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Abstract: Dynamic traffic monitoring is a critical part of industrial communication network cyberse-
curity, which can be used to analyze traffic behavior and identify anomalies. In this paper, industrial
networks are modeled by a dynamic fluid-flow model of TCP behavior. The model can be described
as a class of systems with unmeasurable states. In the system, anomalies and normal variants are
represented by the queuing dynamics of additional traffic flow (ATF) and can be considered as
a disturbance. The novel contributions are described as follows: (1) a novel continuous terminal
sliding-mode observer (TSMO) is proposed for such systems to estimate the disturbance for traffic
monitoring; (2) in TSMO, a novel output injection strategy is proposed using the finite-time stability
theory to speed up convergence of the internal dynamics; and (3) a full-order sliding-mode-based
mechanism is developed to generate a smooth output injection signal for real-time estimations, which
is directly used for anomaly detection. To verify the effectiveness of the proposed approach, the real
traffic profiles from the Center for Applied Internet Data Analysis (CAIDA) DDoS attack datasets
are used.

Keywords: network traffic monitoring; sliding-mode observers; industrial switches; industrial
communication network; TCP/IP; DDoS attacks; anomaly detection

1. Introduction

An industrial network is a communication network that applied in an industrial envi-
ronment, i.e., manufacturing, power generation, energy distribution, and transportation,
with protocols to provide real-time control and monitoring of industrial systems. Due to
the development of the Industrial Internet of Things (IIoT), a variety of technologies, such
as sensors, wireless communications, and computing, have paved the way from local to
remote networks for performing remote operations, monitoring, and maintenance through
the Internet. Security concerns about the IIoT have been raised. On 21 October 2016, attack-
ers utilize the Mirai IoT botnet to launch high-impact distributed denial of service (DDoS)
attacks against the Dyn DNS service, which caused an extended Internet outage [1]. There-
fore, the vulnerability of industrial networks have reinforced the importance of safety and
security to protect industrial systems against cyber threats [2]. To detect and prevent the
attacks, researchers are focused on designing traffic monitoring devices, such as firewalls
and intrusion detection systems (IDSs), placed at different levels of industrial networks to
detect and prevent attacks [3].
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In the past years, many IDS methods have been proposed for monitoring malicious
activities in industrial networks. By the types of information source, IDSs can be classified
into two types: host-based IDSs (HIDSs) and network-based IDSs (NIDSs). HIDSs monitor
the characteristics of information in hosts to detect anomalous behavior. A data stream
mining-based HIDS is proposed for the advanced metering infrastructure to collect and
analyze energy usage data [4]. A novel multiattribute HIDS is developed in supervisory
control and data acquisition (SCADA) cybersystems [5]. On the other hand, NIDSs analyze
network activities in terms of traffic volume, protocol usage, IP address, and so on. Several
NIDSs are proposed at network gateways, e.g., firewalls or routers, to online monitor the
whole networks. For example, a deep packet inspection method is proposed to deal with
high-layer protocols in terms of performance indexes at firewalls [6]. However, the typical
case of limited-size data packets are not considered. A Markov chain NIDS is investigated to
study the performance of rule-based IP traffic include throughput, packet loss, and packet
delay at firewalls [7]. Furthermore, a filtering system-based NIDS is developed to block
spurious traffic by using an IP packet queuing engine [8]. With the increased complexity
and the growing amount network usages, the static analytical approach fails to meet the
monitoring criteria in accuracy and efficiency. Thus, the real-time monitoring approach is
needed to analyze network traffic at network gateways to detect malicious attacks. The
dynamics of industrial TCP networks in routers can be expressed as a fluid-flow model by
using stochastic differential nonlinear equations [9]. Based on the model, some observers
have been proposed for the dynamical network monitoring system [10]. The observers are
capable to detect anomalies. Since the anomalies are being considered as perturbations in
the systems, observers can be designed to estimate the anomalies [11].

The current observers for traffic monitoring can be classified into two categories:
linear observers and nonlinear observers. The linear observer strategy is developed to feed
back the output errors in a linear manner. For example, the Luenberger observers (LOs)
are developed to monitor the TCP traffic flows [12]. Moreover, LOs are synthesized to
reconstruct the unmeasurable congestion window, i.e., Cwnd, for traffic estimations. The
time-delay observers are applied to supervise the network via TCP flow estimations and
detecting anomalies. However, they are unable to accurately estimate the system states in
the presence of unknown signals or uncertainties [13]. Thus, the fuzzy observers (FOs) are
designed by using a Takagi-Sugeno (T-S) system that consists of a number of linear time-
invariant models to achieve global performance [14], whereas the local linear observers of FOs
are still hardly able to force the estimation errors to zero. The nonlinear observers, such as sliding-
mode observers (SMOs), are applied for traffic monitoring [15,16]. SMOs are designed using
sliding-mode control (SMC) method. SMC has unique properties, such as low sensitivity to
parameter variations and strong robustness to external disturbances, and has been applied
in many areas [17–20]. The existing SMOs can be classified into two types, i.e., linear
SMOs and terminal SMOs. The linear SMOs that include conventional SMOs (CSMOs) and
super-twisting observers (STOs) use the linear hypersurface with asymptotic stability. For
example, CSMOs are proposed for traffic monitoring and detecting anomalies [21]. In the
CSMOs, low-pass filters are used to soften the signals with high frequency components,
which cause a phase lag and delay. To deal with the chattering phenomenon, STOs are
proposed to estimate ATF without any low-pass filters [22]. However, the STOs are activated
when the estimate errors converged to zero, which results in a long start-up time. In contrast,
terminal SMOs employ the nonlinear a hypersurface and drive the estimate errors to the
hypersurface in finit-time [23–27].

Different from the existing observer methods for anomaly detection under the network
communication scenario [28–30], the novel terminal sliding-mode observer (TSMO) is
proposed with the contributions described as: (1) TSMO is designed for disturbance
estimation with the properties of finite-time convergence of the estimation error; (2) the
proposed TSMO can increase the convergence speed of the internal dynamics to meet
the criteria for real-time anomaly detection; (3) a full order sliding mode is designed
to achieve a smooth output injection and is directly applied for estimation; and (4) the
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TSMO is proposed to increase the estimation dynamics of the abnormal traffic, in which
the estimation error will converge to a bounded small area within a finite-time and then
converge to zero asymptotically. For the network communication scenarios, it is required
to meet two criterias: robustness and smooth output injection signals. The results of the
estimation for ATF can be further used for the anomaly detection. The paper aims at
overcoming the following three challenges from the theoretical viewpoints:

1. How to develop an observer for a class of systems where parts of states are unmeasurable.
2. How to increase the convergence speed of the internal dynamics in the observer.
3. How to design a smooth output injection of the observer and apply it directly for the

estimation algorithm.

