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Abstract: In real life, indeterminacy and determinacy are symmetric, while indeterminacy is absolute.
We are devoted to studying indeterminacy through uncertainty theory. Within the framework of
uncertainty theory, uncertain processes are used to model the evolution of uncertain phenomena. The
uncertainty distribution and inverse uncertainty distribution of uncertain processes are important
tools to describe uncertain processes. An independent increment process is a special uncertain process
with independent increments. An important conjecture about inverse uncertainty distribution
of an independent increment process has not been solved yet. In this paper, the conjecture is
proven, and therefore, a theorem is obtained. Based on this theorem, some other theorems for
inverse uncertainty distribution of the monotone function of independent increment processes are
investigated. Meanwhile, some examples are given to illustrate the results.

Keywords: uncertainty theory; inverse uncertainty distribution; uncertain process

1. Introduction

“Indeterminacy is absolute, while determinacy is relative” (Liu [1]). It seems that real
decisions are usually made in the context of indeterminacy. We should choose proper math-
ematical tools in order to rationally deal with indeterminate quantity. Probability theory is
an appropriate tool to model frequency by dealing with the quantity as a random variable.
However, in real life, while the cases that no samples are available or some emergency
occurs, the estimated distribution function may not be close enough to the real frequency
and may even deviate far from the frequency. If this estimated distribution function is used,
probability theory may lead to counterintuitive results. For more research-based answers,
interested readers can refer to [2]. While encountering these cases, uncertainty theory is a
legitimate approach to model the belief degree by treating the indeterminate quantity as an
uncertain variable.

In 2007, Liu [3] founded uncertainty theory, which is a branch of axiomatic mathemat-
ics. In uncertainty theory, the uncertain measure is defined for modeling the belief degree
of an uncertain event and uncertain variable for depicting the quantity with uncertainty. In
order to specify the uncertain variable, uncertainty distribution and inverse uncertainty
distribution were put forward. In addition, the expected value of an uncertain variable is
defined to represent the average of the uncertain variable. Variance is to provide a degree of
the spread of the distribution around its expected value. Compared with density function
in probability theory, inverse uncertainty distribution in uncertainty theory is a convenient
and useful tool to calculate the expected value and variance of uncertain variables.

Now, uncertainty theory is widespread and applied in many branches, and gratifying
results are achieved, such as uncertain programming (Liu [4], Ning et al. [5]), uncer-
tain finance (Chen [6], Zhang et al. [7], Gao et al. [8]), uncertain differential equation
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(Chen and Liu [9], Yao [10]), and uncertain statistics (Lio and Liu [11], Yang and Liu [12],
Liu and Yang [13], Wang et al. [14]).

Sometimes uncertainty varies over time. For describing this kind of uncertain phe-
nomena, the uncertain process was proposed by Liu [15] in 2008. It is indeed a sequence
of uncertain variables indexed by time. Similar to the uncertain variable, the uncertainty
distribution and inverse uncertainty distribution of an uncertain process were defined
by Liu [16] in order to depict an uncertain process. The operational laws to calculate the
inverse uncertainty distribution and uncertainty distribution of independent uncertain
processes were proposed. In addition, other definitions were presented, such as inde-
pendent increment process(Liu [15]), time integral (Liu [15]), and stationary increment
process (Chen [17]). On the basis of independent uncertain processes, uncertain calculus
(Liu [18], Ye [19]) and the uncertain renewal process ([20]) have been further developed
and promoted.

A conjecture proposed by Liu ([2]) for inverse uncertainty distribution of an indepen-
dent increment process, which has not been solved until now. It is necessary to complete
this proof. By using this conjecture, Yao([21]) provided a formula for calculating the inverse
uncertainty distribution of the time integral.

In this paper, the proof of the conjecture is given, and relevant theorems are obtained.
The rest is organized as follows. Some basic concepts and theorems are introduced in
Section 2. The proof of the inverse uncertainty distribution of the uncertain process is
presented in Section 3. The other two theorems of the inverse uncertainty distribution of a
monotone function of uncertain processes are demonstrated in Section 4. At last, a brief
summary is given in Section 5.

2. Preliminaries

In this section, some definitions and theorems, which will be used throughout this
paper, in uncertainty theory are introduced. For more details, interested readers should
read Liu [2].

A triplet (Γ, L, M) is called an uncertainty space, where (Γ, L) is a measurable space and
M is an uncertain measure satisfying normality axiom, duality axiom, subadditivity axiom,
and product axiom.

