensor faults. The accurate attitude
information can be obtained. Thus, the controller can guarantee the asymptotic stability of
satellite attitude and angular velocity. The actuator faults are selected as follows:

fa =



fa1 =

{
−0.15

0.1 sin(0 .2t + π/3)− 0.1

fa2 =

{
0.2

0.2 sin(0.1t)− 0.15 cos(0.2t)

fa3 =

{
0.15 sin(0.1t + π/3)

0.15

75 ≤ t < 150
150 ≤ t < 250
50 ≤ t < 150

150 ≤ t < 250
0 ≤ t < 100

100 ≤ t < 250

(ρ− I3)u =


−0.1u1
−0.15u2
−0.2u3

50 ≤ t < 200
50 ≤ t < 200
50 ≤ t < 200

(57)

For the given faults, the controller in Equation (41) gives the actuator commanded
control torque, as shown in Figure 9. It is clearly seen from Figure 9 that the controller
effectively compensates for the actuator faults in a short time. As the time response behavior
is shown in Figure 10, the total torque τ acting on the satellite attitude control system
reaches the steady state within 8 s. Figures 11 and 12 show the responses of the estimated
attitude Θ and the estimated angular velocity ω driven by the VSFTC (Equation (41)).
The estimations of Θ and ω converge to

∣∣Θi
∣∣≤ 1× 10−5 and

∣∣ωi
∣∣≤ 2× 10−5 within 9 s.

Figures 13 and 14 show that the actual attitude Θ and the angular velocity ω take 9 s
to reach steady-state behavior. As per the steady-state behavior shown in Figures 13
and 14, the attitude pointing accuracy achieves a level of

∣∣Θi
∣∣≤ 1× 10−5 and the actual

angular velocity has a pointing accuracy of 2 × 10−5. By comparing Figures 11–14, it
is concluded that the proposed observer can reconstruct the faults and system states
quickly and accurately. Therefore, in the face of actuator faults, sensor faults, and rate-
free measurements, the satellite attitude control system completes the steady-state control
mission and achieves the required accuracy in a short time through the VSFTC method.
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5. Conclusions

For the satellite attitude control system without velocity measurements, the prob-
lems of fault reconstruction, state estimation, and stability control were studied when
the actuator and sensor fail simultaneously. An improved sliding mode observer was
proposed to quickly reconstruct the system states and faults. Based on the improved sliding
mode observer, a VSFTC was presented to guarantee that the closed-loop attitude system
asymptotically stabilizes in the presence of multiple faults and unknown angular velocity.
Numerical simulations illustrated that the proposed observer leads to higher steady-state
accuracy and faster settling time than the traditional sliding mode observer in [26] with the
same parameters. By using VSFTC, the attitude of the satellite arrived at a stable state in
a short time under complex faults, external disturbances, and measurement noises.

However, in this paper, only attitude stabilization was considered under multiple
faults. The observer-based fault-tolerant control for attitude tracking is more challenging.
Therefore, in future research, it is desirable to design an attitude tracking fault-tolerant
controller to achieve fast attitude tracking under multiple faults and disturbances.
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