The remainder of the paper is organized as follows. The fluid-flow model of industrial
networks is described in Section 3. The sliding-mode observer for the system is proposed in
Section 4. In Section 5, the practical traffic replay is carried out to illustrate the effectiveness
of the proposed method. Finally, conclusions are given in Section 6.

2. Problem Formulation and Preliminaries

Consider a class of linear time-varying delay systems represented by

ẋ(t) = Ax(t) + Adx(t− τ) + bu(t) + dδ(t), (1)

where x(t) = [x1(t), x2(t)]
T ∈ R2 is the system state, u(t) ∈ R is the control input, τ =

τ(t) ∈ R is the time delay, δ(t) ∈ R is the disturbance, and A = [a11, a12; a21, a22], Ad =

[a11d, a12d; a21d, a22d], b = [1, 0]T , and d = [0, 1]T are time invariant system parameters.
Some assumptions are made as: (1). the system (1) is stable; (2). the state x2 is

measurable; and (3). the state x1 is unmeasurable.
The objective in the paper is to design an observer for estimating the disturbance δ(t)

in (1). Now, an observer is proposed for the system (1) in the form

˙̂x(t) = Ax̂(t) + Adx̂(t− τ) + bu(t) + v(t), (2)

where x̂(t) = [x̂1(t), x̂2(t)]
T ∈ R2 is the estimate of x(t), and v(t) = [v1(t), v2(t)]

T ∈ R2 is
the output injection of the observer.

If the errors between the estimates and the true states are written as e(t) = x̂(t)− x(t),
then, from (1) and (2), the following error system is obtained

ė(t) = Ae(t) + Ade(t− τ)− dδ(t) + v(t), (3)

and the estimate of the disturbance δ(t) follows that

δ̂(t) = lim
e(t)→0

v2(t). (4)

The estimation process includes the following two steps:

1. The error system (3) converges to zero asymptotically or in finite-time by using the
output injection of the observer.

2. Once the error system (3) converges to zero, the disturbance in (1) can be estimated
using (4).

The output injection of the observer v(t) in (2) can only utilize the measurable error e2,
i.e., v1 = v1(e2), v2 = v2(e2). The output injection v2 = v2(e2) can be designed to force e2
converging to zero, although there exists unmeasurable e1 and disturbance δ(t) in the error
system (3). However, in the conventional observer [22], there is no output injection v1 for
the internal dynamics of error system (3). In such a case, the error state e1 will converge to
zero asymptotically due to the assumption 1. As a result, the convergence of e1 cannot be
affected by the signal v2 and may be very slow. To address this problem in the conventional
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methods, an output injection signal v1 is proposed to the error system (3), which aims at
speeding up the convergence of the internal dynamics of the error system (3).

When the error system (3) converges to zero, the estimate of the disturbance can be
obtained using (4). Hence, the output injection of the observer v2(t) is required to be
smooth, which is a challenge to the design of the SMO.

Two Lemmas are stated below and will be used in the proof of the Theorems later.

Lemma 1 ([31]). Given a nonlinear system ẋ = f(x), where x ∈ Rn, f(0) = 0, and f(·) : Rn →
Rn is a continuous function. If there exists a continuous positive definite function V(x) such that
V̇(x) + cVα(x) ≤ 0, where c > 0 and α ∈ (0, 1) are two constants. Then, V(x), ∀V(x0) 6= 0,
approaches to zero in a finite-time T, where T ≤ V1−α

(x(0))/(c(1− α)).

To prove the Theorems in the paper, the stability of the following form of linear
systems with time-varying delay is considered:{

ẋ(t) = Ax(t) + Adx(t− τ(t)), t > 0,
x(t) = ϕ(t), t ∈ [−τ2, 0]

, (5)

where x(t) ∈ Rn is the state, A and Ad are constant matrices with appropriate dimensions,
the time delay, τ(t), is a time-varying continuous function that satisfies τ1 < τ(t) < τ2 and
τ̇(t) ≤ µ, where τ1, τ2, and µ are all known positive constants, and the initial condition,
ϕ(t) ∈ Rn, is a continuous function of t ∈ [−τ2, 0].

Lemma 2 ([32]). The system (5) is asymptotically stable if there exist matrices P > 0; Qi > 0,
Zj > 0, for i = 1, 2, 3, and j = 1, 2; Ni, Mi, and Si, i = 1, 2 with appropriate dimensions such that
the following LMI holds:

Φ = [φιν]8×8 < 0, (6)

where Φ is the symmetric matrix, ι, ν = 1, 2, · · · , 8, φ11 = 2PA + Q1 + Q2 + Q3 + 2N1,
φ12 = PAd + N2 − N1 + S1 −M1, φ13 = M1, φ14 = −S1, φ15 = τ2N1, φ16 = τ12S1,
φ17 = τ12M1, φ18 = A11υ, φ22 = −(1 − µ)Q3 + 2S2 − 2N2 − 2M2, φ23 = M2, φ24 =
−S2, φ25 = τ2N2, φ26 = τ12S2, φ27 = τ12M2, φ28 = A11dυ, φ33 = −Q1, φ44 = −Q2,
φ55 = −τ2Z1, φ66 = −τ12(Z1 + Z2), φ77 = −τ12Z2, φ88 = −υ, φιν = 0, for ν > ι and
ι = 3, 4, · · · , 7, υ = τ2Z1 + τ12Z2, and τ12 = τ2 − τ1.

3. Fluid-Flow Model of Industrial Networks

Industrial networks interconnect various industrial control systems (ICS), e.g., local-
area switched networks, such as distributed control systems, and wide-area routed net-
works, such as SCADA, to support the communication between devices. Most ICSs adopt
some specialized protocols, such as Open Platform Communications, Modbus, Distributed
Network Protocol, Inter-Control Center Protocol, Profibus, etc. However, these protocols
were initially designed for serial communications and must been adapted to operate over
TCP/IP networks, which is a standard Ethernet link layer and has been widely imple-
mented at common network infrastructures. To this end, the industrial TCP/IP networks
will be studied in the paper.