By using the axioms of uncertain measure, the monotonicity theorem was derived
as follows.

Theorem 1 (Liu [2]). The uncertain measure is a monotone-increasing set function. That is, for
any events Λ1 and Λ2 with Λ1 ⊆ Λ2, we have

M{Λ1} ≤ M{Λ2}.

Definition 1 (Gao [22]). An uncertainty space (Γ, L, M) is called continuous if and only if for
any events Λ1, Λ2, · · · , we have

M{ lim
i→∞

Λi} = lim
i→∞

M{Λi}

provided that limi→∞ Λi exists.

An uncertain variable ξ is a measurable function from an uncertainty space to the
real number set, and its uncertainty distribution is defined by Φ(x) = M{ξ ≤ x}. It
follows from the definition of Φ and duality axiom of uncertain measure that the following
theorem holds.

Theorem 2 (Liu [23]). Let ξ be an uncertain variable with uncertainty distribution Φ(x). Then
for any real number x, we have

M{ξ ≤ x} = Φ(x), M{ξ > x} = 1−Φ(x).
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It is remarkable that if the uncertainty distribution Φ is a continuous function, we
also have

M{ξ < x} = Φ(x), M{ξ ≥ x} = 1−Φ(x).

An uncertainty distribution Φ is regular, meaning that it is continuous, strictly increas-
ing, and satisfying limi→−∞ Φ(x) = 0, limi→+∞ Φ(x) = 1.

An operational law for calculating the inverse uncertainty distribution of strictly
monotone function of independent uncertain variables is as follows:

Theorem 3 (Liu [23]). Suppose ξ1, ξ2, · · · , ξn are independent uncertain variables with regular
uncertainty distributions Φ1, Φ2, · · · , Φn, respectively. If f (x1, x2, · · · , xn) is continuous and
strictly increasing concerning x1, x2, · · · xm and strictly decreasing concerning xm+1, xm+2, · · · ,
xn, then

ξ = f (ξ1, ξ2, · · · ξn)

which posseses an inverse uncertainty distribution

Ψ−1(α) = f (Φ−1
1 (α), · · · , Φ−1

m (α), Φ−1
m+1(1− α), · · · , Φ−1

n (1− α)).

The uncertain process Xt(γ) is proposed to describe the evolution of uncertain phe-
nomena. For each γ ∈ Γ, the function Xt(γ) is called a sample path of Xt , and for each t ∈ T,
Xt(γ) is an uncertain variable. Xt is said to be sample-continuous if almost all sample paths
are continuous functions with respect to time t.

Definition 2 (Liu [16]). The uncertainty distribution Φt(x) of uncertain process Xt is defined by

Φt(x) = M{Xt ≤ x}

for any time t and any number x.

Definition 3 (Liu [16]). An uncertainty distribution Φt(x) is said to be regular if at each time t,
it is a continuous and strictly increasing function with respect to x, at which 0 < Φt(x) < 1, and

lim
i→−∞

Φt(x) = 0, lim
i→+∞

Φt(x) = 1.

Definition 4 (Liu [16]). Suppose Xt is an uncertain process with regular uncertainty distribution
Φt(x). Then the inverse function Φ−1

t (α) is called the inverse uncertainty distribution of Xt.

Definition 5 (Liu [16]). An uncertain process sequence of X1t, X2t, · · · , Xnt is said to be mutually
independent if for any positive integer k and any times t1, t2, · · · , tk, the uncertain vectors

ξi = (Xit1 , Xit2 , · · · , Xitk ), i = 1, 2, · · · , n

are independent, i.e., for any Borel sets B1, B2, · · · , Bn of k-dimensional real vectors, we have

M

{
n⋂

i=1

(ξi ∈ Bi)

}
=

n∧
i=1

M{ξi ∈ Bi}.

Similar to Theorem 3, the operational law for the inverse uncertainty distribution of
the monotone function of uncertain processes was presented in Liu [16].

Theorem 4 (Liu [16]). Suppose X1t, X2t, · · · , Xnt are independent uncertain processes with
regular uncertainty distributions Φ1t, Φ2t · · · , Φnt, respectively. If f (x1, x2 · · · , xn) is contin-
uous, strictly increasing with respect to x1, x2 · · · , xm and strictly decreasing with respect to
xm+1, xm+2, · · · , xn, then

Xt = f (X1t, X2t, · · · , Xnt)
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has an inverse uncertainty distribution

Ψ−1
t (α) = f (Φ−1

1t (α), · · · , Φ−1
mt (α), Φ−1

m+1,t(1− α), · · · , Φ−1
nt (1− α)).

