
symmetryS S

Article

Smooth Group L1/2 Regularization for Pruning Convolutional
Neural Networks
Yuan Bao 1, Zhaobin Liu 1, Zhongxuan Luo 2 and Sibo Yang 3,*

����������
�������

Citation: Bao, Y.; Liu, Z.; Luo, Z.;

Yang, S. Smooth Group L1/2

Regularization for Pruning

Convolutional Neural Networks.

Symmetry 2022, 14, 154. https://

doi.org/10.3390/sym14010154

Academic Editors: László T. Kóczy

and Alexander Zaslavski

Received: 23 November 2021

Accepted: 9 January 2022

Published: 13 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Information Science and Technology, Dalian Maritime University, Dalian 116026, China;
yuanbao@dlmu.edu.cn (Y.B.); zhbliu@dlmu.edu.cn (Z.L.)

2 School of Software, Dalian University of Technology, Dalian 116620, China; zxluo@dlut.edu.cn
3 School of Science, Dalian Maritime University, Dalian 116026, China
* Correspondence: ysibo@dlmu.edu.cn

Abstract: In this paper, a novel smooth group L1/2 (SGL1/2) regularization method is proposed for
pruning hidden nodes of the fully connected layer in convolution neural networks. Usually, the
selection of nodes and weights is based on experience, and the convolution filter is symmetric in the
convolution neural network. The main contribution of SGL1/2 is to try to approximate the weights to
0 at the group level. Therefore, we will be able to prune the hidden node if the corresponding weights
are all close to 0. Furthermore, the feasibility analysis of this new method is carried out under some
reasonable assumptions due to the smooth function. The numerical results demonstrate the superiority
of the SGL1/2 method with respect to sparsity, without damaging the classification performance.

Keywords: convolutional neural network (CNN); fully connected layer; smooth group L1/2

regularization; sparsity

1. Introduction

CNNs have been widely applied in many applications, such as intelligent information
processing, pattern recognition, feature extraction [1–5], etc. As usual, slightly more hidden
layer nodes were selected based on experience in neural networks. However, as is well
known, too many nodes and weights in a deep network will increase the computational
load, memory size and the risk of overfitting [6]. In fact, some hidden layer nodes and
weights have little contribution to improving the performance of the network [7]. There-
fore, choosing an appropriate number of hidden layer nodes and weights has become
an important research topic in optimizing neural networks. Many algorithms have been
proposed in order to optimize the number of nodes and weights in the neural network.

As one of the most effective methods to reduce the number of weights in the network,
the regularization terms were introduced into the learning process. This is generally
realized with Lp regularization, which penalizes the sum of the weight norm during
training. The L1 norm is the sum of the absolute values of the elements in a vector, so as to
make the weight value close to zero [8]. In [9], the L1-norm was combined with the capped
L1-norm to denote the amount of information extracted through the filter and control
regularization. Gou et al. [10] proposed a discriminative collaborative representation-
based classification (DCRC) method through L2 regularizations to improve the classification
capabilities. Xu et al. adopted the L1/2 regularizer to transform a non-convex problem
into a series of L1 regularizer problems, and showed many superior properties, such as
robustness, sparsity and oracle properties, compared to the L1 and L2 regularizers [11].
In [12], Xiao introduced sparse logistic regression (SLR) based on L1/2 regularization to
impose a sparsity constraint on logistic regression. The algorithms mentioned above
successfully optimize the network only by pruning the weights.

Regularization methods have become more impressive than before, but all of them
were designed mainly for pruning the superfluous weights, and the node can be deleted

Symmetry 2022, 14, 154. https://doi.org/10.3390/sym14010154 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://doi.org/10.3390/sym14010154
https://doi.org/10.3390/sym14010154
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym14010154
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14010154?type=check_update&version=1

Symmetry 2022, 14, 154 2 of 20

only if all its outgoing weights are close to zero. Then, researchers tried to prune the
nodes to optimize the neural network. Simon et al. provided a group lasso method, which
produced sparse effects both on and within the group, and showed the expected effect of
group-wise and within-group sparsity [13–15]. Moreover, [16] considered a more general
penalty and blended the lasso with the group lasso, which yielded solutions that are sparse
at both the group and the individual feature level. For pruning the nodes of the network,
the popular group lasso method (GL2) imposes sparsity at the group level, so that either
all the weights between nodes in the fully connected layer and all nodes of the output
layer approach zero simultaneously, or none of them are close to zero. In other words,
the group lasso regularization prunes the nodes of the fully connected layer, but does not
prune redundant weights of surviving nodes.

It was shown that combining the L1/2 regularization with the group lasso (GL1/2) for
feedforward neural networks can prune not only hidden nodes but also the redundant
weights of the surviving hidden nodes, and can achieve better performance in terms of
of sparsity [17]. However, L1/2 regularization is not smooth at the origin, which results
in oscillation during the numerical computation and causes difficulty in the feasibility
analysis. To overcome these issues, the regularizer was approximated with a continuous
function in our early work [18]. Furthermore, in [19], the smooth L1/2 was applied to
train the Sigma-Pi-Sigma neural network, and achieved better performance regarding both
sparsity at the weight level and accuracy compared to the non-smooth L1/2.

In this article, we combine the smooth L1/2 regularization with the group lasso method,
and propose a smooth group L1/2 regularization algorithm. This novel algorithm inherits
the advantages of the smooth function and L1/2 regularization. As an application, the
smooth group L1/2 regularization algorithm is employed for the fully connected layer of
CNNs. The main contribution of smooth group L1/2 is to try to prune unnecessary nodes
and control the magnitude of weights for the surviving nodes. In addition, due to the
differentiability of the error function with smooth group L1/2 regularization, it becomes
easier to analyze the feasibility of the learning algorithm in theory. In the process of training
the network, compared with GL1, GL2, and GL1/2, smooth group L1/2 regularization can
not only prune the nodes and weights (improve the sparsity), but also overcome the
oscillation in GL1/2.

This paper is organized as follows. We first describe the simple process of the con-
volutional neural network and the smooth group L1/2 regularization in the next section.
Then, in Section 3, the feasibility analysis of the SGL1/2 algorithm in CNNs is given, in
which the training convergence with the SGL1/2 term is proven theoretically. Numerical
comparisons of several methods on four real-world datasets are carried out in Section 4.
Finally, some conclusions are drawn in Section 5. In order to highlight the key points of
this paper, the theorem proving process is included in the Appendix A.

2. Brief Description of CNNs and Smooth Group L1/2 Regularization

In this section, we first demonstrate the simple calculation process of the convolutional
neural network. After introducing the penalty term, the SGL1/2 regularization is briefly
described in Section 2.2.

2.1. Convolutional Neural Network

CNNs consist of three building blocks: convolution [20], pooling [21] and the fully
connected layer [22]. Generally, the convolution filter is set as a symmetric matrix in CNNs.
A filter in a convolution layer carries out a convolution operation on input images to obtain
new feature maps, which can be expressed as:

xl
j = ∑

i∈Pj

xl−1
i ∗ kl

j + bl
j, (1)

Symmetry 2022, 14, 154 3 of 20

where xl
j is the j-th feature map in the l layer, kl

j denotes the convolution filter, the convolu-

tion operation is denoted by ∗, bl
j is the bias, and Pj is a set of feature maps activated by

filter kl
j in the l − 1 layer.