An industrial TCP/IP network consists of multiple hosts and clients in industrial
control systems, which are physically connected in any number of topologies including
star, tree, and even full-mesh. In industrial networks, a star topology is extremely common
to connect to end devices [33]. So, a typical industrial TCP/IP network in a star topology
is adopted in this study. In the topology, all nodes (hosts or any other industrial control
systems peripherals) are connected to an industrial router. Each connected host has a dedi-
cated, point-to-point connection between the host and the router. It is assumed that there
are N homogeneous sources, i.e., all sources are the same in structure, nature, parameters,
and software implementations. They connect to a destination (a host or a client devices)
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through a router, where two mechanisms are embedded: an Active Queue Management
(AQM) and an observer. The AQM regulates the queue length in the router buffer with
a randomization of choosing connections to notify the congestion, so that the network
utilization can be improved. The observer is used to estimate the traffic flow and further
detect its abnormal behavior of the traffics in industrial TCP/IP networks.

To describe the behavior of the traffics in industrial networks, the following fluid-flow
model of TCP behavior can be used [9]:

ẇ(t) =
1

τ(t)
− w(t)

2
w(t− τ(t))
τ(t− τ(t))

p(t− τ(t))

q̇(t) =N
w(t)
τ(t)

− C + δ(t)

τ(t) =
q(t)
C

+ Tp

, (7)

where w(t) is the average TCP congestion window size in packets. Congestion Window
(Cwnd) is a TCP state variable that limits the amount of data the TCP can send into the
network before receiving an ACK. q(t) is expected queue length in packets. w and q are
positive and bounded, i.e., w ∈ [0, w̄] and q ∈ [0, q̄], where w̄ and q̄ are known and denote
maximum window size and buffer size, respectively. τ(t) is the round-trip time in seconds
which induces time varying delay in the communication channel. p(t) is the probability of
packet loss and takes value at [0, 1]. Tp is the propagation delay in seconds. N and C are
the numbers of TCP sections and the link bandwidth in packets/second, respectively.

In system (7), δ(t) represents the unmeasurable queuing dynamics of ATF in the
network. It includes the modeling errors and anomalies. Both of them are uncertain and
perturb the normal TCP/IP network behavior at the router level. In normal working
conditions, δ(t) is around a fixed value, which forms a layer near the value; however, when
an anomaly intrusion happens, it will suddenly increase.

The purpose of the paper is to estimate δ(t) only using q(t) in (7). After obtaining the
estimate of δ(t), we can detect and further analyze the anomalies.

The equilibrium point of system (7) is assumed as (w0, q0), where w0 is the equilibrium
window size, and q0 is the required queue length set by the AQM. p0 is the equilibrium
input value, and τ0 is the equilibrium round-trip time. They can be determined as follows
by ẇ(t) = 0 and q̇(t) = 0: 

τ0 =q0
/

C + Tp

w0 =τ0C/N

p0 =2
/

w2
0

.

The system (7) can be linearized around its equilibrium point. Defining the perturba-
tion of the equilibrium point as ∆w(t) = w(t)− w0 and ∆q(t) = q(t)− q0, the dynamics of
the industrial TCP networks (7) can be linearized to

∆ẇ(t) =− N
τ2

0 C

(
∆w(t) + ∆w(t− τ(t))

)
− 1

τ2
0 C

(
∆q(t)

− ∆q(t− τ(t))
)
− τ0C2

2N2 ∆p(t− τ(t))

∆q̇(t) =
N
τ0

∆w(t)− 1
τ0

∆q(t) + δ(t)

, (8)

where q(t) and p(t) are available in the router. Some software programs, such as Netflow,
PacketScope, and Loss Measurement Management, have been installed in routers. They
can monitor and measure p(t) [34]. The congestion window w(t) cannot be used in the
AQM or the observer because it is unmeasurable.
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To simplify the design of the observer for the linearized model of the industrial TCP/IP
network (8), a state transformation is made first.

Define a new state variable x(t) = ∆w(t) ∈ R, an output y(t) = ∆q(t) ∈ R, and a
control u(t) = ∆p(t) ∈ R. Then, system (8) can be rewritten as

ẋ(t) =− a11x(t)− a11x(t− τ(t))− a12y(t)

+ a12y(t− τ(t)) − bdu(t− τ(t))

ẏ(t) =a21x(t)− a22y(t) + δ(t)

, (9)

where a11 = N/τ0
2 C, a12 = 1/τ0

2 C, bd = τ0C2/2N2, a21 = N/τ0, and a22 = 1/τ0. C and
N are defined in (7).

The time-delay τ(t) in (9) satisfies the following inequality:

Tp ≤ τ(t) ≤ q̄
/

C + Tp, (10)

where q̄, C and Tp are defined in (7).
It should be noted that the lower bound of τ(t) is Tp as defined in (10). Tp is the

propagation delay at the circumstance of neither congestion nor queuing delay in a router.
In addition, the upper bound of τ(t) in (10) is the combination of the propagation delay
and the maximum queuing delay under the worst case of congestion in the router buffer,
i.e., τ(t), cannot exceed q̄/C + Tp.

The derivative of τ(t) can be assumed to satisfy

τ̇(t) ≤ µ, (11)

where µ is a known positive constant.
The condition of (10) and (11) can be obtained as below. Differentiating the last

equation in (7) with the time t gives

τ̇(t) =
1
C

(
Nw(t) + δ(t)τ(t)

τ(t)
− C

)
. (12)

The term Nw(t) + δ(t)τ(t) in (12) is actually the amount of data being transmitted in
the TCP/IP network, which is physically constrained to the TCP/IP network capacities,
namely Nw(t) + δ(t)τ(t) ≤ BDP + q̄ where q̄ is the buffer capacity defined in (7). BDP
is the Bandwidth-Delay Product, which represents the amount of data that can be in
transit [35]. BDP refers to the product of a data link’s capacity C and its round-trip delay
time τ(t), i.e., BDP = Cτ(t), where C and τ(t) are defined in (7). Normally, the buffer
capacity of a router in (7) q̄ is dependent on the BDP, i.e., q̄ = µCτ(t), where µ = 1/

√
N

is a constant [36]. Then, it can be obtained that Nw(t) + δ(t)τ(t) ≤ Cτ(t) + µCτ(t) and
furthermore, we have the condition (11) is true.