Definition 6 (Liu [15]). An uncertain process Xt is said to have independent increments if

Xt1 , Xt2 − Xt1 , Xt3 − Xt2 , · · · , Xtk − Xtk−1

are independent uncertain variables where t1, t2, · · · , tk are any times with t1 < t2 < · · · < tk.

Definition 7 (Liu [15]). An uncertain process Xt is said to have stationary increments if its
increments are identically distributed uncertain variables whenever the time intervals have the
same length.

3. The Proof for Inverse Uncertainty Distribution of Uncertain Process

In this section, we first show a lemma that is needed for the following proof. Subse-
quently, we give the proof for the inverse uncertainty distribution of an uncertain process.
At last, two examples are given.

Lemma 1. Let (Γ, L, M) be the uncertainty space, and let ξ1, ξ2 be independent uncertain variables
with regular uncertainty distribution Φ1, Φ2, respectively. If uncertain variable ξ = ξ1 + ξ2
possesses an uncertain distribution Φ, then we have

M{ξ2 ≤ Φ−1(α)−Φ−1
1 (α)} = α,

M{ξ2 > Φ−1(α)−Φ−1
1 (α)} = 1− α.

Proof. Since ξ1, ξ2 are independent uncertain variables and f (x1, x2) = x1 + x2 is contin-
uous and strictly increasing with respect to x1 and x2 , it follows from Theorem 3 that
ξ = ξ1 + ξ2 has the inverse uncertainty distribution

Φ−1(α) = Φ−1
1 (α) + Φ−1

2 (α).

Thus, Φ−1
2 (α) = Φ−1(α)−Φ−1

1 (α). Following Theorem 2, we derive

M{ξ2 ≤ Φ−1(α)−Φ−1
1 (α)} = M{ξ2 ≤ Φ−1

2 (α)} = α,

M{ξ2 > Φ−1(α)−Φ−1
1 (α)} = M{ξ2 > Φ−1

2 (α)} = 1− α.

Thus, it is verified.

Remark 1. Note that the uncertainty distribution Φ2 is regular. Thus

M{ξ2 < Φ−1(α)−Φ−1
1 (α)} = α,

M{ξ2 ≥ Φ−1(α)−Φ−1
1 (α)} = 1− α.

Theorem 5. Let (Γ, L, M) be a continuous uncertain space, and let Xt be sample-continuous
independent increment process with regular uncertainty distribution Φt(x). Then for any 0 < α <
1, we have

M{Xt ≤ Φ−1
t (α), t ∈ R} = α,

M{Xt ≥ Φ−1
t (α), t ∈ R} = 1− α.

Proof. For 0 < α < 1, we divide four steps to prove.
Step 1 If T is a finite set, we certify

M{ Xt ≤ Φ−1
t (α), t ∈ T} = α,
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M{Xt ≥ Φ−1
t (α), t ∈ T} = 1− α.

Assume T = {t1, t2, · · · , tn}, t1 < t2 < · · · < tn and write ξ1 = Xt1 , ξi = Xti −
Xti−1(2 ≤ i ≤ n). Since Xt is an independent increment process, it follows from Definition
6 that ξ1, ξi(2 ≤ i ≤ n) are independent uncertain variables. Note that in this case

{Xt ≤ Φ−1
t (α), t ∈ T} = {

n⋂
i=1

Xti ≤ Φ−1
ti

(α)}

holds. On the one hand, it follows from the monotonicity theorem that

M{Xt ≤ Φ−1
t (α), t ∈ T} ≤ M{Xt1 ≤ Φ−1

t1
(α)} = α. (1)

On the other hand, due to

{Xt ≤ Φ−1
t (α), t ∈ T} ⊇

{
(ξ1 ≤ Φ−1

t1
(α)) ∩ (

n⋂
i=2

ξi ≤ Φ−1
ti

(α)−Φ−1
ti−1

(α))

}
,

by using the independence of ξ1, ξ2, · · · , ξn, monotonicity theorem and Lemma 1, we have

M{Xt ≤ Φ−1
t (α), t ∈ T} ≥ M

{
(ξ1 ≤ Φ−1

t1
(α)) ∩ (

n⋂
i=2

(ξi ≤ Φ−1
ti

(α)−Φ−1
ti−1

(α))

}

= M{ξ1 ≤ Φ−1
t1

(α)} ∧
n∧

i=2

M{ξi ≤ Φ−1
ti

(α)−Φ−1
ti−1

(α)}

= α ∧ α = α.