After xl
j is activated by a function, such as ReLU [23,24], the pooling layer uses the

max or mean approach to progressively reduce the spatial size of the representation, as
shown in the following equation:

pool(ReLU(xl
j)), (2)

where the pool function can be selected as the maximum or average as needed and the
ReLU function can be written as:

ReLU(x) = max{0, x}. (3)

A CNN may include several convolution–ReLU–pooling parts. The output of the last
pooling layer is flattened as one large vector reshape(pool(ReLU(xl

j))) [25] and is fed to a
fully connected layer for classification purposes. The final classification decision is driven
by the following equation:

O = g(U · reshape(xl+1
j)), (4)

where O is the actual output vector, U denotes the weight of the fully connected layer, g(·)
represents the activation function, reshape(·) denotes a function to transform a specified
matrix into a matrix of specific dimensions. The image is classified to the i-th category if
the i-th element of g(·) is the largest one. For a two-classification problem, U degenerates
into a vector and the activation function g(·) is generally the sigmoid function.

2.2. SGL1/2 Regularization for Fully Connected Layer

The error in the CNN is usually calculated by the following equation:

Ẽ =
1
J

J

∑
j=1

(Oj − T j)2, (5)

where J represents the number of samples, T j and Oj are the target and actual output
vectors of the j-th sample, respectively. Let r be the number of output nodes and q be the
number of nodes in the fully connected layer. The error function with a penalty term is
defined as

E = Ẽ + λ
q

∑
k=1
||uk||, (6)

where the vector uk is the weight vector connecting the k-th node of the fully connected
layer and all output nodes, and λ is the penalty term coefficient. The norm could be
the 1-norm, 2-norm or 1

2 -norm. When ||uk|| = ∑r
i=1 |uik|, it is the GL1 method, while

||uk|| = ∑r
i=1 u2

ik is the GL2 method.
Specifically, we take the 1

2 -norm [26]. Then,

E = Ẽ + λ
q

∑
k=1

(r

∑
i=1
|uik|

) 1
2
, (7)

where | · | is the normal absolute value function. When the norm takes the 1
2 -norm, we call

it the GL1/2 method. Nevertheless, the partial derivative of E with respect to uik does not
exist at the origin, which creates difficulties for the gradient descent method. Even though
the partial derivative is expressed with a piecewise function, it still causes fluctuations in

Symmetry 2022, 14, 154 4 of 20

the process of training. In order to overcome this drawback, a SGL1/2 regularization is
proposed in this paper:

E = Ẽ + λ
q

∑
k=1

(r

∑
i=1

f (uik)
) 1

2
, (8)

where f (·) represents a smooth function that approximates | · | (the absolute value function).
Specifically, the following piecewise polynomial function is used:

f (t) =

|t|, |t| ≥ m,

− 1
8m3 t4 +

3
4m

t2 +
3m
8

, |t| < m,
(9)

where m is a small positive constant. This function f (·) has the following characteristics:

• f (t)→ [3m
8 ,+∞)

• f
′
(t)→ [−1, 1]

• f
′′
(t)→ [0, 3

2m]

when t→ 0+ is a small constant. The norm is taken as the 1
2 -norm, and the absolute value

function in the 1
2 -norm is approximated by a smooth polynomial function near x = 0,

which is called the SGL1/2 method.

3. Feasibility Analysis of the SGL1/2 Algorithm in CNNs

Now, it is enough to give the feasibility analysis of the SGL1/2 algorithm. In order to
obtain the convergence results, we first turn the CNN into mathematical formulae. Then,
we proceed to give the convergence results.

3.1. Transform Convolution and Mean Pooling into Mathematical Equations

In regular neural networks, every layer is made up of a set of neurons, where each
neuron is fully connected to all neurons in the next layer before. This operation is easily
expressed by multiplying matrices. However, in CNNs, the neurons in one layer do not
connect to all the neurons in the next layer but only to a small part of it. The convolution
operation is often described graphically. Thus, our first task is to transform the convolution
operation into mathematical equations.

Although the convolution filter is usually symmetrical, for universal applicability in
the proof, we choose a general matrix. Let an input array be filtered by a 2× 2 filter, where
the padding is 0 and the step is 1. As shown in Figure 1, when the filter slides over the
input, a matrix multiplication of a submatrix of the input and the filter is performed and
the sum of the convolution moves into the feature map, i.e., the output of this layer.

Input Array Filter Output

11v 12v

21v 22v

Figure 1. The convolution operation.

To express this operation with mathematical equations, we squash each submatrix
that multiplies with the filter into a vector. More specifically, the red square of the input
array in Figure 2 is squashed into the vector (x11, x12, x21, x22). Then, we put all squashed
vectors into a matrix X in order of the filter sliding, as shown in Figure 2. The filter is also

Symmetry 2022, 14, 154 5 of 20

squashed with a vector (v11, v12, v21, v22)
T accordingly, and then is repeatedly put into

the diagonal position of the matrix V, as shown in Figure 3. Other elements of V are 0.
With X and V, the operation of the convolutional layer can be described with the matrix
multiplication of X and V, as shown in Figure 4, i.e.,

Conv = X ·V (10)

Input Array

𝑥"" 𝑥"# 𝑥"$
x#" x## 𝑥#$
𝑥$" 𝑥$# 𝑥$$

X

𝑥"" 𝑥"# 𝑥#" 𝑥## 𝑥"# 𝑥"$ 𝑥## 𝑥#$
𝑥#" 𝑥## 𝑥$" 𝑥$# 𝑥## 𝑥#$ 𝑥$# 𝑥$$

Figure 2. Reshape the input array with a matrix X.

Filter

12v11v

21v 22v

V

11v
12v
21v
22v

11v
12v
21v
22v

Figure 3. Reshape the filter with a matrix V.

OutputX

V

11v
12v

22v
21v

11v
12v
21v
22v

Figure 4. The convolution operation is described with the matrix multiplication of the reshaped
input array and filter.

The mean pooling is assumed to be applied in 2× 2 patches of the feature map with a
stride of (2, 2). It can also be expressed with the matrix multiplication, as shown in Figure 5.
Each patch of the feature map is flattened into a vector and all the vectors are merged into
a matrix as a reshaped feature map, as shown in Figure 5. The sliding mean window is
flattened as a vector (1

4 , 1
4 , 1

4 , 1
4)

T and is repeatedly put into the diagonal position of the

Symmetry 2022, 14, 154 6 of 20

mean matrix M, as shown in Figure 5. As in Equation (10), the mean pooling operation can
be expressed with the matrix multiplication:

mean pooling = X ·M. (11)

Reshaped feature map Pooled map

Figure 5. The mean pooling is described with the matrix multiplication of the reshaped feature map
and the mean matrix.

Now, given an input array X, the processing procedure from the convolution to the output
layer can be expressed by mathematical equations. The output of the convolution layer is

A = G(X) ·V, (12)

where the function G means the reshape operation shown in Figure 2. After the ReLU layer, the
matrix ReLU(A) is reshaped as G(ReLU(A)). In the pooling layer, the mean function is used

mean pooling = G(ReLU(A)) ·M. (13)

Then, the output matrix of the pooling layer is vectorized by column scan and this
process is denoted by

S = F(mean pooling), (14)

where the function F denotes the layer vectorized by the column. Finally, the fully connected
layer is

O = g(U · S). (15)

3.2. Convergence Results

To prove that our proposed method is feasible, here, we give the convergence results.
For ease of understanding, we take the simplest single-layer CNN case as an example.
This CNN includes one convolution, one pooling and one fully connected layer, where the
convolution filter size is (5, 5) and the mean pooling size is (2, 2).

Given the training sample set {X j, T j}J
j=1, each X j is assumed to be the 28× 28 input

array and T j is the 10× 1 vector. According to Equations (12)–(15), the error function of
Equation (8) can be expressed as

Symmetry 2022, 14, 154 7 of 20

E =
1
2J

J

∑
j=1

10

∑
i=1

(oj
i − tj

i)
2 + λ

144

∑
k=1

(10

∑
i=1

f (uik)
) 1

2

=
1
2J

J

∑
j=1

10

∑
i=1

(
g(Ui · F(G(ReLU(G(X j) ·V)) ·M))− tj

i

)2
+ λ

144

∑
k=1

(10

∑
i=1

f (uik)
) 1

2

=
J

∑
j=1

10

∑
i=1

gji(Ui · S) + λ
144

∑
k=1

(10

∑
i=1

f (uik)
) 1

2
,

(16)

where gji(t) = 1
2J (g(t)− tj

i)
2, Ui is the i-th row vector of U.