The state variable x(t) in the linearized model of the TCP/IP network (9) satisfies the
inequality as follows:

|x(t)| ≤ w̄, (13)

where w̄ is the known positive constant, i.e., the maximum window size, and is defined
in (7).

In TCP/IP networks, the window size refers to the amount of dada that a host is
currently willing to send. Normally, the maximum window size w̄ at a host is configured
as a constant, i.e., w̄ is set as 65, 535 (0xFFFF) bytes [37]. As seen as in (8) and (9), x(t) is the
perturbation around the equilibrium point of w(t) that is limited to the known constant
maximum window size w̄. As x(t) = δw(t), so |x(t)| cannot exceed the maximum value of
w(t), i.e., the inequality (13) is true.

The aformentioned amount of data being transmitted in the TCP/IP network,
Nw(t) + δ(t)τ(t), in (12) includes traffic flow of all N TCP sections Nw(t), as well as
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the dynamics of ATF δ(t)τ(t). It is physically constrained to the TCP/IP network capacities,
namely Nw(t)

τ(t) + δ(t) ≤ C + µC , which means that |δ(t)| ≤ (1 + µ)C holds because of
w(t) > 0, τ(t) > 0, i.e., |δ(t)| ≤ dm, where dm ≤ (1 + µ)C is a known positive constant
which can be determined in the experiments.

As δ(t) is physically limited to the router communication capacity, its change rate
is always constrained to

∣∣δ̇(t)∣∣ ≤ dm/T, where T is the sampling period and kept as a
constant 1/C [9]. Hence, we have

∣∣δ̇(t)∣∣ ≤ dm/T ≤ (1 + µ)C2, i.e.,
∣∣δ̇(t)∣∣ ≤ d1, where

d1 ≤ (1 + µ)C2 is a known positive constant. Summarizing the analysis above gives

|δ(t)| ≤ dm,
∣∣δ̇(t)∣∣ ≤ d1, (14)

where both dm and d1 are known positive constants.
The block diagram of the AQM and observer in a router is shown in Figure 1. The

AQM is utilized to control the queue length q(t) to a required value by regulating the
probability of packets loss p(t). The inputs of the observer, i.e., q(t) and p(t), are measurable
states. The outputs of the observer is the estimate of δ(t). The paper aims to design an
observer for estimating the dynamics of ATF in real-time and further detecting anomalies
in industrial networks.

Estimation of

         δ(t)

Controller
qref

Observer

AQM

TCP dynamics

w(t)    τ(t)    δ(t)

p(t)    q(t)

Traffic flow Traffic flow

Figure 1. Block diagram of the AQM and observer in an industrial switch/router.

4. Design of the TSM Observer

In the fluid-flow model of TCP/IP networks in (9), the ATF dynamics δ(t) can be
considered as a disturbance. The estimate of δ(t) can be used for anomaly detection. To
estimate δ(t), an observer is proposed as

˙̂x(t) =− a11 x̂(t)− a11 x̂(t− τ(t))− a12y(t)

+ a12y(t− τ(t))− bdu(t− τ(t)) + v1(t)
˙̂y(t) =a21 x̂(t)− a22y(t) + v2(t)

, (15)

where x̂(t) and ŷ(t) represent the estimates of the system state x(t) and output y(t), respec-
tively, and v1(t) and v2(t) are output injection for the observer.

Define ξ1(t) := x̂(t)− x(t) and ξ2(t) := ŷ(t)− y(t) as the errors between the system
states and their estimates. The error system can be obtained from (9) and (15) as follows:

{
ξ̇1(t) =− a11ξ1(t)− a11ξ1(t− τ(t)) + v1(t)

ξ̇2(t) =a21ξ1(t) + v2(t)− δ(t)
. (16)

It should be noted that the state ξ2 in error system (16) is measurable and can be used
in the design of the output injection. However, the state ξ1 is unmeasurable and cannot be
used in the design of the output injection, i.e., v1 and v2 in (16) can include only ξ2.
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4.1. Measurable Error Subsystem

The measurable error subsystem in (16) is firstly considered, namely

ξ̇2(t) = a21ξ1(t) + v2(t)− δ(t). (17)

A TSM manifold is chosen as the following form [38,39]:

s(t) = ξ̇2(t) + αξ2(t) + βξ2
φ/ρ(t), (18)

where α, β > 0 are constants, and ρ and φ are positive odd integers which satisfy
1 < ρ/φ < 2.

Theorem 1. The measurable error subsystem (17) will reach the ideal sliding manifold s(t) = 0
firstly from any nonzero initial condition s(0) 6= 0 in a finite-time tr ≤ |s(0)|/η2, then converge to

zero along s(t) = 0 in another finite-time ts = ρ
/
(α(ρ− φ))

(
ln(αξ

(ρ−φ)/ρ
2 (tr) + β)− ln β

)
, if

s(t) is selected as (18), and the output injection is given by

v2(t) =v2eq(t) + v2n(t) (19)

v2eq(t) =− a21 x̂(t)− αξ2(t)− βξ2(t)φ/ρ (20)

v̇2n(t) =− a12a21y(t) + a12a21y(t− τ(t))

− a21bdu(t− τ(t))− k2sgn(s(t)), (21)

where k2 = 2a11a21w̄ + d1 + η2, η2 > 0 is a constant, and w̄ and d1 are defined in (7) and (14),
respectively.

Proof. From (17), the manifold (18) can be rewritten as

s(t) = a21ξ1(t) + v2(t)− δ(t) + αξ2(t) + βξ2
φ/ρ(t).

Substituting (19) and (20) into the above gives

s(t) = −a21x(t) + v2n(t)− δ(t). (22)

Differentiating s(t) in (22) with respect to time t along the measurable error subsys-
tem (17) yields

ṡ(t) =− a21 ẋ(t) + v̇2n(t)− δ̇(t)

=− a21(−a11x(t)− a11x(t− τ(t))− a12y(t)

+ a12y(t− τ(t)) − bdu(t− τ(t))) + v̇2n(t)− δ̇(t).

