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Abstract: Nonnegative Tucker decomposition (NTD) is a robust method used for nonnegative
multilinear feature extraction from nonnegative multi-way arrays. The standard version of NTD
assumes that all of the observed data are accessible for batch processing. However, the data in
many real-world applications are not static or are represented by a large number of multi-way
samples that cannot be processing in one batch. To tackle this problem, a dynamic approach to
NTD can be explored. In this study, we extend the standard model of NTD to an incremental
or online version, assuming volatility of observed multi-way data along one mode. We propose
two computational approaches for updating the factors in the incremental model: one is based on
the recursive update model, and the other uses the concept of the block Kaczmarz method that
belongs to coordinate descent methods. The experimental results performed on various datasets
and streaming data demonstrate high efficiently of both algorithmic approaches, with respect to the
baseline NTD methods.

Keywords: nonnegative tucker decomposition; incremental algorithm; recursive update; block
Kaczmarz method; signal processing

1. Introduction

Tensor decompositions are robust tools for multi-linear feature extraction and multi-
modal dimensionality reduction [1,2]. There are many models of tensor decompositions.
Examples include CANDECOMP/PARAFAC (CP) [3,4], nonnegative CP [5–7], Tucker
decomposition [8,9], sparse Tucker decomposition [10,11], higher-order singular value
decomposition (HOSVD) [12], higher-order orthogonal iterations (HOOI) [13], hierarchical
Tucker (HT) decomposition [14], tensor train (TT) [15], smooth tensor tree [16,17], tensor
ring [18], compact tensor ring [19], etc.

The Tucker decomposition model assumes that an input multi-way array, which will
be referred to as a tensor, is decomposed into a core tensor and a set of lower-rank matrices,
capturing the multilinear features associated with all the modes of the input tensor. The
baseline model was proposed by L. R. Tucker [9] in 1966 as a multi-linear extension to
principal component analysis (PCA). Currently, many versions of this model are available
across multiple applications in various areas of science and technology, among others,
facial image representation [20–24], hand-written digit recognition [25], data clustering
and segmentation [26–29], communication [28,30], hyperspectral image compression [31],
muscle activity analysis [32]. A survey of its applications can be found in [10,33,34].

Nonnegative Tucker decomposition (NTD) is a particular case of the Tucker decomposition
in which the nonnegativity constraints are imposed onto the core tensor and all the factor
matrices. Due to such constraints, the multi-way features are parts-based representations, easier
for interpretation and may have a physical meaning if an input multi-way array contains
only nonnegative entries. NTD has been used in multiple applications, including image
classification [35–38], clustering [39], hyperspectral image denoising and compression [40,41],
audio pattern extraction [42], image fusion [43], EEG signal analysis [44,45], etc.

Symmetry 2022, 14, 113. https://doi.org/10.3390/sym14010113 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-3323-6717
https://orcid.org/0000-0002-0768-2820
https://doi.org/10.3390/sym14010113
https://doi.org/10.3390/sym14010113
https://doi.org/10.3390/sym14010113
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym14010113
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14010113?type=check_update&version=2


Symmetry 2022, 14, 113 2 of 19

There are also various algorithmic approaches to NTD [46], which are mostly based
on the well-known alternating optimization strategy. This approach constitutes a convex
relaxation to the NP-hard problem, but it involves the Kronecker product of all but one fac-
tor matrices across each mode. In consequence, a huge Kronecker product matrix must be
stored in the RAM memory and processed in each alternating step, which is computation-
ally intractable for large-scale tensors. To tackle this problem, a variety of computational
issues have been proposed in the literature, partially summarized in Section 1.1.

In this study, we assume that observed data can be classified into the following
categories: (1) observed data are composed of a large number of multi-way arrays that
form a one-mode long static tensor; (2) observed data belong to a class of dynamic multi-
way streaming data, i.e., the multi-way samples are not observed in the form of one batch,
but as a sequence of samples, where one or few samples are observed for each time instant.
In this case, all of the factor matrices and the core tensor may also be considered as dynamic
objects with time-varying features. Splitting the data observed in a given window into a
currently observed sample or a short-time batch of the latest samples and the historical
samples, which were observed in the past, the Tucker decomposition model can be split
accordingly, which facilitates the factor updating process.