(2)

It follows from the above two inequalities (1) and (2) that

M{Xt ≤ Φ−1
t (α), t ∈ T} = α.

Now we prove that

M{Xt ≥ Φ−1
t (α), t ∈ T} = 1− α.

Note that

{Xt ≥ Φ−1
t (α), t ∈ T} = {

n⋂
i=1

(Xti ≥ Φ−1
ti

(α))}.

holds. On the one hand, we get

M{Xt ≥ Φ−1
t (α), t ∈ T} ≤ M{Xt1 ≥ Φ−1

t1
(α)} = 1− α. (3)

On the other hand, due to

{Xt ≥ Φ−1
t (α), t ∈ T} ⊇

{
(ξ1 ≥ Φ−1

t1
(α)) ∩ (

n⋂
i=2

(ξi ≥ Φ−1
ti

(α)−Φ−1
ti−1

(α))

}
,
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by using the independence of ξ1, ξ2, · · · , ξn , monotonicity theorem and Remark 1, we obtain

M{Xt ≥ Φ−1
t (α), t ∈ T} ≥ M

{
(ξ1 ≥ Φ−1

t1
(α)) ∩ (

n⋂
i=2

(ξi ≥ Φ−1
ti

(α)−Φ−1
ti−1

(α))

}

= M{ξ1 ≥ Φ−1
t1

(α)} ∧
n∧

i=1

M{ξi ≥ Φ−1
ti

(α)−Φ−1
ti−1

(α)}

= (1− α) ∧ (1− α)

= 1− α.

(4)

It follows from the above two inequalities (3) and (4) that

M{Xt ≥ Φ−1
t (α), t ∈ T} = 1− α.

Step 2 If T is a countable set, especially if T is a rational numbers set Q, for simplicity, we
denote T = {t1, t2, · · · }. Since Γ is a continuous uncertain space, by using Step 1, we get

M{Xt ≤ Φ−1
t (α), t ∈ Q} = M{ lim

i→∞

i⋂
j=1

((Xtj ≤ Φ−1
tj

(α)))}

= lim
i→∞

M{
i⋂

j=1

(Xtj ≤ Φ−1
tj

(α))} = α,

and then

M{Xt ≥ Φ−1
t (α), t ∈ Q} = M{ lim

i→∞

i⋂
j=1

(Xtj ≥ Φ−1
tj

(α))}

= lim
i→∞

M{
i⋂

j=1

(Xtj ≥ Φ−1
tj

(α))} = 1− α.

Step3 For this step, we show that the inverse uncertainty distribution Φ−1
t (α) is continuous

with t.
For any t0 ∈ R, we first prove that lim

t→t0
Φ−1

t (α) ≤ Φ−1
t0

(α). If not, then there exists the

real number ε0 > 0, for any positive integer n, there exists tn, such that |tn − t0| < 1/n and
Φ−1

tn
(α) > Φ−1

t0
(α) + ε0.

Take T0 = {t1, t2, · · · }, A = {Xt ≥ Φ−1
t (α), t ∈ T0} and B = {Xt0 ≤ Φ−1

t0
(α) + ε0/2}.

It follows from Step 2 that M{A} = 1− α. Since Φt(x) is regular, we have M{B} > α and
then M{Bc} = 1−M{B} < 1− α.

Due to

1− α = M{A} = M{(A ∩ B) ∪ (A ∩ Bc)} ≤ M{A ∩ B}+ M{Bc} ≤ M{A ∩ B}+ 1−M{B},

we have M{A ∩ B} 6= 0. Thus, A ∩ B 6= φ.
For any γ ∈ A ∩ B, we derive that

Xtn(γ)− Xt0(γ)

≥ Φ−1
tn

(α)− (Φ−1
t0

(α) + ε0/2) > (Φ−1
t0

(α) + ε0)− (Φ−1
t0

(α) + ε0/2) = ε0/2 > 0

which implies |Xtn(γ) − Xt0(γ)| > ε0/2 > 0. This is in contradiction with Xt being
sample-continuous. Hence lim

t→t0
Φ−1

t (α) ≤ Φ−1
t0

(α).
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Now let us prove lim
t→t0