Further substituting (21) into the above equation gives

ṡ(t) =− a21(−a11x(t)− a11x(t− τ(t)))− (2a11a21w̄

+ d1 + η2)sgn(s(t))− δ̇(t).

Introduce a candidate Lyapunov function given by V1(t) = 0.5s2(t). Taking the deriva-
tive of V1(t) along the trajectories of (16), and using the above expression, it follows that

s(t)ṡ(t) =− a21(−a11x(t)− a11x(t− τ(t)))s(t)

− (2a11a21w̄ + d1 + η2)|s(t)| − δ̇(t)s(t)

≤a21(a11|x(t)|+ a11|x(t− τ(t))| − 2a11w̄)|s(t)|
+ (
∣∣δ̇(t)∣∣− d1)|s(t)| − η2|s(t)|

.
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From the conditions (13), (14) and the above, we have

V̇1(t) = s(t)ṡ(t) ≤ −η2
√

2V1
1/2(t) < 0, for s(t) 6= 0;

it can be seen that measurable error subsystem (17) will reach to s(t) = 0 within the finite-
time tr ≤ |s(0)|/η2; in other words, s(t) = 0, ∀t ≥ tr. Once the ideal sliding-mode s(t) = 0
is established, the measurable error subsystem (17) will maintain on s(t) = 0 thereafter
and behaves in an identical fashion as ξ̇2(t) = −αξ2(t)− βξ2

φ/ρ(t), which will converge
to zero along s(t) = 0 in the finite-time ts.

Theorem 1 yields a method of designing the output injection in (17) by only using the
measurable ξ2(t), which forces ξ2(t) to converge to zero in a finite-time, although there
exist unmeasurable ξ1(t) and unknown disturbance δ(t) in (17).

4.2. Unmeasurable Error Subsystem

For the unmeasurable error subsystem in (16), namely

ξ̇1(t) = −a11ξ1(t)− a11ξ1(t− τ(t)) + v1(t). (23)

Define an area Γ for unmeasurable ξ1 near zero as

Γ =
{

ξ1 :
∣∣∣ξ1 − a−1

21 δ
∣∣∣ ≤ ϕ

}
, (24)

where ϕ is a positive constant and defined as ϕ = a−1
21 dm + ε, dm is defined in (14), and ε is

a positive constant, which can be chosen by 0 < ε < a−1
21 dm/2.

The purpose of introducing the area Γ is to design a output injection strategy in the
following Theorem for increasing the convergence speed of the error ξ1, when it is outside Γ.

Theorem 2. The unmeasurable error subsystem (23) will converge to zero asymptotically, if the
output injection is given by

v1(t) =
{

0,
∣∣ξ̃1(t)

∣∣ ≤ ϕ
−k1sgn

(
ξ̃1(t)

)
,
∣∣ξ̃1(t)

∣∣ > ϕ
(25)

ξ̃1(t) =x̂(t)− a−1
21 v2n(t) (26)

where k1 = a11w̄ + η1, w̄ is a constant defined in (7), and η1 > 0 is a constant.

Proof. The error state space of ξ1 can be divided into two different areas, Γo and Γ, and
defined, respectively, as Γo =

{
ξ1 :

∣∣∣ξ1 − a−1
21 δ
∣∣∣ > ϕ

}
and Γ =

{
ξ1 :

∣∣∣ξ1 − a−1
21 δ
∣∣∣ ≤ ϕ

}
,

where ϕ > 0 is defined in (24). So, two different cases, i.e., Case 1 and 2, are considered.
Case 1: the error state ξ1 is in area Γo. The measurable error subsystem (17) will

move toward the sliding manifold s = 0 under the output injection (19)–(21). When the
measurable error subsystem reaches and stays on the sliding manifold, s(t) = 0, under the
output injection in Theorem 1, it follows from (22) that

s(t) = a21ξ1(t)− a21 x̂(t) + v2n(t)− δ(t) = 0. (27)

From the above equation and (26), it gives that

ξ̃1(t) = ξ1(t)− a−1
21 δ(t). (28)
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As ξ1 is in area Γo, the inequality
∣∣∣ξ1 − a−1

21 δ
∣∣∣ > ϕ holds. According to (28) and

the above inequality, we can have that
∣∣ξ̃1(t)

∣∣ > ϕ. So, the output injection (25) can be
rewritten as

v1(t) = −k1sgn
(
ξ̃1(t)

)
. (29)

As we have that ξ̃1(t) = ξ1(t)− a−1
21 δ(t) < −ϕ < 0, where ϕ = a−1

21 dm + ε is defined
in (24), and dm is defined in (14), further, we can obtain that ξ1(t) < −ϕ + a−1

21 δ(t) =

−a−1
21 (dm − δ(t))− ε < 0. For the case of ξ̃1(t) = ξ1(t)− a−1

21 δ(t) > ϕ > 0, similarly, we
can have that ξ1(t) > a−1

21 (dm + δ(t)) + ε > 0. So, it can be concluded that

sgn
(
ξ̃1(t)

)
= sgn(ξ1(t)). (30)

According to the above equation, the output injection (29) can be rewritten as

v1(t) = −k1sgn(ξ1(t)); (31)

further substituting (31) into (23), the unmeasurable error subsystem (23) can be reformed as

ξ̇1(t) = −a11ξ1(t)− a11ξ1(t− τ(t))− k1sgn(ξ1(t)). (32)

Consider a candidate Lyapunov function V2(t) = 0.5ξ2
1(t). Taking the time-derivative

of V2(t) yields

V̇2 =ξ1(t)ξ̇1(t) = −a11ξ2
1(t)− a11ξ1(t− τ(t))ξ1(t)

− k1|ξ1(t)|
≤ − η1|ξ1(t)| < 0, for |ξ1(t)| 6= 0,

which means that, in Case 1, the error state ξ1 in area Γo must converge into the area Γ in a
finite-time.