We propose two algorithmic approaches to update the factors in NTD incrementally
with currently observed samples. In both approaches, the factor that corresponds to the
mode of ordering the samples and the core tensor are updated in the same way. A new
upcoming sample or a block of samples increments this factor matrix by a new row or a
block of rows, respectively. This step can be performed with any nonnegatively constrained
least-squares (NNLS) solver. The core tensor can also be readily updated with any NNLS
solver considering only the upcoming data sample. The main difference between the
proposed algorithms persists in updating the remaining factors.

In the first approach, the factor matrices are updated with the recursive strategy
involving the nonnegatively constrained Gauss–Seidel method [47]. The factor matrix
for each mode is estimated from the normal equation that is additively updated with the
components, resulting only from processing a new data sample. This strategy considerably
reduces the size of the Kronecker product that is computed for the baseline NTD model.

The second approach is motivated by the Kaczmarz-online updating strategy that was
proposed in [48] for the online nonnegative matrix factorization (ONMF) model. The Kacz-
marz method [49] is addressed for solving a linear least-squares problem by performing
cyclic projections onto hyperplanes generated by successive linear equations (row actions).
The block Kaczmarz (BK) method [50,51] is based on the similar cyclic strategy but in each
step a block of rows is processed instead of a single equation. Motivated by this concept,
we propose to update the factor matrices by performing block-coordinate descent updates
for each upcoming data sample. This approach has a linear convergence rate and can be
applied both to the NTD model, as well as without the nonnegativity constraints.

Using the objective function given by the Euclidean distance, both above-mentioned
computational approaches boil down to alternating approximations of the small-scale
computational problems with symmetric system matrices and nonnegativity constraints,
and finally they can be solved with any NNLS solver. The symmetry is guaranteed by the
fundamental properties of normal equations.

The experimental results were performed on both static as well as dynamic data. In the
first case, a long sequence of nonnegatively constrained multi-way arrays were generated
randomly. In the other case, a benchmark of spectral signals was used to generate mixed
observed samples, assuming the spectral signals are time-varying.

The remainder of this paper is organized as follows. Section 1.1 reviews related studies
on incremental or online tensor decomposition methods. Section 1.2 presents the notations
and the preliminaries to fundamental mathematical operations on tensors. It also contains a
short description of the baseline Tucker decomposition method. The proposed incremental
Tucker decomposition model and two algorithmic strategies are presented in Section 2.
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Numerical experiments performed on large-scale static and dynamic tensorial data are
presented and discussed in Section 3. The final section provides concluding statements.

1.1. Related Works

Incremental versions of various tensor decomposition models have been extensively
studied in the last decade, including online and incremental CP [52,53], online TT [54],
dynamic approximation to HT [55], etc. There are many approaches and computational
strategies for the Tucker decomposition.

The first versions of streaming Tucker decomposition were proposed by Sun et al. [56,57]
in 2006. They were addressed for window-based tensor analysis [57] and dynamic tensor
analysis [56]. Both can be regarded as extensions of the baseline Tucker decomposition
model to incremental processing. However, orthogonal factor matrices in these models
are computed with the standard singular value decomposition (SVD) applied to additively
updated covariance matrices, which is their bottleneck. The above models have been next
generalized and deeply studied in [58]. The Tucker decomposition with an incremental SVD
was discussed in [59]. Gujral et al. [60] proposed the sampling-based batch incremental tensor
decomposition (SamBaTen) that extends the CP model to an incremental version.