Training a CNN involves finding a suitable V and U so that E reaches the minimum [27].
For this reason, the gradient descent method [28] is adopted. Notice that the mean matrix
M does not need to be trained. In the backpropagation algorithm, V and U are changed
according to the gradient descent direction of E. The partial derivative of E with respect to
the element uik of U is as follows:

Euik =
J

∑
j=1

g′ji(Ui · S) · Sk + λ
f ′(uik)

2

√
10
∑

i=1
f (uik)

, (k = 1, · · · , 144).
(17)

The partial derivative of E with respect to the element vij of the convolution filter
V is the same as the original CNN because the partial derivative of the penalty term in
Equation (16) with respect to vij is zero. That is,

Evpl =
J

∑
j=1

10

∑
i=1

g′ji(Ui · S)
144

∑
k=1

uik
∂Sk
∂vpl

=
J

∑
j=1

10

∑
i=1

g′ji(Ui · S)
11

∑
m=0

12

∑
h=1

ui,12m+h
∂sm+1,h

∂vpl

=
1
4

J

∑
j=1

10

∑
i=1

g′ji(Ui · S)
11

∑
m=0

12

∑
h=1

ui,12m+h

·
(

δ(am+1,h)
∂am+1,h

∂vpl
+ δ(am+1,h+1)

∂am+1,h+1

∂vpl

+ δ(am+2,h)
∂am+2,h

∂vpl
+ δ(am+2,h+1)

∂am+2,h+1

∂vpl

)

=
1
4

J

∑
j=1

10

∑
i=1

g′ji(Ui · S)
11

∑
m=0

12

∑
h=1

ui,12m+h

· (δ(am+1,h)xm+p,h+l−1 + δ(am+1,h+1)xm+p,h+l

+ δ(am+2,h)xm+p+1,h+l−1 + δ(am+2,h+2)xm+p+1,h+l),

(18)

where δ is the derivative function of the rectified linear units function:

δ(t) =

{
1, t > 0,

0, t ≤ 0.

Thus far, we have given the step direction of U and V by (17) and (18), respectively. Now,
we proceed to give the step direction of the biases. The partial derivative of the biases can be
computed similarly as shown in [29]; the reader can refer to this article for more details.

Symmetry 2022, 14, 154 8 of 20

We combine all weights and biases into a large vector W. Then, the parameter updating
algorithm of SGL1/2 is defined as follows:

Wn+1 = Wn +4Wn = Wn − ηEWn , (19)

where η is the learning rate and n is the iteration step.
The convergence proof needs some assumptions as follows:

(1) ||Wn|| (n = 0, 1, 2, . . .) are uniformly bounded, where Wn is the error of the n-th step.
(2) λ and η are chosen to satisfy η ≤ min{ 1

C6
, 1

C5+λC7
}, where C5, C6 and C7 are constants

defined below.
(3) There exists a compact set Φ such that Wn ∈ Φ and Φ0 = {W ∈ Φ : EW = 0} contains

finite points.

Theorem 1. Let the error function be Equation (8) and the weight sequence {Wn} be generated by
Equation (19) with any initial value W0. If Assumptions (1)–(2) are available, then

(i) E(Wn) ≥ E(Wn+1), n = 0, 1, 2, . . . ;
(ii) There exists E∗ ≥ 0, such that lim

n→∞
E(Wn) = E∗;

(iii) The weak convergence holds, i.e., lim
n→∞

||EWn ||2 = 0.

In addition, if the Assumption (3) also holds, then the strong convergence result holds:

(iv) There exists a point W∗ ∈ Φ0 such that lim
n→∞

Wn = W∗.

The proof process is not the focus of this article, so we include it in the Appendix A.

4. Numerical Experiments and Discussion

We evaluate SGL1/2 in different ways, such as nodes [30] and weights sparsity [31],
training and testing accuracy, the norm of weight gradient and the convergence speed,
on four typical benchmark datasets: Mnist [32], Letter Recognition [33], Cifar 10 [34] and
Crowded Mapping. For parameter sparsity, SGL1/2 is compared with some conventional
and sparse algorithms including GL1, GL2 and GL1/2. Moreover, we investigate the test
accuracy by comparing SGL1/2 with the above regularization algorithms.

For the following numerical experiments, we refer to the arithmetic optimization
algorithm [35] and adopt a five-fold cross-validation technique [36–38]. We randomly
divide the dataset into five parts, where the sample size is equal (or almost equal). The
network learning of these four algorithms is carried out five times. Each time, one of the
five parts is selected in turn as the test sample set, and the other four parts are used as the
training sample sets. Then, we rearrange the five-part samples and start the process again.
This process is repeated twenty times. The experiment process is given in Algorithm 1.

Algorithm 1 The experiment process.

Step 1: Input the data and calculate the corresponding actual output;

Step 2: Calculate the difference between the actual output and the ideal output;

Step 3: Give the error function according to these four algorithms;

Step 4: Update the weights of the fully connected layer according to the error function of step 3;

Step 5: Keep iterating, repeat steps 2–4;

Step 6: Calculate the pruned nodes, pruned weights of surviving weights and classification
accuracies under these four methods, respectively;

Step 7: Contrast.

Symmetry 2022, 14, 154 9 of 20

Finally, for each dataset and algorithm, we obtain one hundred classification results.
Each result contains the rate of pruned nodes (Rate of PN) (cf. Equation (20)), the rate of
pruned weights of the remaining nodes (Rate of PW) (cf. Equation (21)), training accuracy
(Training Acc.) and test accuracy (Test Acc.). The averages of these numerical results are
listed in Tables 1–4 for these four datasets.

Rate of PN =
Pruned nodes

All nodes
, (20)

Rate of PW =
Pruned weights of surviving nodes
Surviving nodes×Output nodes

. (21)

For an output node, the ideal output value is 1 or 0. When we evaluate the error
between the ideal and real output values, we use the following “40-20-40” standard [39]:
The actual output values of the output nodes between 0.00 and 0.40 are regarded as 0,
values between 0.60 and 1.00 are regraded as 1, and values between 0.40 and 0.60 are
regraded as uncertain and are considered incorrect.

Table 1. Mnist: Comparison of Rate of PN, Rate of PW, Training Acc. and Test Acc. by using GL1,
GL2, GL1/2 and SGL1/2 learning algorithms.

Algorithm Rate of PN (%) Rate of PW (%) Training Acc. (%) Test Acc. (%)

GL1 15.50 2.60 99.75 99.13
GL2 16.17 3.16 99.80 99.15

GL1/2 12.33 19.83 99.67 99.06
SGL1/2 19.33 17.79 99.83 99.24

Table 2. Letter: Comparison of Rate of PN, Rate of PW, Training Acc. and Test Acc. by using GL1,
GL2, GL1/2 and SGL1/2 learning algorithms.

Algorithm Rate of PN (%) Rate of PW (%) Training Acc. (%) Test Acc. (%)

GL1 7.78 1.95 89.75 87.42
GL2 8.89 2.86 89.81 87.60

GL1/2 5.56 18.37 89.67 86.83
SGL1/2 15.56 12.04 90.43 87.93

Table 3. Cifar 10: Comparison of Rate of PN, Rate of PW, Training Acc. and Test Acc. by using GL1,
GL2, GL1/2 and SGL1/2 learning algorithms.