Φ−1
t (α) ≥ Φ−1

t0
(α). If not, then there exists ε1 > 0, for any

positive integer n, there exists tn satisfying |tn − t0| < 1/n and Φ−1
tn

(α) < Φ−1
t0

(α)− ε1.
Take A1 = {Xt ≤ Φ−1

t (α), t ∈ T0} and B1 = {Xt0 ≥ Φ−1
t0

(α)− ε1/2}. It follows from
Step 2 that M{A1} = α. Since Φt(x) is regular, we have M{B1} > M{Xt0 ≥ Φ−1

t0
(α)} =

1− α and then M{B1
c} = 1−M{B1} < α.

Due to
α = M{A1} = M{(A1 ∩ B1) ∪ (A1 ∩ B1

c)}

≤ M{A1 ∩ B1}+ M{B1
c} ≤ M{A1 ∩ B1}+ 1−M{B1},

we have M{A1 ∩ B1} 6= 0. Thus, A1 ∩ B1 6= φ. For any γ ∈ A1 ∩ B1, we derive that
Xt0(γ)− Xtn(γ) ≥

Φ−1
t0

(α)− ε1/2−Φ−1
tn

(α) > Φ−1
t0

(α)− ε1/2− (Φ−1
t0

(α)− ε1) = ε1/2 > 0

which implies |Xtn(γ)− Xt0(γ)| > ε1/2 > 0. This result is in contradiction with Xt being
sample-continuous. So we have

lim
t→t0

Φ−1
t (α) = lim

t→t0

Φ−1
t (α) = Φ−1

t0
(α).

Thus, the continuity is verified.
Step 4 If T is the real number set R, we certify

M{Xt ≤ Φ−1
t (α), t ∈ R} = α,

M{Xt ≥ Φ−1
t (α), t ∈ R} = 1− α.

Let Λ1 = {Xt ≤ Φ−1
t (α), t ∈ Q} and Λ2 = {Xt ≥ Φ−1

t (α), t ∈ Q}. On the one hand, it
follows from the monotonicity theorem and Step 2 that

M{Xt ≤ Φ−1
t (α), t ∈ R} ≤ M{Λ1} = α, (5)

M{|Xt ≥ Φ−1
t (α), t ∈ R} ≤ M{Λ2} = 1− α. (6)

On the other hand, taking any t0 ∈ R, for any γ ∈ Λ1, following the continuity of
Φ−1

t (α) we have

Xt0(γ) = lim
t→t0

Xt(γ) = lim
t∈Q,t→t0

Xt(γ) ≤ lim
t∈Q,t→t0

Φ−1
t (α) = Φ−1

t0
(α).

For any γ ∈ Λ2, we get

Xt0(γ) = lim
t→t0

Xt(γ) = lim
t∈Q,t→t0

Xt(γ) ≥ lim
t∈Q,t→t0

Φ−1
t (α) = Φ−1

t0
(α).

By the arbitrariness of t0 and γ, we have

{γ ∈ Γ|Xt(γ) ≤ Φ−1
t (α), t ∈ R} ⊇ Λ1,

and
{γ ∈ Γ|Xt(γ) ≥ Φ−1

t (α), t ∈ R} ⊇ Λ2.

By using monotonicity theorem, we get

M{γ ∈ Γ|Xt(γ) ≤ Φ−1
t (α), t ∈ R} ≥ M{Λ1} = α, (7)

M{γ ∈ Γ|Xt(γ) ≥ Φ−1
t (α), t ∈ R} ≥ M{Λ2} = 1− α. (8)
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It follows from (5) and (7) that

M{Xt ≤ Φ−1
t (α), t ∈ R} = α.

It follows from (6) and (8) that

M{Xt ≥ Φ−1
t (α), t ∈ R} = 1− α.

Therefore, the proof is finished.

Remark 2. It is also shown that for any α ∈ (0, 1), the two following two equations are true,
M{Xt < Φ−1

t (α), t ∈ R} = α,
M{Xt > Φ−1

t (α), t ∈ R} = 1− α.

Example 1. Take an uncertainty space (Γ, L, M) to be (0,1) with Borel algebra and Lebesgue
measure. We can obtain the inverse uncertainty distribution of the uncertain process Xt(γ) = t− γ,
∀γ ∈ L is

Φ−1
t (α) = t− 1 + α.

