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Abstract: In the present analysis, we aim to construct a new subclass of analytic bi-univalent functions
defined on symmetric domain by means of the Pascal distribution series and Gegenbauer polynomials.
Thereafter, we provide estimates of Taylor–Maclaurin coefficients |a2| and |a3| for functions in the
aforementioned class, and next, we solve the Fekete–Szegö functional problem. Moreover, some
interesting findings for new subclasses of analytic bi-univalent functions will emerge by reducing the
parameters in our main results.

Keywords: Pascal distribution series; Gegenbauer polynomials; analytic bi-univalent functions;
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1. Introduction and Preliminaries

In statistics and probability, distributions of random variables play a basic role and
are used extensively to describe and model a lot of real life phenomena; they describe
the distribution of the probabilities over the random variable values [1]. Some distribu-
tions are used in practice and have been given special names to clarify the importance of
these distributions and the random experiments behind them. If we have two possible
outcomes (success) or (fail) in our random experiment and we are interested in how many
independent times we need to repeat this random experiment until we achieve the first
success, then the random variable X which represents this number of trials has a geometric
distribution. This distribution gets its name from its relationship with the geometric series.
The generalization of the geometric distribution is called the negative binomial distribution
or Pascal distribution. The name ’negative binomial distribution’ results from its relation-
ship to the binomial series expansion with a negative exponent. In Pascal distribution,
the random variable X represents the number of trials required to obtain r successes in
repeated independent Bernoulli trials.

The probability density function of a discrete random variable X that follows a Pascal
distribution reads as

P(X = x) =
(

x− 1
r− 1

)
pr qx−r, x = r, r + 1, r + 2, · · · , (1)

where p is the probability of success in each trial and q = 1− p.
The above probability density function gives the probability of obtaining the rth

success on the xth trial by obtaining r − 1 successes in the first x − 1 trials in any order,
and then obtaining a success on the xth trial. If, in the probability density function (1), we
replace x by x + r, then we get

P(X = x) =
(

x + r− 1
r− 1

)
pr qx, x = 0, 1, 2, · · · . (2)
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More recently, El-Deeb et al. [2] presented the following convergent power series
whose coefficients are probabilities of the Pascal distribution.

Λm
q (z) = z +

∞

∑
n=2

(
n + m− 2

m− 1

)
qn−1(1− q)mzn, z ∈ U, (3)

where m ≥ 1, 0 ≤ q ≤ 1, and the symmetric domain U = {z ∈ C : |z| < 1} is the open
unit disk.

Orthogonal polynomials have been widely studied in recent years from various per-
spectives due to their importance in mathematical physics, mathematical statistics, en-
gineering, and probability theory. Orthogonal polynomials that appear most commonly
in applications are the classical orthogonal polynomials (Hermite polynomials, Laguerre
polynomials, and Jacobi polynomials). The general subclass of Jacobi polynomials is the
set of Gegenbauer polynomials, this class includes Legendre polynomials and Chebyshev
polynomials as subclasses. To study the basic definitions and the most important prop-
erties of the classical orthogonal polynomials, we refer the reader to [3–7]. For a recent
connection between the classical orthogonal polynomials and geometric function theory,
we mention [8–12].

Gegenbauer polynomials Cα
n(x) for n = 2, 3, · · · , and α > −1

2 are defined by the
following three-term recurrence formula

Cα
0 (x) = 1;

Cα
1 (x) = 2αx; (4)

Cα
n(x) =

1
n
[
2x(n + α− 1)Cα

n−1(x)− (n + 2α− 2)Cα
n−1(x)

]
.

It is worth mentioning that the Gegenbauer polynomials vanish when α = 0, and by

setting α = 1
2 and α = 1, we immediately obtain Legendre polynomials Pn(x) = C

1
2
n (x) and

Chebyshev polynomials of the second kind Un(x) = C1
n(x), respectively.

Amourah et al. in [13] considered the following generating function of Gegenbauer
polynomials

Hα(x, z) =
1

(1− 2xz + z2)
α , (5)

where x ∈ [−1, 1] and z ∈ U. For fixed x, the function Hα is analytic in U, so it can be
expanded in a Taylor–Maclaurin series, as follows

Hα(x, z) =
∞

∑
n=0

Cα
n(x)zn. (6)

Let A denote the class of all normalized analytic functions f written as

f (z) = z +
∞

∑
n=2

anzn, z ∈ U. (7)

Definition 1. Let f and g be in the class A and given by (7). The function f is said to be
subordinate to g, written as f ≺ g, if there is an analytic function w in U with the properties

w(0) = 0 and |w(z)| < 1,

such that
f (z) = g(w(z)).