Algorithm Rate of PN (%) Rate of PW (%) Training Acc. (%) Test Acc. (%)

GL1 12.7 2.20 87.95 82.84
GL2 13.4 2.63 88.07 83.26

GL1/2 9.02 18.05 87.36 82.30
SGL1/2 20.61 17.27 88.39 83.86

Table 4. Crowded Mapping: Comparison of Rate of PN, Rate of PW, Training Acc. and Test Acc. by
using GL1, GL2, GL1/2 and SGL1/2 learning algorithms.

Algorithm Rate of PN (%) Rate of PW (%) Training Acc. (%) Test Acc. (%)

GL1 11.46 1.85 93.58 92.76
GL2 12.85 3.07 94.39 93.58

GL1/2 8.93 19.65 92.54 91.90
SGL1/2 22.60 17.28 95.21 94.63

4.1. Mnist Problem

MNIST is a dataset for the study of handwritten numeral recognition, which contains
70,000 examples of 28× 28 pixel images of the digits 0–9. For these four algorithms, we

Symmetry 2022, 14, 154 10 of 20

set the learning rate η = 0.03. The maximum iteration training step is 1000. In order
to show the sparsity, we give the node sparsity and weight sparsity performances for
λ = 0.001, 0.002, 0.003, 0.004, 0.005 of these four algorithms (see Figure 6; y-axis represents
the percentage of the number of pruned nodes and pruned weights of the remaining nodes,
respectively). The sparsity will become worse when λ > 0.005. Therefore, we choose
λ = 0.005 to compare these algorithms. The performances of these four group lasso algo-
rithms are compared in Table 1. We can see that, in terms of the sparsity, the performance
of SGL1/2 is better than GL2, GL1 and GL1/2. In terms of of accuracy, SGL1/2 is also the
best. Figure 7a presents the loss functions of these four group lasso algorithms. Obviously,
we can see that the SGL1/2 approach has the lowest error after training, and SGL1/2 has a
large fluctuation during the training process.

We show the gradient norms of GL1, GL2, GL1/2 and SGL1/2 in Figure 7b, where the
oscillation [40,41] of GL1/2 is presented. From Figure 7, we find that the SGL1/2 regularizer
eliminates the oscillation and guarantees the convergence, as predicted in Theorem 1.

(a) (b)

Figure 6. Sparsity of GL1, GL2, GL1/2 and SGL1/2 algorithms in Mnist dataset. (a) Node sparsity,
(b) Weight sparsity.

(a) (b)

Figure 7. Loss and gradient of GL1, GL2, GL1/2 and SGL1/2 algorithms in Mnist dataset. (a) Loss
function, (b) Norm of gradient.

4.2. Letter Recognition Problem

The Letter Recognition dataset consists of 20,000 samples with 16 attributes. Each
16-dimensional instance within this database represents a capital typewritten letter in one
of twenty fonts. For these four algorithms, we set the learning rate η = 0.05. The maximum
iteration training step is 1000. In order to show the sparsity, we give the node sparsity
and weight sparsity performances for λ = 0.002, 0.004, 0.006, 0.008 of these four algorithms
(see Figure 8). The sparsity will become worse when λ > 0.008. Therefore, we choose
λ = 0.008 to compare these algorithms. The performances of GL2, GL1, GL1/2 and SGL1/2

Symmetry 2022, 14, 154 11 of 20

are compared in Table 2. We see that, in terms of sparsity, the performance of SGL1/2 is
better than GL2, GL1 and GL1/2. In terms of accuracy, SGL1/2 is also the best among the
above-mentioned four algorithms. Figure 9a presents the loss functions of these four group
lasso algorithms. Obviously, we can see that the SGL1/2 approach has the lowest error
after training, and SGL1/2 has a large fluctuation during the training process.

(a) (b)

Figure 8. Sparsity of GL1, GL2, GL1/2 and SGL1/2 algorithms in Letter Recognition dataset. (a) Node
sparsity, (b) Weight sparsity.

We show the gradient norms of GL1, GL2, GL1/2 and SGL1/2 in Figure 9b, where
the oscillation of GL1/2 is presented. From Figure 9, we find that the SGL1/2 regularizer
eliminates the oscillation and guarantees the convergence, as predicted in Theorem 1.

(a) (b)

Figure 9. Loss and gradient of GL1, GL2, GL1/2 and SGL1/2 algorithms in Letter Recognition dataset.
(a) Loss function, (b) Norm of gradient.

4.3. Cifar 10 Problem

The Cifar 10 dataset consists of 60,000 images, each of which is a 32× 32 color map.
This dataset contains 10 classes (airplane, automobile, bird, cat, deer, dog, frog, horse, ship
and truck), with 6000 images per class. There are 50,000 training images and 10,000 test
images. For these four algorithms, we set the learning rate η = 0.03. The maximum
iteration training step is 1000. In order to show the sparsity, we give the node sparsity
and weight sparsity performances for λ = 0.001, 0.002, 0.003, 0.004, 0.005 of these four
algorithms (see Figure 10). The sparsity will become worse when λ > 0.005. Therefore, we
choose λ = 0.005 to compare these algorithms. The performances of these four group lasso
algorithms are compared in Table 3. We see that, in terms of of sparsity, the performance
of SGL1/2 is better than GL2, GL1 and GL1/2. In terms of accuracy, SGL1/2 is also the best.
Figure 11a presents the loss functions of these four group lasso algorithms. Obviously,

Symmetry 2022, 14, 154 12 of 20

we can see that the SGL1/2 approach has the lowest error after training, and SGL1/2 has a
large fluctuation during the training process.

(a) (b)

Figure 10. Sparsity of GL1, GL2, GL1/2 and SGL1/2 algorithms in Cifar 10 dataset. (a) Node sparsity,
(b) Weight sparsity.

We show the gradient norms of GL1, GL2, GL1/2 and SGL1/2 in Figure 11b, where
the oscillation of GL1/2 is presented. From Figure 11, we find that the SGL1/2 regularizer
eliminates the oscillation and guarantees the convergence, as predicted in Theorem 1.

(a) (b)

Figure 11. Loss and gradient of GL1, GL2, GL1/2 and SGL1/2 algorithms in Cifar 10 dataset. (a) Loss
function, (b) Norm of gradient.

4.4. Crowded Mapping

The Crowded Mapping dataset consists of 10,546 samples with 28 attributes, and these
samples are divided into six classes. For these four algorithms, we set the learning rate
η = 0.05. The maximum iteration training step is 1000. In order to show the sparsity, we
give the node sparsity and weight sparsity performances for λ = 0.0015, 0.003, 0.045, 0.006
of these four algorithms (see Figure 12). The sparsity will become worse when λ > 0.006.
Therefore, we choose λ = 0.006 to compare these four algorithms. The performances of
the GL1, GL2, GL1/2 and SGL1/2 methods are compared in Table 4. We see that, in terms
of sparsity, the performance of SGL1/2 is better than GL2, GL1 and GL1/2. In terms of
accuracy, SGL1/2 is also the best among the above-mentioned four algorithms. Figure 13a
presents the loss functions of these four group lasso algorithms. Obviously, we can see that
the SGL1/2 algorithm has the lowest error after training, and SGL1/2 has a large fluctuation
during the training process.

Symmetry 2022, 14, 154 13 of 20

Penalty
×10

-3
1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

N
o
d
e
 S

p
a
rs

it
y
)

4

6

8

10

12

14

16

18

20

22

24

SGL1/2
GL1/2
GL2
GL1

(a)

Penalty
×10

-3
1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

W
e
ig

h
t
S

p
a
rs

it
y
)

0

2

4

6

8

10

12

14

16

18

20

SGL1/2
GL1/2
GL2
GL1

(b)

Figure 12. Sparsity of GL1, GL2, GL1/2 and SGL1/2 algorithms in Crowded Mapping dataset.
(a) Node sparsity, (b) Weight sparsity.