Thus, we have
M{γ ∈ Γ|Xt(γ) ≤ Φ−1

t (α)}

= M{γ ∈ Γ|t− γ ≤ t− 1 + α} = M{γ ∈ Γ|γ ∈ [1− α, 1)} = α,

M{γ ∈ Γ|Xt(γ) > Φ−1
t (α)}

= M{γ ∈ Γ|t− γ > t− 1 + α} = M{γ ∈ Γ|γ ∈ (0, 1− α)} = 1− α.

Example 2. Take Xt to be a linear uncertain process Xt ∼ L(at, bt). Its inverse uncertainty
distribution is Φ−1

t (α) = (1− α)at + αbt. It follows from Theorem 5 that

M{Xt ≤ Φ−1
t (α), t ∈ R} = M{Xt ≤ (1− α)at + αbt} = α,

M{Xt > Φ−1
t (α), t ∈ R} = M{Xt > (1− α)at + αbt} = 1− α.

4. Theorems for Inverse Uncertainty Distribution of the Monotone Function of
Uncertain Processes

In order to deal with complicated problems, the monotone function of uncertain
processes is often applied, which is indeed a new uncertain process. In this section, we
further consider the inverse uncertainty distribution of the monotone function of uncertain
processes and two theorems are derived.

Theorem 6. Let (Γ, L, M) be a continuous uncertain space, and let Yt be a sample-continuous
independent increment process with regular uncertainty distribution Ψt(x). Suppose f (x) is a
continuous, strictly monotone function and Xt = f (Yt) has an uncertainty distribution Φt(x)
whose inverse distribution is Φ−1

t (α). Then for any 0 < α < 1, we have
M{Xt ≤ Φ−1

t (α), t ∈ R} = α,
M{Xt < Φ−1

t (α), t ∈ R} = α,
M{Xt ≥ Φ−1

t (α), t ∈ R} = 1− α,
M{Xt > Φ−1

t (α), t ∈ R} = 1− α.

Proof. First we certify M{Xt ≤ Φ−1
t (α), t ∈ R} = α.

Since f is a continuous, strictly monotone function and Yt is a sample-continuous
independent increment process, according to Definitions 5 and 6, we have that Xt is also a
sample-continuous independent increment process. It breaks down two cases:
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Case I: If f is a strictly increasing function, according to Theorem 4, we have Φ−1
t (α) =

f (Ψ−1
t (α)). It follows from Theorem 5 that

M{Xt ≤ Φ−1
t (α), t ∈ R} = M{ f (Yt) ≤ f (Ψ−1

t (α)), t ∈ R}
= M{Yt ≤ Ψ−1

t (α), t ∈ R}
= α.

Case II: If f is a strictly decreasing function, according to Theorem 4, we have Φ−1
t (α) =

f (Ψ−1
t (1− α)). It follows from Theorem 5 that

M{Xt ≤ Φ−1
t (α), t ∈ R} = M{ f (Yt) ≤ f (Ψ−1

t (1− α)), t ∈ R}
= M{Yt ≥ Ψ−1

t (1− α), t ∈ R}
= 1− (1− α) = α.

Hence, if f is strictly increasing or strictly decreasing, we always have
M{Xt ≤ Φ−1

t (α), t ∈ R} = α.
Subsequently, we prove M{Xt ≥ Φ−1

t (α), t ∈ R} = 1 − α. It also breaks down
two cases:

Case I: If f is a strictly increasing function, by using Theorem 4, we have Φ−1
t (α) =

f (Ψ−1
t (α)). It follows from Theorem 5 that

M{Xt ≥ Φ−1
t (α), t ∈ R} = M{ f (Yt) ≥ f (Ψ−1

t (α)), t ∈ R}
= M{Yt ≥ Ψ−1

t (α), t ∈ R}
= 1− α.

Case II: If f is a strictly decreasing function, by using Theorem 4, we have Φ−1
t (α) =

f (Ψ−1
t (1− α)). It follows from Theorem 5 that

M{Xt ≥ Φ−1
t (α), t ∈ R} = M{ f (Yt) ≥ f (Ψ−1

t (1− α)), t ∈ R}
= M{Yt ≤ Ψ−1

t (1− α), t ∈ R}
= 1− α.