Case 2: ξ1 is in area Γ. The inequality
∣∣∣ξ1 − a−1

21 δ
∣∣∣ ≤ ϕ holds. According to (28) and

the above inequality, it can be obtained that
∣∣ξ̃1(t)

∣∣ ≤ ϕ. Therefore, the output injection (25)
becomes v1(t) = 0, and the system (23) is rewritten as

ξ̇1(t) = −a11ξ1(t)− a11ξ1(t− τ(t)). (33)

To prove the stability of the system (33), consider the Lyapunov function [32] as

V3 =gξ2
1(t) + h1

∫ t

t−Tp
ξ2

1(s)ds + h2

∫ t

t−(q̄/C+Tp)
ξ2

1(s)ds

+ h3

∫ t

t−τ(t)
ξ2

1(s)ds +
∫ 0

−(q̄/C+Tp)

∫ t

t+θ
z1ξ̇2

1(s)dθ

+
∫ −Tp

−(q̄/C+Tp)

∫ t

t+θ
z2ξ̇2

1(s)dθ

,

where g, hi, for i = 1, 2, 3, and zj, for j = 1, 2, are all positive constants to be determined.
Define X = [ξ1(t), ξ1(t− τ(t)), ξ1(t−Tp), ξ1(t− (q̄/C+Tp))]T, A = [−a11,−a11, 0, 0]T,

and Φ = [φιν]4×4 is the symmetric matrix, where ι, ν = 1, 2, · · · , 4, φ11 = −2ga11 +
h1 + h2 + h3 + 2n1, φ12 = −2ga11 + n2 − n1 + s1 − m1, φ13 = m1, φ13 = −s1, φ22 =
−(1− µ)h3 + 2s2 − 2n2 − 2m2, φ23 = m2, φ24 = −s2, φ33 = −q1, φ34 = 0, φ44 = −q2,
M = [m1, m2, 0, 0]T , N = [n1, n2, 0, 0]T , S = [s1, s2, 0, 0]T , and γ is a sufficient small posi-
tive value.
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Differentiating V3(t) with respect to time t along the error subsystem (33) gives

V̇3 =2gξ1(t)ξ̇1(t) + h1

(
ξ1

2(t)− ξ1
2(t− Tp)

)
+ h2(ξ1

2(t)

− ξ1
2
(

t− (q̄
/

C + Tp))
)
− (1− τ̇(t))h3ξ1

2(t− τ(t)))

+ (q̄
/

C + Tp)z1ξ̇2
1(t) +

q̄
C z2ξ̇2

1(t) + h3ξ1
2(t)

− z1

∫ t

t−(q̄/C+Tp)
ξ̇2

1(s)ds−
∫ t−Tp

t−(q̄/C+Tp)
z2ξ̇2

1(s)ds

,

≤XT
[
Φ + A

(
(q̄
/

C + Tp)z1 +
q̄
C z2

)
AT +

q̄
C Mz2

−1 MT

+ (q̄
/

C + Tp)Nz1
−1NT +

q̄
C S(z1 + z2)

−1ST
]

X

−
∫ t−τ(t)

t−(q̄/C+Tp)
(z1 + z2)

−1
[

XTS + ξ̇1(s)(z1 + z2)
]

×
[
ST X + (z1 + z2)ξ̇1(s)

]
ds

−
∫ t

t−τ(t)
z1
−1
[

XT N + ξ̇1(s)z1

][
NT X + z1 ξ̇1(s)

]
ds

−
∫ t−Tp

t−τ(t)
z2
−1
[
XT M + ξ̇1(s)z2

][
MT X + z2 ξ̇1(s)

]
ds

.

From (6) in Lemma 2 and the above inequality, it can be obtained as

V̇3 < −γ|ξ1(t)|2 < 0, (34)

which ensures the asymptotic stability of the error system (33), i.e., ξ1(t), will converge to
zero asymptotically.

The state space of ξ1 can be divided into two different areas, Γo and Γ. In Case 1, when
the state ξ1 is in Γ0, the output injection strategies (25)–(26) drive the error system (32)
converging to the area Γ in a finite time. Once the state ξ1 reached and entered the area Γ,
namely Case 2 occurred, and the error system (33) will converge to zero asymptotically. That
means the the unmeasurable error subsystem (23) will converge to zero asymptotically.

Remark 1. In practice, the output injection strategies (25)–(26) are implemented by ∏−σ,σ(s)× v1,
where ∏−σ,σ(s) is a boxcar function and expressed by

∏−σ,σ(s) =

{
1, |s| ≤ σ

0, |s| > σ
,

where σ > 0 is a constant.
The whole state space of ξ1 and ξ2 can be divided into two different areas, Ω1 and Ω2, defined

as Ω1 = {(ξ1, ξ2) : |s| > σ} and Ω2 = {(ξ1, ξ2) : |s| ≤ σ}.
When the system states ξ1, ξ2 are in Ω1, the boxcar function ∏−σ,σ(s) = 0, and then v1(t)

in (25) is equal to zero, which means that the measurable error subsystem (17) has not reached to
the sliding manifold s(t) = 0. In this case, the output injection (25) has not been applied in the
unmeasurable error subsystem (23).

The measurable error subsystem (17) will move toward the sliding manifold s = 0 under the
output injection (19)–(21). Once it reaches to s = 0, the system states ξ1, ξ2 enter into the area
Ω2 = {(ξ1, ξ2) : |s| ≤ σ}. σ is selected as a small constant for practical implementation.

The output injection strategies (19)–(21) in Theorem 1 drive the error subsystem (17) toward
the sliding manifold s = 0 and remain on the manifold thereafter, which guarantees the system
states ξ1, ξ2 to converge into the area Ω2 in a finite-time. Then, the unmeasurable error system (23)
will converge to zero asymptotically.
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In ideal condition, σ = 0, i.e., the ideal sliding-mode s = 0 can be detected. However, in
practical environments, detecting ideal s = 0 is not possible. So, we can just only detect an
area near zero, |s| < σ. In this case, substituting (19) and (20) into (18), we have a21ξ1(t) −
δ(t)=a21 x̂(t) − v2n(t) + s(t), where |s(t)| < σ. Hence, it can be chosen σ as σ=κ

∣∣a21ξ̃1(t)
∣∣,

where κ = 0.02− 0.05. It should be noted that σ can affect only the convergence speed in dynamical
process but cannot affect the final observation.