We show the gradient norms of GL1, GL2, GL1/2 and SGL1/2 in Figure 13b, where
the oscillation of GL1/2 is presented. From Figure 13, we find that the SGL1/2 regularizer
eliminates the oscillation and guarantees the convergence, as predicted in Theorem 1.

Epoch
0 100 200 300 400 500 600 700 800 900 1000

L
o
g
(E

(W
))

-14

-12

-10

-8

-6

-4

-2
Loss

GL1
GL2
GL1/2
SGL1/2

(a)

Epoch
0 100 200 300 400 500 600 700 800 900 1000

L
o
g
(N

o
rm

 o
f
g
ra

d
ie

n
t)

-3

-2

-1

0

1

2

3

4
Norm of gradient

GL1
GL2
GL1/2
SGL1/2

(b)

Figure 13. Loss and gradient of GL1, GL2, GL1/2 and SGL1/2 algorithms in Crowded Mapping dataset.
(a) Loss function, (b) Norm of gradient.

From the above experiments on the four datasets, it is easy to see that the GL1 and
GL2 algorithms have better sparsity at the node level, and the GL1/2 algorithm has better
sparsity at the weight level. In some applications, the sparsity at the weight level is also
of great significance. If the sparseness of the integrated node and weight level is better,
the number of weights that need to be calculated and updated will be reduced in the
process of training the CNNs. Furthermore, it also leads to a reduction in the amount
of calculation and saves storage space. Compared with the GL1 and GL2 algorithms,
the SGL1/2 algorithm has better sparsity at the node level and the weight level, and can
also improve the classification performance. Compared with the GL1/2 algorithm, the
theoretical analysis and numerical experiment are carried out to verify that the SGL1/2
algorithm improves the sparsity at the node level, and at the same time improves the
classification performance.

4.5. Discussion

Tables 1–4, respectively, show the performance comparison of PN, PW, training accuracies
and test accuracies under these four methods. In terms of the sparsity, the PN calculation results of
the SGL1/2 method are much better than the other three methods, especially the GL1/2 method.
As for the PW, although the surviving node of the GL1/2 has a higher rate of pruned weights of
surviving weights, the rate of pruned nodes is too low, such that the sparsity of the GL1/2 method
is still far lower than that of the SGL1/2 method. In terms of classification accuracy, the SGL1/2

Symmetry 2022, 14, 154 14 of 20

method is slightly higher than other methods, which means that this method can improve the
sparsity without damaging the classification accuracy.

We can find that the specificity of CNNs is not actually used in the experiments, so
the SGL1/2 method can be widely applied to other neural network models.

5. Conclusions

Our main task was to introduce the SGL1/2 algorithm. Based on the GL1 and GL2
algorithms, replacing 1-norm and 2-norm with 1

2 -norm can greatly improve the sparsity of
the network weight level, but it does not help to achieve better sparsity of the node level.
The non-smooth penalty term at the origin is the root cause of the poor sparsity of the
GL1/2 algorithm at the node level.

To this end, in this paper, a smooth group L1/2 (SGL1/2) regularization term is in-
troduced into the batch gradient learning algorithm to prune the CNN. The feasibility
analysis of the SGL1/2 method for the fully connected layer of the CNN is performed.
Numerical experiments show that the sparsity and convergence of SGL1/2 give better
results in terms of both the rate of pruned hidden nodes and weights of the remaining
hidden nodes compared to GL1/2, GL1 and GL2. In addition, the SGL1/2 regularizer not
only overcomes the oscillation phenomenon during the training process, but also achieves
better classification performance.

In fact, the SGL1/2 regularization algorithm provides a strategy to improve the sparsity
of hidden layers of neural networks, not only for CNNs. Therefore, the performance of the
SGL1/2 regularization algorithm on other neural network models is also worthy of further
verification. However, the SGL1/2 algorithm is not particularly obvious in improving the
classification accuracy. In future work, we will focus on continuing to improve the SGL1/2
algorithm to achieve better classification performance of the neural network.

Author Contributions: Conceptualization, Y.B. and S.Y.; methodology, S.Y.; software, S.Y.; validation,
Y.B., S.Y. and Z.L. (Zhaobin Liu); formal analysis, S.Y.; investigation, Z.L. (Zhongxuan Luo); resources,
Z.L. (Zhongxuan Luo); data curation, Z.L. (Zhaobin Liu); writing—original draft preparation, Y.B.
and S.Y.; writing—review and editing, Y.B., S.Y., Z.L. (Zhongxuan Luo) and Z.L. (Zhaobin Liu);
funding acquisition, Z.L. (Zhongxuan Luo). All authors have read and agreed to the published
version of the manuscript.

Funding: This project is supported by the National Natural Science Foundation of China (No.
61720106005).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets in this paper are both available at http://archive.ics.uci.
edu/ml/datasets.php (accessed on 6 May 2020).

Acknowledgments: The authors would like to thank the referees for their careful reading and
helpful comments.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Proof for (i) of Theorem 1. In SGL1/2, each input array X j is fed to the CNN to compute
the corresponding output. Specifically, at the n-th iteration, when X j is fed to the CNN,
the flattened vector S is Sn,j. Let ∆Sn,j = Sn+1,j − Sn,j and ∆un

ij = un+1
ij − un

ij. By the error
function (16) and Taylor’s formula [42], we have

http://archive.ics.uci.edu/ml/datasets.php
http://archive.ics.uci.edu/ml/datasets.php

Symmetry 2022, 14, 154 15 of 20

E(Wn+1)− E(Wn) =
J

∑
j=1

10

∑
k=1

(
gjk(Un+1

k Sn+1,j)− gjk(Un
k Sn,j)

)
+ λ

144

∑
k=1

[(10

∑
i=1

f (un+1
ik)

) 1
2 −

(10

∑
i=1

f (un+1
ik)

) 1
2
]

=
J

∑
j=1

10

∑
k=1

g′jk(U
n
k Sn,j)Un

k ∆Sn,j +
J

∑
j=1

10

∑
k=1

g′jk(U
n
k Sn,j)∆Un

k Sn,j + δ1

+ λ
144

∑
k=1

[(10

∑
i=1

f (un+1
ik)

) 1
2 −

(10

∑
i=1

f (un
ik)
) 1

2
]
,

(A1)

where

δ1 =
1
2

J

∑
j=1

10

∑
k=1

[
(∆Un

k)
T (∆Sn,j)T]

 ∂2gjk(ξ
n
k νn,j)

∂(Un
k)

2
∂2gjk(ξ

n
k νn,j)

∂Un
k ∂Sn,j

∂2gjk(ξ
n
k νn,j)

∂Sn,j∂Un
k

∂2gjk(ξ
n
k νn,j)

∂(Sn,j)2

[∆Un
k

∆Sn,j

] (A2)

for some real-valued vector ξn
k ∈ (Un

k , Un+1
k), and νn,j ∈ (Sn,j, Sn+1,j). For the first term of

Equation (A1), we obtain

J

∑
j=1

10

∑
k=1

g′jk(U
n
k Sn,j)Un

k ∆Sn,j

=
J

∑
j=1

10

∑
k=1

g′jk(U
n
k Sn,j)Un

k [F(G(ReLU(An+1)) ·M)− F(G(ReLU(An)) ·M)]

=
1
4

J

∑
j=1

10

∑
k=1

g′jk(U
n
k Sn,j)

11

∑
m=0

12

∑
h=1

un
k,12m+h ·

(
ReLU(an+1

m+1,h) + ReLU(an+1
m+1,h+1)