Hence, if f is strictly increasing or strictly decreasing, we always have
M{Xt ≥ Φ−1

t (α), t ∈ R} = 1− α.
Similarly, we may prove the other two equations as follows

M{Xt < Φ−1
t (α), t ∈ R} = α,

M{Xt > Φ−1
t (α), t ∈ R} = 1− α.

Thus, the theorem is proven.

Theorem 7. Let (Γ, L, M) be a continuous uncertainty space and let X1t, X2t, · · · , Xnt be a
sample-continuous independent increment processes. Assume y = f (x1, x2, · · · , xn) is contin-
uous, strictly increasing with respect to x1, x2, · · · , xm and strictly decreasing with respect to
xm+1, xm+2, · · · , xn. Suppose Xt = f (X1t, X2t · · · , Xnt) is an uncertain process with inverse
uncertainty distribution Φ−1

t (α). Then for any 0 < α < 1, we have
M{Xt ≤ Φ−1

t (α), t ∈ R} = α,
M{Xt < Φ−1

t (α), t ∈ R} = α,
M{Xt ≥ Φ−1

t (α), t ∈ R} = 1− α,
M{Xt > Φ−1

t (α), t ∈ R} = 1− α.

Proof. For any 0 < α < 1, we first prove M{Xt ≤ Φ−1
t (α), t ∈ R} = α. For simplicity, we

only prove the case n = 2. Denote X1t, X2t and Yt, Zt with uncertainty distributions Ψ−1
t (α)

and Ω−1
t (α), respectively. Assume f is a continuous, strictly increasing with respect to Yt,

and strictly decreasing with respect to Zt. It follows from Theorem 4 that Xt = f (Yt, Zt)



Symmetry 2022, 14, 14 10 of 12

has the inverse uncertainty distribution Φ−1
t (α) = f (Ψ−1

t (α), Ω−1
t (1− α). Note that we

always have

{Xt ≤ Φ−1
t (α), t ∈ R} ≡ { f (Yt, Zt) ≤ f (Ψ−1

t (α), Ω−1
t (1− α)), t ∈ R}.

On the one hand, since f is strictly increasing with respect to Yt, and strictly decreasing
with respect to Zt, we get

{Xt ≤ Φ−1
t (α), t ∈ R} ⊇ {Yt ≤ Ψ−1

t (α), t ∈ R} ∩ {Zt ≥ Ω−1
t (1− α)), t ∈ R}.

Following the monotonicity theorem, independence of Yt and Zt and Theorem 5, we
have

M{Xt ≤ Φ−1
t (α), t ∈ R} ≥ M{{Yt ≤ Ψ−1

t (α), t ∈ R} ∩ {Zt ≥ Ω−1
t (1− α), t ∈ R}}

= M{Yt ≤ Ψ−1
t (α), t ∈ R} ∧M{Zt ≥ Ω−1

t (1− α), t ∈ R}
= α ∧ (1− (1− α))

= α.

(9)

On the other hand, for any t0 ∈ R, since f is strictly increasing with respect to Yt, and
strictly decreasing with respect to Zt, we obtain

{Xt ≤ Φ−1
t (α), t ∈ R} ⊆ {Xt0 ≤ Φ−1

t0
(α)} ⊆ {Yt0 ≤ Ψ−1

t0
(α)} ∪ {Zt0 ≥ Ω−1

t0
(1− α))}.

By using the monotonicity theorem, independence of Yt and Zt and Theorem 2, we
have

M{Xt ≤ Φ−1
t (α), t ∈ R} ≤ M{{Yt0 ≤ Ψ−1

t0
(α)} ∪ {Zt0 ≥ Ω−1

t0
(1− α)}}

= M{Yt0 ≤ Ψ−1
t0

(α)} ∨M{Zt0 ≥ Ω−1
t0

(1− α)}
= α ∨ (1− (1− α))

= α.

(10)

It follows from the two inequalities (9) and (10) that M{Xt ≤ Φ−1
t (α), t ∈ R} = α.

Now, we prove that M{Xt ≥ Φ−1
t (α), t ∈ R} = 1− α. Notice that we have

{Xt ≥ Φ−1
t (α), t ∈ R} ≡ { f (Yt, Zt) ≥ f (Ψ−1

t (α), Ω−1
t (1− α)), t ∈ R}.