Theorem 3. If the two output injection signals in the error system (16) are designed using Theo-
rems 1 and 2, respectively, the estimation errors lim

t→(tr+ts)
ξ2(t) = 0 and lim

t→∞
ξ1(t) = 0. Then, the

ATF dynamics δ(t) in (9) can be estimated by as

lim
t→∞

v2(t) = lim
t→∞

δ(t), (35)

where v2(t) is designed in (19).

Proof. Based on Theorem 1, the measurable error subsystem (16) under the output injec-
tion (19) will reach to the sliding manifold s(t) = 0 in the finite-time tr and maintain on
s(t) = 0 thereafter. The unmeasurable error subsystem (17) will converge to zero in the
finite-time along s(t) = 0. Then, it follows from (17) that

ξ̇2(t) = a21ξ1(t) + v2(t)− δ(t) = 0. (36)

From Theorem 2, the unmeasurable error state ξ1(t) under the output injection (25)
will converge to zero asymptotically. From (36), the ATF dynamics δ(t) can be estimated
directly by the smooth v2(t) in (19) when the unmeasurable error state ξ1(t) converges to
zero asymptotically. This completes the proof.

5. Real Traffic Replay Results

The real traffic replay results are given to varify the effectiveness of the proposed
TSMO method in real-time.

5.1. Real Traffic Replay Setup

For experimental purposes, we used the real traffic dataset from CAIDA, which is
governed by the Regents of the University of California and located at the University of
California San Diego (UCSD) [40].

In the paper, the CAIDA “DDoS Attack 2007” dataset is used to test the proposed
method. This dataset contains approximately one hour of anonymized traffic traces from
a DDoS attack on 4 August 2007 (20 : 50 : 08 UTC to 21 : 56 : 16 UTC). The DDoS attack
attempts to disrupt access to the targeted server and all of the bandwidth of the network
connecting the server to the Internet, by consuming computing resources on the server.
The 1-h trace is split up into 5-min pcap files, where pcap is an application programming
interface for capturing network traffic. The total uncompressed size of the dataset is 21 GB.
The traces only include attack traffic to the victim and responses to the attack from the
victim. The non-attack traffic in the traces has been removed as much as possible. Traces
in this dataset are anonymized using CryptoPAn prefix-preserving anonymization using
a single key. The payload has been removed from all packets. These traces can be read
with any software that reads the format of packet capture (pcap), including the CoralReef
Software Suite, Tcpdump, Wireshark, and many others. The details of traffic features
are shown in Table 1. In this experiment, the real-time DDoS attack scenarios for the
CAIDA datasets are considered. This collection groups the backscatter datasets, which
were created from the massive amount of data continuously collected from the UCSD
Network Telescope.

To study the network traffic behavior, a network simulator is used to set up network
environments. It is a discrete event-based network simulator for networking research,
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which contains the necessary features, e.g., a traffic trace generator, to replay the real traffic
traces profiles.

Table 1. Traffic features of Caida “DDoS Attack 2007” dataset [40].

Maximum capture length for interface 0:65,000
First timestamp: 1,186,260,576.487629
Last timestamp: 1,186,260,876.482457
Unknown encapsulation: 0
IPv4 bytes: 37,068,253
IPv4 pkts: 166,448
IPv4 traffic: 8079
Unique IPv4 addresses: 136
Unique IPv4 source addresses: 132
Unique IPv4 destination addresses: 136
Unique IPv4 TCP source ports: 4270
Unique IPv4 TCP destination ports: 3348
Unique IPv4 UDP source ports: 1
Unique IPv4 UDP destination ports: 1
Unique IPv4 ICMP type/codes: 2

A typical star topology of the TCP/IP network consisting of a number of hosts and
clients with one network gateway is considered in the study. There are N source agents
and destination agents being created to represent the hosts and clients in the network,
respectively, where N = 60. The ‘newreno tcp’ agents are used for the sources with ‘ftp’
connections to generate long-lived TCP flows to the destination clients. The maximum
value of Cwnd in each ‘tcp’ agent is set to be the same as 0.12 Mb. The link capacity C of the
network gateway router is set to be 15 Mb. Moreover, the packet size is set to be 500 bytes.
The connections between each host/client and the router are set by ‘full-duplex’, which
construct bi-directional links at propagation delay Tp = 200 ms. The proportional integral
(PI) AQM mechanism is applied to regulate the queue length (QL) at a desired value of
q0 = 175 packets in router buffer [41]. The capacity of router buffer q̄ is set to be 800 packets.
A traffic trace generates payload bursts according to the given trace file of the DDoS attack
profile from the CAIDA Dataset. In the network simulator, traffic trace is implemented by
using the C++ class ‘TrafficTrace’, which is bound to the specified real DDoS attack traffic
trace file in the OTcl domain.

A hundred distributed attackers are created and attached with the real traffic trace
files from the CAIDA datasets. In the paper, an increasing rate attack profile of the CAIDA
DDoS 2007 datasets is used to test the proposed method. This DoS attack lasts a period of
five min.

The parameters in the linearized TCP/IP network model (9) are: a11 = 0.2630, a12 =
0.0044, bd = 481.7708, a21 = 243.2432, and a22 = 4.0541.

5.2. Real Traffic Replay Results and Discussion

Figures 2–7 depict the experimental results of the proposed TSMO-based NTM in the
scenarios of CAIDA Dataset-6 and Dataset-11. Figures 2 and 5 shows the traffic dynamics
of QL captured at the router, which includes the normal traffic flows and the DDoS attack
profiles. With simple observations at this traffic dynamics of QL, the anomalies displayed
in the traffic dynamics cannot be identified and detected in real-time. By contrast, the
TSMO-based real-time NTM scheme, which is implemented at the router, is capable to
extract TCP traffic flows from the total traffic dynamics in the buffer and estimate the
dynamics of ATF for anomaly detection.

As the Theorem 1, the measurable error subsystem (17) will reach to the predesigned
manifold (18), i.e., s(t) = 0, within the finite-time tr. Therefore the estimation error ξ2 of
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QL is governed by the output injection (19) to converge to zero in the finite-time ts along
s(t) = 0.