+ ReLU(an+1
m+2,h) + ReLU(an+1

m+2,h+1)− ReLU(an
m+1,h)− ReLU(an

m+1,h+1)

− ReLU(an
m+2,h)− ReLU(an

m+2,h+1)
)

=
1
4

J

∑
j=1

10

∑
k=1

g′jk(U
n
k Sn,j)

11

∑
m=0

12

∑
h=1

un
k,12m+h ·

(
ReLU(

5

∑
t=1

5

∑
l=1

xj
m+t,h+l−1vn+1

tl)

+ ReLU(
5

∑
t=1

5

∑
l=1

xj
m+t,h+lv

n+1
tl) + ReLU(

5

∑
t=1

5

∑
l=1

xj
m+t+1,h+l−1vn+1

tl)

+ ReLU(
5

∑
t=1

5

∑
l=1

xj
m+t+1,h+lv

n+1
tl)− ReLU(

5

∑
t=1

5

∑
l=1

xj
m+t,h+l−1vn

tl)

− ReLU(
5

∑
t=1

5

∑
l=1

xj
m+t,h+lv

n
tl)− ReLU(

5

∑
t=1

5

∑
l=1

xj
m+t+1,h+l−1vn

tl)

− ReLU(
5

∑
t=1

5

∑
l=1

xj
m+t+1,h+lv

n
tl)
)

=
1
4

J

∑
j=1

10

∑
k=1

g′jk(U
n
k Sn,j)

11

∑
m=0

12

∑
h=1

un
k,12m+h ·

(
δ(an

m+1,h)
5

∑
t=1

5

∑
l=1

xj
m+t,h+l−1∆vn

tl

+ δ(an
m+1,h+1)

5

∑
t=1

5

∑
l=1

xj
m+t+1,h+l−1∆vn

tl + δ(an
m+2,h)

5

∑
t=1

5

∑
l=1

xj
m+t+1,h+l−1∆vn

tl

+ δ(an
m+2,h+2)

5

∑
t=1

5

∑
l=1

xj
m+t+1,h+l∆vn

tl

)
.

(A3)

Symmetry 2022, 14, 154 16 of 20

If we extract the first term of each sign ∑5
t=1 ∑5

l=1 (the case of t = 1 and i = 1) and
sum them together, we can obtain

1
4

J

∑
j=1

10

∑
k=1

g′jk(U
n
k Sn,j)

11

∑
m=0

12

∑
h=1

un
i,12m+h

·
(

δ(an
m+1,h)xj

m+1,h∆vn
11 + δ(an

m+1,h+1)xj
m+2,h∆vn

11

+ δ(an
m+2,h)xj

m+2,h∆vn
11 + δ(an

m+2,h+2)xj
m+2,h+1∆vn

11

)
=

∆vn
11

4

J

∑
j=1

10

∑
k=1

g′jk(U
n
k Sn,j)

11

∑
m=0

12

∑
h=1

un
i,12m+h

·
(

δ(an
m+1,h)xj

m+1,h + δ(an
m+1,h+1)xj

m+2,h

+ δ(an
m+2,h)xj

m+2,h + δ(an
m+2,h+2)xj

m+2,h+1

)
(18)
= Evn

11
∆vn

11
(19)
= − 1

η
(∆vn

11)
2.

Similar processing can be applied to other terms of ∑5
t=1 ∑5

l=1 (other 24 cases). Thus,
it follows from Equation (A3) that

J

∑
j=1

10

∑
k=1

g′jk(U
n
k Sn,j)Un

k ∆Sn,j = − 1
η

5

∑
t=1

5

∑
l=1

(∆vn
tl)

2. (A4)

For the second term of Equation (A1), we obtain

J

∑
j=1

10

∑
k=1

g′jk(U
n
k Sn,j)∆Un

k Sn,j

=
J

∑
j=1

10

∑
k=1

g′jk(U
n
k Sn,j)

144

∑
i=1

∆ukiS
n,j
i

=
10

∑
k=1

144

∑
i=1

∆uki

J

∑
j=1

g′jk(U
n
k Sn,j)Sn,j

i

(17)
=

10

∑
k=1

144

∑
i=1

∆uki(Eun
ki
− λ

f ′(uki)∆un
ki

2

√
10
∑

j=1
f (uji)

)

(19)
= − 1

η

10

∑
k=1

144

∑
i=1

(∆un
ki)

2 − λ
10

∑
k=1

144

∑
i=1

f ′(uki)∆un
ki

2

√
10
∑

j=1
f (uji)

.

(A5)

For the third term δ1 of Equation (A1), it is apparent that the second partial derivatives
of the function gjk are bounded. Thus, there exists a positive constant C2 such that

Symmetry 2022, 14, 154 17 of 20

|δ1| =
∣∣∣∣∣12 J

∑
j=1

10

∑
k=1

[
(∆Un

k)
T (∆Sn,j)T]

 ∂2gjk(ξ
n
k νn,j)

∂(Un
k)

2
∂2gjk(ξ

n
k νn,j)

∂Un
k ∂Sn,j

∂2gjk(ξ
n
k νn,j)

∂Sn,j∂Un
k

∂2gjk(ξ
n
k νn,j)

∂(Sn,j)2

[∆Un
k

∆Sn,j

]∣∣∣∣∣
≤ C2

J

∑
j=1

10

∑
k=1
||
[
(∆Un

k)
T (∆Sn,j)T

]
||2

≤ C2

J

∑
j=1

10

∑
k=1

(||∆Un
k ||

2 + ||∆Sn,j||2).

(A6)

Notice that

||∆Sn,j||2 = ||Sn+1,j − Sn,j||2

= ||F(G(ReLU(G(X j) ·Vn+1)) ·M)− F(G(ReLU(G(X j) ·Vn)) ·M)||2,

and the operation F, G and the matrix M are linear. There exist two positive constants C3
and C4 such that

||∆Sn,j||2 ≤ C3||ReLU(G(X j) ·Vn+1)− ReLU(G(X j) ·Vn)||2 ≤ C3C4||4Vn)||2.

Then, from Equation (A6),

|δ1| ≤ C2

J

∑
j=1

10

∑
k=1

(||∆Un
k ||

2 + C3C4||4Vn)||2)

= C2 J(
10

∑
k=1

144

∑
i=1

(∆uki)
2 + 10C3C4

5

∑
t=1

5

∑
l=1

(∆vn
tl)

2)

= C5

10

∑
k=1

144

∑
i=1

(∆uki)
2 + C6

5

∑
t=1

5

∑
l=1

(∆vn
tl)

2,

(A7)

where C5 = C2 J and C6 = 10JC2C3C4.
With Taylor’s formula, for the fourth term of Equation (A1), we have

λ
144

∑
k=1

[(10

∑
i=1

f (un+1
ik)

) 1
2 −

(10

∑
i=1

f (un
ik)
) 1

2
]

= λ
144

∑
k=1

[
1
2

10

∑
i=1

f ′(un
ik)∆un

ik(10
∑

j=1
f (un

ji)
) 1

2
+

1
2

10

∑
t,l=1

∆utk∆un
lk

∂2

∂un
tk∂un

lk
(

10

∑
i=1

f (un
ik))

1
2 |Un

k =ξn
k

]

≤ λ
144

∑
k=1

10

∑
i=1

f ′(un
ik)∆un

ik

2
(10

∑
j=1

f (un
ji)
) 1

2
+ λC7

144

∑
k=1

10

∑
i=1

(∆un
ki)

2,

(A8)

for some vector ξn
l . Because of the existence of the derivative of f (·) and the boundedness of

f ′′(·), there exists some positive constant C7 such that the inequality of Equation (A8) is true.