Another computational approach for processing large-scale streaming tensors with
the Tucker decomposition was proposed by Malik and Becker [61]. It is the TensorSketch
algorithm that is based on sketching Kronecker products in the Tucker decomposition using
randomization techniques. This method is also addressed for updating factor matrices with
orthogonality constraints. The Tucker decomposition was also extended for processing
large-scale sparse tensors by Oh et al. [11] who proposed the P-TUCKER algorithm. It
performs alternating least squares (ALS) updates with a row-wise rule, which is a memory-
saving strategy for updating factor matrices and can be easily parallelized for multi-core
processing. The updated factors with ALS are then orthogonalized using the alternating
QR factorization. Another version of a scalable and incremental version of the Tucker
decomposition was proposed by Xiao et al. [49]. In their approach, the input tensor may
be dynamic and long in each mode. It is partitioned into timestamp-based small-scale
subtensors along each mode, and then the factor matrices are updated with the ALS-based
rule considering the factor matrices from previous timestamps and the auxiliary matrices
from the current timestamp. The modified Gram–Schmidt orthogonalization is then used
to impose the orthogonality constraints on the estimated factors. Other versions of the
online Tucker decomposition were also studied in the unpublished work [62]. There are
also statistical approaches to the online Tucker decomposition, e.g., Bayesian streaming
sparse Tucker decomposition [63] and online stochastic decompositions [64]. Recently,
Chachlakis et al. [65] proposed the dynamic L1-Tucker decomposition algorithm for
dynamic and outlier-resistant Tucker analysis of multi-way streaming data. Their approach
is also not addressed for NTD.

To the best of our knowledge, there is no incremental version of NTD. In this study,
we propose a new computational approach to NTD that is inspired by the online version of
NMF proposed in [48].

1.2. Preliminaries

Notations: tensors, matrices, vectors, and scalars are denoted by calligraphic uppercase
letters (e.g., Y), boldface uppercase letters (e.g., Y), lowercase boldface letters (e.g., y), and
non-bold letters (e.g., y), respectively. For a matrix Y , yi,j denotes the (i, j)-th element, and
yj or y

j
stand for the j-th column or row, respectively. The set of non-negative real numbers

is denoted by R+. The subtensor obtained from Y by selecting its t-th batch subtensor

across the N-th mode is denoted Y (t) ∈ RI1×...×IN−1×I(t)N
+ .

Let Y = [yi1,i2,...,iN ] ∈ RI1×I2×...×IN be the N-way array, which will be referred to as
the N-modal tensor.

Unfolding, also known as matricization, is the way of getting a matrix from a multi-
way array by reshaping the data. The mode-n matricization of Y , denoted by Y (n) ∈
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RIn×∏p 6=n Ip , rearranges mode-n fibers placing them as the columns of matrix Y (n). Tensor
entries (i1, i2, . . . , iN) are mapped to matrix’s entries (in, j), where

j = 1 +
N

∑
k=1
k 6=n

(ik − 1)jk with jk =
k−1

∏
m=1
m 6=n

Im (1)

Definition 1. Let {Y (1),Y (2), . . . ,Y (L)} be a set of N-way arrays, such as ∀l : Y (l)

∈ RI1×...×In−1×I(l)n ×In+1×...×IN , where l = 1, . . . , L. The concatenation of these multi-way arrays
along the n-th mode is expressed by:

Y = cat
{
Y (1),Y (2), . . . ,Y (L), n

}
∈ RI1×...×In−1×In×In+1×...×IN , (2)

where In = ∑L
l=1 I(l)n .

The standard model of the Tucker decomposition of Y has the form:

Y = G ×1 U(1) ×2 U(2) ×3 . . .×N U(N)

=
J1

∑
j1=1

J2

∑
j2=1
· · ·

JN

∑
jN=1

gj1,j2,...,jN u(1)
j1
◦ u(2)

j2
◦ . . . ◦ u(N)

jN
, (3)

where G = [gj1,j2,...,jN ] ∈ RJ1×J2×...×JN , for Jn ≤ In and n = 1, . . . , N, is the core tensor, and

U(n) = [u(n)
1 , . . . , u(n)

Jn
] = [uin ,jn ] ∈ RIn×Jn is the n-th factor matrix containing the features

across the n-th mode of Y . The symbols ×n and ◦ stand for the tensor-matrix product
along the n-th mode, and the outer product, respectively. Tensor G has the multi-linear
rank (J1, J2, . . . , JN), i.e., ∀n : rank(G(n)) = Jn, where G(n) is the unfolded version of G
along the n-th mode.

Nonnegative Tucker decomposition (NTD) is a special case of the Tucker decomposi-
tion where the nonnegativity constraints are imposed onto all the factor matrices and the
core tensor, i.e., ∀in, jn : uin ,jn ≥ 0, gj1,j2,...,jN ≥ 0 for n = 1, . . . , N.