On the one hand, since f is strictly increasing with respect to Yt and strictly decreasing
with respect to Zt, we get

{Xt ≥ Φ−1
t (α), t ∈ R} ⊇ {Yt ≥ Ψ−1

t (α), t ∈ R} ∩ {Zt ≤ Ω−1
t (1− α)), t ∈ R}.

Following the monotonicity theorem, independence of Yt and Zt and Theorem 5, we
have

M{Xt ≥ Φ−1
t (α), t ∈ R} ≥ M{{Yt ≥ Ψ−1

t (α), t ∈ R} ∩ {Zt ≤ Ω−1
t (1− α), t ∈ R}}

= M{Yt ≥ Ψ−1
t (α), t ∈ R} ∧M{Zt ≤ Ω−1

t (1− α), t ∈ R}
= (1− α) ∧ (1− α)

= 1− α.

(11)
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On the other hand, for any ts ∈ R, since f is strictly increasing with respect to Yt and
strictly decreasing with respect to Zt, we obtain

{Xt ≥ Φ−1
t (α), t ∈ R} ⊆ {Xts ≥ Φ−1

ts
(α)} ⊆ {Yts ≥ Ψ−1

ts
(α)} ∪ {Zts ≤ Ω−1

ts
(1− α)}.

By using the monotonicity theorem, the independence of Yt and Zt and Theorem 2
that

M{Xt ≥ Φ−1
t (α), t ∈ R} ≤ M{{Yts ≥ Ψ−1

ts
(α)} ∪ {Zts ≤ Ω−1

ts
(1− α)}}

= M{Yts ≥ Ψ−1
ts

(α)} ∨M{Zts ≤ Ω−1
ts

(1− α)}
= (1− α) ∨ (1− α)

= 1− α.

(12)

It follows from the two inequalities (11) and (12) that M{Xt ≥ Φ−1
t (α), t ∈ R} = 1− α.

Similarly, we may prove the other two equations as follows,
M{Xt < Φ−1

t (α), t ∈ R} = α,
M{γ ∈ Γ|Xt(γ) > Φ−1

t (α), t ∈ R} = 1− α.
Thus, the theorem is verified.

Example 3. Take Yt to be a linear uncertain process Yt ∼ L(at, bt) whose inverse uncertainty
distribution Ψ−1

t (α) = (1− α)at + αbt and Zt to be normal uncertain process Zt ∼ N(et, σt),
whose inverse uncertainty distribution Ω−1

t (α) = et + σt
√

3
π ln α

1−α . Assume f (x1, x2) = x1 + x2,
which is increasing with respect to x1 and x2. Therefore, Xt = f (Yt, Zt) = Yt + Zt has an inverse
uncertainty distribution

Φ−1
t (α) = (1− α)at + αbt + et +

σt
√

3
π

ln
α

1− α
.

It follows from Theorem 7 that

M{Xt ≤ Φ−1
t (α), t ∈ R} = M{Xt ≤ (1− α)at + αbt + et +

σt
√

3
π

ln
α

1− α
} = α,

M{Xt > Φ−1
t (α), t ∈ R} = M{Xt > (1− α)at + αbt + et +

σt
√

3
π

ln
α

1− α
} = 1− α.

Example 4. In Example 3, assume g(x1, x2) = x1 − x2, which is increasing with respect to x1
and decreasing with respect to x2. Therefore, Xt = g(Yt, Zt) = Yt − Zt has an inverse uncertainty
distribution

Φ−1
t (α) = (1− α)at + αbt− et− σt

√
3

π
ln

1− α

α
.

It follows from Theorem 7 that

M{Xt ≤ Φ−1
t (α), t ∈ R} = M{Xt ≤ (1− α)at + αbt− et− σt

√
3

π
ln

1− α

α
} = α,

M{Xt > Φ−1
t (α), t ∈ R} = M{Xt > (1− α)at + αbt− et− σt

√
3

π
ln

1− α

α
} = 1− α.

5. Conclusions

The uncertain process is a sequence of uncertain variables indexed by time for model-
ing uncertain phenomena. The inverse uncertainty distribution plays an important role
in describing uncertain processes. A conjecture of inverse uncertainty distribution of an
independent increment process is proven in this paper, and some theorems based on this
conjecture are also obtained.
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We will continue to study the application of these theorems. We will calculate the
inverse uncertainty distributions of some special uncertain processes via these theorems.
Based on this, the expected value and variance of uncertain processes may be investigated.
We will also study modeling and solving problems with uncertain processes in the future.
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