Symmetry 2022, 14, 154 18 of 20

From Equations (A1), (A4), (A5), (A7) and (A8), we can obtain

E(Wn+1)− E(Wn)

≤ − 1
η

5

∑
t=1

5

∑
l=1

(∆vn
tl)

2 − 1
η

10

∑
k=1

144

∑
i=1

(∆un
ki)

2 − λ
10

∑
k=1

144

∑
i=1

f ′(uki)∆un
ki

2

√
10
∑

j=1
f (uji)

+ C5

10

∑
k=1

144

∑
i=1

(∆uki)
2 + C6

5

∑
t=1

5

∑
l=1

(∆vn
tl)

2

+ λ
144

∑
k=1

10

∑
i=1

f ′(un
ik)∆un

ik

2
(10

∑
j=1

f (un
ji)
) 1

2
+ λC7

144

∑
k=1

10

∑
i=1

(∆un
ki)

2

≤ (C6 −
1
η
)

5

∑
t=1

5

∑
l=1

(∆vn
tl)

2 + (C5 + λC7 −
1
η
)

10

∑
k=1

144

∑
i=1

(∆un
ki)

2.

(A9)

As long as Assumption (2) is satisfied, it can yield E(Wn+1)− E(Wn) ≤ 0. The proof
for (i) of the theory is completed.

Proof for (ii). From the conclusion of (i), we know that the nonnegative sequence E(Wn)
monotonically decreases. Hence, there must exist a E∗ ≥ 0 such that lim

n→∞
E(Wn) = E∗.

Proof for (iii). Let C8 = min{ 1
η − C6, 1

η − C5 − λC7}η2. From Equation (A9) and (ii), we
can obtain

∆E(Wn) = E(Wn+1)− E(Wn)

≤ −min{ 1
η
− C6,

1
η
− C5 − λC7}

[5

∑
t=1

5

∑
l=1

(∆vn
tl)

2 +
10

∑
k=1

144

∑
i=1

(∆un
ki)

2
]

= −min{ 1
η
− C6,

1
η
− C5 − λC7}η2||EWn ||2

≤ −C8||EWn ||2.

(A10)

That is,

C8||EWn ||2 ≤ −∆E(Wn). (A11)

If lim
n→∞

∆E(Wn) = 0, we have

lim
n→∞

||EWn ||2 = 0. (A12)

Before proving (iv), we need to review the following lemma [43]:

Lemma A1. (Wu, Li, Yang, Liu, 2010, Lemma 1). On a bounded closed region Φ ⊂ Rp, let
F : Rp → R be continuous and differentiable. If the set Φ0 = {x ∈ Φ| ∂F(x)

∂x = 0} contains only

finite points and the sequence {xn} ⊂ Φ satisfies lim
n→∞

‖ ∂F(xn)
∂x ‖ = 0 and lim

n→∞
‖xn−1 − xn‖ = 0,

then there exists x∗ ∈ Φ0 such that lim
n→∞

xn = x∗.

Proof for (iv). Since the error function E(W) is continuous and differentiable, from Equation (19),
Assumption (3) and Lemma A1, we can easily achieve the desired result; there exists a
point W∗ ∈ Φ0 such that lim

n→∞
(Wn) = W∗.

Symmetry 2022, 14, 154 19 of 20

References
1. Sharma, P.; Singh, A.; Singh, K.K.; Dhull, A. Vehicle identification using modified region based convolution network for intelligent

transportation system. Multimed. Tools Appl. 2021, 1–25. [CrossRef]
2. Nguyen, K.C.; Nguyen, C.T.; Nakagawa, M. Nom document digitalization by deep convolution neural networks. Pattern Recognit.

Lett. 2020, 133, 8–16. [CrossRef]
3. Jogin, M.; Mohana; Madhulika, M.S.; Divya, G.D.; Meghana, R.K.; Apoorva, S. Feature Extraction using Convolution Neural

Networks (CNN) and Deep Learning. In Proceedings of the 2018 3rd IEEE International Conference on Recent Trends in
Electronics, Information and Communication Technology (RTEICT), Bangalore, India, 18–19 May 2018; pp. 2319–2323.

4. Li, G.; Tang, H.; Sun, Y.; Kong, J.; Jiang, G.; Jiang, D.; Tao, B.; Xu, S.; Liu, H. Hand gesture recognition based on convolution
neural network. Clust. Comput. 2019, 22, 2719–2729. [CrossRef]

5. Brachmann, A.; Redies, C. Using convolutional neural network filters to measure left-right mirror symmetry in images. Symmetry
2016, 8, 144. [CrossRef]

6. Yu, D. A new pose accuracy compensation method for parallel manipulators based on hybrid artificial neural network. Neural
Comput. Appl. 2021, 33, 909–923. [CrossRef]

7. Wang, J.; Cai, Q.; Chang, Q.; Zurada, J.M. Convergence analyses on sparse feedforward neural networks via group lasso
regularization. Inf. Sci. 2017, 381, 250–269. [CrossRef]

8. Ng, A.Y. Feature selection, L1 vs. L2 regularization, and rotational invariance. In Proceedings of the Twenty-First International
Conference on Machine Learning, Banff, AB, Canada, 4–8 July 2004; p. 78.

9. Bilal, H.; Kumar, A.; Yin, B. Pruning filters with L1-norm and capped L1-norm for CNN compression. Appl. Intell. 2021, 51, 1152–1160.
10. Gou, J.; Hou, B.; Yuan, Y.; Ou, W.; Zeng, S. A new discriminative collaborative representation-based classification method via L2

regularizations. Neural Comput. Appl. 2020, 32, 9479–9493. [CrossRef]
11. Xu, Z.; Chang, X.; Xu, F.; Zhang, H. L1/2 regularization: A thresholding representation theory and a fast solver. IEEE Trans.

Neural Netw. Learn. Syst. 2012, 23, 1013–1027.
12. Xiao, R.; Cui, X.; Qiao, H.; Zheng, X.; Zhang, Y. Early diagnosis model of Alzheimer’s Disease based on sparse logistic regression.

Multimed. Tools Appl. 2020, 80, 3969–3980. [CrossRef]
13. Goulart, J.; Oliveira, P.; Farias, R.C.; Zarzoso, V.; Comon, P. Alternating Group Lasso for Block-Term Tensor Decomposition and

Application to ECG Source Separation. IEEE Trans. Signal Process. 2020, 68, 2682–2696. [CrossRef]
14. Diwu, Z.; Cao, H.; Wang, L.; Chen, X. Collaborative Double Sparse Period-Group Lasso for Bearing Fault Diagnosis. IEEE Trans.

Instrum. Meas. 2020, 70, 1–10. [CrossRef]
15. Zheng, S.; Ding, C. A group lasso based sparse KNN classifier. Pattern Recognit. Lett. 2020, 131, 227–233. [CrossRef]
16. Friedman, J.; Hastie, T.; Tibshirani, R. A note on the group lasso and a sparse group lasso. arXiv 2010, arXiv:1001.0736.
17. Alemu, H.Z.; Zhao, J.; Li, F.; Wu, W. Group L1/2 regularization for pruning hidden layer nodes of feedforward neural networks.

IEEE Access 2019, 7, 9540–9557. [CrossRef]
18. Wu, W.; Fan, Q.; Zurada, J.M.; Wang, J.; Yang, D.; Liu, Y. Batch gradient method with smoothing L1/2 regularization for training

of feedforward neural networks. Neural Netw. 2014, 50, 72–78. [CrossRef]
19. Liu, Y.; Li, Z.; Yang, D.; Mohamed, K.S.; Wang, J.; Wu, W. Convergence of batch gradient learning algorithm with smoothing L1/2

regularization for Sigma–Pi–Sigma neural networks. Neurocomputing 2015, 151, 333–341. [CrossRef]
20. Kwon, H.; Go, B.H.; Park, J.; Lee, W.; Lee, J.H. Gated dynamic convolutions with deep layer fusion for abstractive document

summarization. Comput. Speech Lang. 2021, 66, 101–159. [CrossRef]
21. Husain, S.S.; Bober, M. REMAP: Multi-layer entropy-guided pooling of dense CNN features for image retrieval. IEEE Trans.