Definition 2. A single-valued one-to-one function f defined in a simply connected domain is said
to be a univalent function.
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Let S denote the class of all functions f ∈ A, given by (7), that are univalent in U.
Hence, every function f (z) ∈ S has an inverse given by

f−1(w) = w− a2w2 + (2a2
2 − a3)w3 − (5a3

2 − 5a2a3 + a4)w4 + · · · . (8)

Definition 3. A univalent function f (z) is said to be bi-univalent in U if its inverse function
f−1(w) is univalent in U.

Let Σ denote the class of all functions f ∈ A that are bi-univalent in U given by (7).
For interesting subclasses of functions in the class Σ, see [14–19].

Now, let us define the linear operator

Im
q (z) : A → A

by

Im
q f (z) = Λm

q (z) ∗ f (z) = z +
∞

∑
n=2

(
n + m− 2

m− 1

)
qn−1(1− q)manzn, z ∈ U, (9)

where ∗ denotes the Hadamard product.
Motivated essentially by the work of Amourah et al. [13], we construct, in the next

section, a new subclass of bi-univalent functions governed by the Pascal distribution series
and Gegenbauer polynomials. Then, we investigate the optimal bounds for the Taylor–
Maclaurin coefficients |a2| and |a3| and solve the Fekete–Szegö functional problem for
functions in our new subclass.

2. The Class GΣ(x, α, β, γ)

In this section, let the function f ∈ Σ given by (7), the function g = f−1 is given by (8),
and Hα is the generating function of Gegenbauer polynomials given by (6). Now, we are
ready to define our new subclass of bi-univalent functions GΣ(x, α, β, γ) as follows.

Definition 4. A function f is said to be in the class GΣ(x, α, β, γ), if the following subordinations
are fulfilled:

(1− γ)
Im

q f (z)
z

+ γ
(
Im

q f (z)
)′

+ βz
(
Im

q f (z)
)′′
≺ Hα(x, z), (10)

and

(1− γ)
Im

q g(w)

w
+ γ

(
Im

q g(w)
)′

+ βw
(
Im

q g(w)
)′′
≺ Hα(x, w), (11)

where α > 0, γ, β ≥ 0, and x ∈ ( 1
2 , 1].

Upon allocating the parameters γ and β, one can obtain several new subclasses of Σ,
as illustrated in the following two examples.

Example 1. A function f is said to be in the class GΣ(x, α, γ) = GΣ(x, α, 0, γ), if the following
subordinations are fulfilled:

(1− γ)
Im

q f (z)
z

+ γ
(
Im

q f (z)
)′
≺ Hα(x, z), (12)

and

(1− γ)
Im

q g(w)

w
+ γ

(
Im

q g(w)
)′
≺ Hα(x, w), (13)

where α > 0, γ ≥ 0, and x ∈ ( 1
2 , 1].
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Example 2. A function f is said to be in the class GΣ(x, α) = GΣ(x, α, 0, 1), if the following
subordinations are fulfilled: (

Im
q f (z)

)′
≺ Hα(x, z), (14)

and (
Im

q g(w)
)′
≺ Hα(x, w), (15)

where α > 0 and x ∈ ( 1
2 , 1].

3. Main Results

Theorem 1. If the function f belongs to the class GΣ(x, α, β, γ), then

|a2| ≤
2x
√

2|α|x√∣∣∣2[(m + 1)(1 + 2γ + 6β)α−m(1 + γ + 2β)2 pm(1 + α)
]

x2 + m(1 + γ + 2β)2 pm
∣∣∣ ,

and

|a3| ≤
4α2x2

m2q2(1 + γ + 2β)2 p2m
+

4|α|x
mq2(1 + 2γ + 6β)(m + 1)pm ,

where p = 1− q.

Proof. Let f ∈ GΣ(x, α, β, γ). From Definition 4, one can write

(1− γ)
Im

q f (z)
z

+ γ
(
Im

q f (z)
)′

+ βz
(
Im

q f (z)
)′′

= Hα(x, w(z)), (16)

and

(1− γ)
Im

q f (w)

w
+ γ

(
Im

q f (w)
)′

+ βw
(
Im

q f (w)
)′′

= Hα(x, v(w)), (17)

for some analytic functions w(z) =
∞
∑

n=1
cnzn and v(w) =

∞
∑

n=1
dnwn in U that satisfy the

properties mentioned in Definition 1.
From the Equations (16) and (17), we obtain