In addition to forcing the estimation error ξ2 to zero in the finite-time, the other
aim is to speed up the convergence of the internal dynamics of the error system (16) for
precision estimation to meet the real-time criteria. By Theorem 2, the internal dynamics,
i.e., the estimation error ξ2, is forced to the defined area (24) in the finite-time and then
converges to zero asymptotically. As presented in Figures 3 and 6, the congestion window
is accurately estimated, which reflects the serious degradations in sending rate, throuput
and bandwidth utilization in the networks when the DDoS attacks started in the scenario.
From the Theorem 3, the dynamics of ATF, i.e., δ(t), which is represented by the increasing
rate attack profile and the subgroup attack profile from the CAIDA datasets, is quickly
and exactly estimated. The results of the estimated dynamics of DDoS rate are depicted in
Figures 4 and 7.

As the experimental results illustrated in Figures 2 to 7, the proposed TSMO-based
NTM presents a good tracking performances of the real traffic trace profile for anomaly
detection with the main features of the SMC systems. This real traffic replay experimental
results demonstrated the effectiveness and efficiency of the proposed TSMO algorithms in
a real-time monitoring capability under real traffic profile environments.
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Figure 2. Queue length measured in router buffer in increasing rate attack profile of CAIDA Dataset-6.
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Figure 3. Estimation of Cwnd in increasing rate attack profile of CAIDA Dataset-6.
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Figure 4. Estimation of attack rate in increasing rate attack profile of CAIDA Dataset-6.
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Figure 5. Queue length measured in router buffer in increasing rate attack profile of CAIDA Dataset-11.
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Figure 6. Estimation of Cwnd in increasing rate attack profile of CAIDA Dataset-11.
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Figure 7. Estimation of attack rate in increasing rate attack profile of CAIDA Dataset-11.
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5.3. Comparative Studies

Four different observer algorithms are evaluated in the real traffic replay tests.

5.3.1. The Luenberger Observer (LO)

The output injection strategies of the LO can be designed as [12]:{
vlo

1 (t) = −Llo
1 (y(t)− ŷlo(t)),

vlo
2 (t) = −Llo

2 (y(t)− ŷlo(t)),

where ŷlo(t) is the estimate of y(t) in (9), vlo
1 (t) and vlo

2 (t) are the output injection signals of
the observer, and Llo

1 and Llo
2 are the gains of the output injection.

5.3.2. The Conventional Sliding Mode Observer (CSMO)

The CSMO chooses the linear sliding surface by the following:
scsmo(t) = ccsmoξcsmo

2 (t), where ccsmo > 0 is a constant, and the estimation error
ξcsmo

2 (t) is defined by ξcsmo
2 (t) = ŷcsmo(t)− y(t). The output injection vcsmo

1 (t) is equal to
zero, and the output injection vcsmo

2 (t) is designed as [21]:

vcsmo
2 (t) = Lcsmoξcsmo

2 (t)− kcsmosgn(scsmo(t)),

with Lcsmo < 0, kcsmo > 0 is the gain of the output injection.
As highly frequent switching phenomenon existed in vcsmo

2 (t) due to the signum
function, a low-pass filter is needed to extract the equivalent signal.

5.3.3. The Super-Twisting Observer (STO)

A sliding-mode surface is selected as ssto(t) = ξsto
2 (t), where ξsto

2 (t) = ŷsto(t)− y(t).
The vsto

1 (t) is equal to zero, and the vsto
2 (t) is designed by [22]:{

vsto
2 (t) = −ksto

1 |ssto(t)|0.5sgn(ssto(t)) + vsto
2n (t)

v̇sto
2n (t) = −ksto

2 sgn(ssto(t))
,

where both ksto
1 and ksto

2 are positive constant.

5.3.4. The Terminal Sliding Mode Observer (TSMO)

The output injection strategies of the proposed TSMO are designed using Theorem 1
and 2.

Four observers are implemented as: (1). The parameters of the LO are designed as
Llo

1 = 5 and Llo
2 = 32, and (2). for the CSMO, the parameters are designed as: ccsmo = 20,

Lcsmo = −100, and kcsmo = 1600. (3). The parameters of the STO are chosen as ksto
1 = 100

and ksto
2 = 1600. (4). The proposed TSMO: α = 15, β = 5, ρ = 5, φ = 3, k1 = 7.5, and

k2 = 1600.
In order to make a fair comparison, the parameters of the four types of observer

schemes are repeatedly tested, and, thereby, the optimal parameters are obtained. In the
processing, the tradeoff between the dynamic performances and the steady-state perfor-
mances of the closed-loop error system is made. In this condition, the convergence speed
and steady-state performances are compared each other for these observers.

To make the quantitative comparisons among the four kinds of observer algorithms in
terms of the steady-state performances of closed-loop error systems, Table 2 provides the
average displacement error (ADE) and the standard deviation of displacement error (SDE)
in the scenario. From the comparative results in Table 2, the proposed TSMO features the
fastest dynamical response and the best steady-state accuracies of estimating w(t) and δ(t)
compared to other existing three observers.
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Table 2. Comparisons of steady-state performances of four observers in scenario I.

Observers LO CSMO STO TSMO

tr (sec) / 4.2 2.5 2.1

ts (sec) / Asymptoticaly Asymptoticaly 2.2

ξ1 (pkt/s)
ADE 1.97 1.97 1.97 0.73

SDE 2.15 2.15 2.15 2.16

ξ2 (pkt/s)
ADE 6.36 35.36 3.26 0.50

SDE 21.68 48.03 50.56 14.44

eATF (pkt/s)
ADE 829.43 1092.28 562.18 267.51

SDE 780.45 616.56 267.61 273.54

6. Conclusions

This paper has proposed an SMO-based network traffic monitoring approach to
estimate the ATF dynamics. The main contributions of this work can be summarized as
follows: (i) One output injection of the observer is specially designed to be smooth using the
full-order SMC technique. It can be directly used for the estimation of traffic flows in real
time, does not need any low-pass filter. (ii) The novel strategy for another output injection
of the observer is proposed to increase the convergence speed of the internal dynamics of
the observer, which can improve the speed of the estimation algorithms. (iii) The proposed
TSMO can be used for a class of linear systems with time-varying delay where some system
states are unmeasurable. For the proposed observer, the parameters in the algorithms are
to be carefully set. The experimental results have verified the efficiency of the proposed
TSMO by comparative studies in real traffic profiles from the CAIDA DDoS attack datasets.
The future work will focus on anomaly detection applications considering the multiple
area communication networks.
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