Image Process. 2019, 28, 5201–5213. [CrossRef]
22. Richter, O.; Wattenhofer, R. TreeConnect: A Sparse Alternative to Fully Connected Layers. In Proceedings of the 2018 IEEE 30th

International Conference on Tools with Artificial Intelligence (ICTAI), Volos, Greece, 5–7 November 2018.
23. Eckle, K.; Schmidt-Hieber, J. A comparison of deep networks with ReLU activation function and linear spline-type methods.

Neural Netw. 2019, 110, 232–242. [CrossRef]
24. Guo, Z.Y.; Shu, X.; Liu, C.Y.; Lei, L.I. A Recognition Algorithm of Flower Based on Convolution Neural Network with ReLU

Function. Comput. Technol. Dev. 2018, 05. Available online: http://en.cnki.com.cn/Article_en/CJFDTotal-WJFZ201805035.htm
(accessed on 1 November 2021).

25. Yang, S.C. A study on using deviation function method to reshape a rack cutter. Int. J. Adv. Manuf. Technol. 2006, 30, 385–394.
[CrossRef]

26. Xu, Z.; Zhang, H.; Wang, Y.; Chang, X.; Liang, Y. L1/2 regularization. Sci. China Inf. Sci. 2010, 53, 1159–1169. [CrossRef]
27. Haykin, S. Neural Networks: A Comprehensive Foundation, 3rd ed.; Prentice Hall: Hoboken, NJ, USA, 1998.
28. Baldi, P. Gradient descent learning algorithm overview: A general dynamical systems perspective. IEEE Trans. Neural Netw. 1995,

6, 182–195. [CrossRef]
29. Zhang, Z. Derivation of Backpropagation in Convolutional Neural Network (CNN); University of Tennessee: Knoxville, TN, USA, 2016.
30. Wu, Y. Sparsity of Hidden Layer Nodes Based on Bayesian Extreme Learning Machine. Control Eng. China 2017, 24, 2539–2543.
31. Özgür, A.; Nar, F.; Erdem, H. Sparsity-driven weighted ensemble classifier. Int. J. Comput. Intell. Syst. 2018, 11, 962–978. [CrossRef]
32. Olshausen, B.A.; Field, D.J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images.

Nature 1996, 381, 607–609. [CrossRef]

http://doi.org/10.1007/s11042-020-10366-x
http://dx.doi.org/10.1016/j.patrec.2020.02.015
http://dx.doi.org/10.1007/s10586-017-1435-x
http://dx.doi.org/10.3390/sym8120144
http://dx.doi.org/10.1007/s00521-020-05288-6
http://dx.doi.org/10.1016/j.ins.2016.11.020
http://dx.doi.org/10.1007/s00521-019-04460-x
http://dx.doi.org/10.1007/s11042-020-09738-0
http://dx.doi.org/10.1109/TSP.2020.2985591
http://dx.doi.org/10.1109/TIM.2020.3043940
http://dx.doi.org/10.1016/j.patrec.2019.12.020
http://dx.doi.org/10.1109/ACCESS.2018.2890740
http://dx.doi.org/10.1016/j.neunet.2013.11.006
http://dx.doi.org/10.1016/j.neucom.2014.09.031
http://dx.doi.org/10.1016/j.csl.2020.101159
http://dx.doi.org/10.1109/TIP.2019.2917234
http://dx.doi.org/10.1016/j.neunet.2018.11.005
http://en.cnki.com.cn/Article_en/CJFDTotal-WJFZ201805035.htm
http://dx.doi.org/10.1007/s00170-005-0089-7
http://dx.doi.org/10.1007/s11432-010-0090-0
http://dx.doi.org/10.1109/72.363438
http://dx.doi.org/10.2991/ijcis.11.1.73
http://dx.doi.org/10.1038/381607a0

Symmetry 2022, 14, 154 20 of 20

33. Bouma, H. Interaction effects in parafoveal letter recognition. Nature 1970, 226, 177–178. [CrossRef]
34. Carvalho, E.F.; Engel, P.M. Convolutional sparse feature descriptor for object recognition in cifar-10. In Proceedings of the 2013

Brazilian Conference on Intelligent Systems, Fortaleza, Brazil, 19–24 October 2013; pp. 131–135.
35. Abualigah, L.; Diabat, A.; Mirjalili, S.; Abd Elaziz, M.; Gandomi, A.H. The arithmetic optimization algorithm. Comput. Methods

Appl. Mech. Eng. 2021, 376, 113609. [CrossRef]
36. Moreno-Torres, J.G.; Sáez, J.A.; Herrera, F. Study on the impact of partition-induced dataset shift on k-fold cross-validation. IEEE

Trans. Neural Networks Learn. Syst. 2012, 23, 1304–1312. [CrossRef]
37. Burman, P. A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods.

Biometrika 1989, 76, 503–514. [CrossRef]
38. Wiens, T.S.; Dale, B.C.; Boyce, M.S.; Kershaw, G.P. Three way k-fold cross-validation of resource selection functions. Ecol. Model.

2008, 212, 244–255. [CrossRef]
39. Ampazis, N.; Perantonis, S.J. Two highly efficient second-order algorithms for training feedforward networks. IEEE Trans. Neural

Netw. 2002, 13, 1064–1074. [CrossRef] [PubMed]
40. Zubic, S.; Wahlroos, A.; Altonen, J.; Balcerek, P.; Dawidowski, P. Managing Post-fault Oscillation Phenomenon in Compensated

MV-networks. In Proceedings of the 13th IET International Conference on Developments in Power System Protection (DPSP
2016), Edinburgh, UK, 7–10 March 2016.

41. Yin, J.; Bian, L.; Fan, Q.; Fan, X.; Ai, H.; Tian, L. Oscillation phenomenon and its mechanism of an energy-saving and emission-
reduction system. Int. J. Energy Sect. Manag. 2018, 12, 314–322. [CrossRef]

42. Dragomir, S.S. New estimation of the remainder in Taylor’s formula using Grüss’ type inequalities and applications. Math.
Inequalities Appl. 1999, 2, 183–193. [CrossRef]

43. Wu, W.; Li, L.; Yang, J.; Liu, Y. A modified gradient-based neuro-fuzzy learning algorithm and its convergence. Inf. Sci. 2010,
180, 1630–1642. [CrossRef]

http://dx.doi.org/10.1038/226177a0
http://dx.doi.org/10.1016/j.cma.2020.113609
http://dx.doi.org/10.1109/TNNLS.2012.2199516
http://dx.doi.org/10.1093/biomet/76.3.503
http://dx.doi.org/10.1016/j.ecolmodel.2007.10.005
http://dx.doi.org/10.1109/TNN.2002.1031939
http://www.ncbi.nlm.nih.gov/pubmed/18244504
http://dx.doi.org/10.1108/IJESM-06-2017-0007
http://dx.doi.org/10.7153/mia-02-16
http://dx.doi.org/10.1016/j.ins.2009.12.030

	Introduction
	Brief Description of CNNs and Smooth Group L1/2 Regularization
	Convolutional Neural Network
	SGL1/2 Regularization for Fully Connected Layer

	Feasibility Analysis of the SGL 1/2 Algorithm in CNNs
	Transform Convolution and Mean Pooling into Mathematical Equations
	Convergence Results

	Numerical Experiments and Discussion
	Mnist Problem
	Letter Recognition Problem
	Cifar 10 Problem
	Crowded Mapping
	Discussion

	Conclusions
	
	References