(1− γ)
Im

q f (z)
z

+ γ
(
Im

q f (z)
)′

+ βz
(
Im

q f (z)
)′′

= 1 + Cα
1 (x)c1z +

[
Cα

1 (x)c2 + Cα
2 (x)c2

1

]
z2 + · · · (18)

and

(1− γ)
Im

q f (w)

w
+ γ

(
Im

q f (w)
)′

+ βw
(
Im

q f (w)
)′′

= 1 + Cα
1 (x)d1w +

[
Cα

1 (x)d2 + Cα
2 (x)d2

1

]
)w2 + · · · (19)

Next, upon equalizing the corresponding coefficients of z, z2, w, and w2 in both sides
of Equations (18) and (19), we get

mq(1 + γ + 2β)(1− q)ma2 = Cα
1 (x)c1, (20)

mq2
(

1
2
+ γ + 3β

)
(m + 1)(1− q)ma3 = Cα

1 (x)c2 + Cα
2 (x)c2

1, (21)

−mq(1 + γ + 2β)(1− q)ma2 = Cα
1 (x)d1, (22)

and

mq2
(

1
2
+ γ + 3β

)
(m + 1)(1− q)m

[
2a2

2 − a3

]
= Cα

1 (x)d2 + Cα
2 (x)d2

1. (23)
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By adding Equations (20) and (22) and their squares, we have

c1 = −d1, (24)

and
2m2q2(1 + γ + 2β)2(1− q)2ma2

2 = [Cα
1 (x)]2

(
c2

1 + d2
1

)
, (25)

respectively.
By adding Equations (21) and (23), we get

mq2(1 + 2γ + 6β)(m + 1)(1− q)ma2
2 = Cα

1 (x)(c2 + d2) + Cα
2 (x)

(
c2

1 + d2
1

)
. (26)

We deduce, from Equations (25) and (26), that

[(1 + 2γ + 6β)(m + 1)]− 2m(1 + γ + 2β)2(1− q)m Cα
2 (x)[

Cα
1 (x)

]2 m(1− q)mq2a2
2

= Cα
1 (x)(c2 + d2). (27)

Since, |w(z)| < 1 and |v(w)| < 1, then by calling a known result we have

|cj| ≤ 1 and |dj| ≤ 1 for all j ∈ N. (28)

By making use of Equations (4), (27) and (28), we obtain the required optimal bound
of |a2|, as follows.

|a2| ≤
2x
√

2|α|x√∣∣∣2[(m + 1)(1 + 2γ + 6β)α−m(1 + γ + 2β)2 pm(1 + α)
]

x2 + m(1 + γ + 2β)2 pm
∣∣∣ ,

where p = 1− q.
Next, subtracting (23) from (21) yields

mq2(1 + 2γ + 6β)(m + 1)(1− q)m
(

a3 − a2
2

)
= Cα

1 (x)(c2 − d2) + Cα
2 (x)

(
c2

1 − d2
1

)
. (29)

Then, by making use of Equation (25), then Equation (29) can be written as

a3 =

[
Cα

1 (x)
]2

2m2q2(1 + γ + 2β)2 p2m

(
c2

1 + d2
1

)
+

Cα
1 (x)

mq2(1 + 2γ + 6β)(m + 1)pm (c2 − d2). (30)

where p = 1− q.
Now, by applying Equations (4) and (28), we conclude that

|a3| ≤
4α2x2

m2q2(1 + γ + 2β)2 p2m
+

4|α|x
mq2(1 + 2γ + 6β)(m + 1)pm .

This completes the proof Theorem 1.

The following result addresses the Fekete–Szegö functional problem for functions in
the class GΣ(x, α, β, γ).
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Theorem 2. If the function f belongs to the class GΣ(x, α, β, γ), then

∣∣a3 − ηa2
2

∣∣ ≤


4|α|x
mq2(1+2γ+6β)(m+1)(1−q)m ,

8α2x3(1−η)

|2αx2(1+2γ+6β)(m+1)−m(1+γ+2β)2(1−q)m(2(1+α)x2−1)|m(1−q)mq2 ,

|η − 1| ≤ δ,

|η − 1| ≥ δ,

where

δ =

∣∣∣∣∣1− m(1 + γ + 2β)2(1− q)m(2(1 + α)x2 − 1
)

2αx2(1 + 2γ + 6β)(m + 1)

∣∣∣∣∣.
Proof. Let f ∈ GΣ(x, α, β, γ). From Equations (27) and (30), we immediately get

a3 − ηa2
2 = (1− η)

[
Cα

1 (x)
]3
(c2 + d2)[

(1 + 2γ + 6β)(m + 1)
[
Cα

1 (x)
]2 − 2m(1 + γ + 2β)2(1− q)mCα

2 (x)
]
m(1− q)mq2

+
Cα

1 (x)
mq2(1 + 2γ + 6β)(m + 1)(1− q)m (c2 − d2),

= Cα
1 (x)

[
h(η) +

1
mq2(1 + 2γ + 6β)(m + 1)(1− q)m

]
c2

+

[
h(η)− 1

mq2(1 + 2γ + 6β)(m + 1)(1− q)m

]
d2,

where

h(η) =
[
Cα

1 (x)
]2
(1− η)[

(1 + 2γ + 6β)(m + 1)
[
Cα

1 (x)
]2 − 2m(1 + γ + 2β)2(1− q)mCα

2 (x)
]
m(1− q)mq2

.

Then, in view of (4), we conclude that

∣∣∣a3 − ηa2
2

∣∣∣ ≤


2|Cα
1 (x)|

mq2(1+2γ+6β)(m+1)(1−q)m

2
∣∣Cα

1 (x)
∣∣|h(η)|

0 ≤ |h(η)| ≤ 1
mq2(1+2γ+6β)(m+1)(1−q)m ,

|h(η)| ≥ 1
mq2(1+2γ+6β)(m+1)(1−q)m .

which completes the proof of Theorem 2.

4. Corollaries and Consequences

Corresponding essentially to Examples 1 and 2, Theorems 1 and 2 yield the follow-
ing consequences.

Corollary 1. If the function f belongs to the class GΣ(x, α, γ), then

|a2| ≤
2x
√

2|α|x√∣∣∣2[(m + 1)(1 + 2γ)α−m(1 + γ)2(1− q)m(1 + α)
]

x2 + m(1 + γ)2(1− q)m
∣∣∣ ,

|a3| ≤
4α2x2

m2q2(1 + γ)2(1− q)2m
+

4|α|x
mq2(1 + 2γ)(m + 1)(1− q)m ,

and

∣∣∣a3 − ηa2
2

∣∣∣ ≤


4|α|x
mq2(1+2γ)(m+1)(1−q)m ,

8α2x3(1−η)

|2αx2(1+2γ)(m+1)−m(1+γ)2(1−q)m(2(1+α)x2−1)|m(1−q)mq2 ,

|η − 1| ≤ τ,

|η − 1| ≥ τ,



Symmetry 2022, 14, 147 7 of 8

where

τ =

∣∣∣∣∣1− m(1 + γ)2(1− q)m(2(1 + α)x2 − 1
)

2αx2(1 + 2γ)(m + 1)

∣∣∣∣∣.
Proof. Set β = 0 in the proof of Theorems 1 and 2.

Corollary 2. If the function f belongs to the class GΣ(x, α), then

|a2| ≤
2x
√

2|α|x√
|2[(m + 1)α−m(1− q)m(1 + α)]x2 + m(1− q)m|

,

|a3| ≤
4α2x2

m2q2(1− q)2m +
4|α|x

mq2(m + 1)(1− q)m ,

and

∣∣a3 − ηa2
2

∣∣ ≤


4|α|x
mq2(m+1)(1−q)m ,

8α2x3(1−η)

|2αx2(m+1)−m(1−q)m(2(1+α)x2−1)|m(1−q)mq2 ,

|η − 1| ≤
∣∣∣∣1− m(1−q)m(2(1+α)x2−1)

2αx2(m+1)

∣∣∣∣,
|η − 1| ≥

∣∣∣∣1− m(1−q)m(2(1+α)x2−1)
2αx2(m+1)

∣∣∣∣.
Proof. Set β = 0 and γ = 1 in the proof of Theorems 1 and 2.

5. Concluding Remarks

In the present work, we have constructed a new subclass GΣ(x, α, β, γ) of normal-
ized analytic and bi-univalent functions governed with the Pascal distribution series and
Gegenbauer polynomials. For functions belonging to this class, we have made estimates
of Taylor–Maclaurin coefficients, |a2| and |a3|, and solved the Fekete–Szegö functional
problem. Furthermore, by suitably specializing the parameters β and γ, one can deduce
the results for the subclasses GΣ(x, α, γ) and GΣ(x, α) which are defined, respectively, in
Examples 1 and 2.

The results offered in this paper would lead to other different new results for the classes
GΣ(x, 1/2, β, γ) for Legendre polynomials and GΣ(x, 1, β, γ) for Chebyshev polynomials.

It remains an open problem to derive estimates on the bounds of |an| for n ≥ 4; n ∈ N
for the subclasses that have been introduced here.
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