To estimate the factors in NTD, the alternating optimization scheme is typically used,
where model (3) is unfolded along the n-th mode in each step. Thus:

Y (n) = U(n)G(n)

(
U(N) ⊗ . . .⊗U(n+1) ⊗U(n−1) ⊗ . . .⊗U(1)

)T
(4)

= U(n)G(n)
(
U⊗−n

)T ,

where U⊗−n ∈ R∏p 6=n Ip×∏p 6=n Jp
+ is a nonnegative matrix, and⊗ denotes the Kronecker prod-

uct.
Let D

(
Y (n)||

[
U(n)G(n)

(
U⊗−n

)T
])

be the objective function that expresses dissimilar-
ity between Y (n) and the unfolded version of the Tucker model. The optimization problem
for estimation of the n-th factor in NTD can be presented in the generative form as the
nonnegatively constrained nonlinear optimization problem:

U(n)
∗ = arg min

U (n)
Ψ
(

U(n), G(n)

)
, s.t. U(n) ≥ 0, n = 1, . . . , N, (5)

where

Ψ
(

U(n), G(n)

)
= D

(
Y (n)||

[
U(n)G(n)

(
U⊗−n

)T
])

. (6)
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Core tensor G can be easily estimated by vectorizing the model (3). Thus

G∗ = arg min
g

D
(
y||U⊗g

)
, s.t. g ≥ 0, (7)

where U⊗ = U(N) ⊗ . . . ⊗ U(1) ∈ R∏N
n=1 In×∏N

n=1 Jn
+ , y = vec(Y) ∈ R∏N

n=1 In
+ and g =

vec(G) ∈ R∏N
n=1 Jn

+ is vectorized core tensor G.
The problems (5) and (7) can be solved using various constrained optimization solvers.

In particular, when D(·||·) is expressed by the Euclidean distance, problems (5), and
(7) become the least-squares problems with nonnegativity constraints. The choice of
the Euclidean distance is also motivated by the assumption that the residual error has
a normal distribution, which is usually justified in practice. Assuming a wider class of
data distributions, the β-divergence seems to be the best choice since it combines many
well-known dissimilarity measures, including the generalized Kullback–Leibler divergence
and the Itakura–Saito distance [1]. However, the proposed methodology explicitly involves
the formulation of normal equations, which limits the profits of using other statistical
measures than the Euclidean distance.

2. Incremental Tucker Decomposition

The proposed incremental NTD (INTD) is based on the assumption that the observed
multi-way data can be expressed by a sequence of sub-tensors with respect to one mode—
usually the mode representing the time. The tensorial sequence can be regarded as one
long-tail tensor (with one long mode) or as a dynamic sequence that comes online and
needs to be processed sequentially. For both cases, the factor matrices and the core tensor
in the proposed INTD can be updated incrementally. This section presents the model and
the algorithmic issues for the proposed INTD.

2.1. Model

Without loss of generality, let us assume observed tensor Y ∈ RI1×I2×...×IN
+ can be

regarded as a sequence of N-way arrays concatenated along the N-th mode. Thus:

Y = cat
{
Y (1), . . . ,Y (t−1),Y (t), N

}
. (8)

Let Ỹ = cat
{
Y (1), . . . ,Y (t−1), N

}
∈ RI1×...×IN−1× ĨN

+ be the N-way array representing

the historical data, i.e., the multi-way arrays concatenated since the first tensor Y (1) until

the (t− 1)-th array. We assume that Y (t) ∈ RI1×...×IN−1×I(t)N
+ is the latest tensor which arrives

in the t-th time slot or the t-th subwindow. Following this assumption, model (8) takes
the form:

Y = cat
{
Ỹ ,Y (t), N

}
. (9)

For the data having the structure in (9), the INTD has the following form:

Y = G ×1 U(1) ×2 U(2) ×3 . . .×N

[
Ũ(N)

U(N)
t

]
, (10)

where Ũ(N) ∈ R ĨN×JN
+ is the factor containing the past features of Y along the N-th mode,

and U(N)
t ∈ RI(t)N ×JN

+ contains the current features that are valid in the t-th time slot.
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According to the unfolding rule in (1) and using (4), we have:

∀n < N : Y (n) =
[
Ỹ (n), Y (t)

(n)

]
= U(n)G(n)

([
Ũ(N)

U(N)
t

]
⊗U(N−1)

⊗ . . .⊗U(n+1) ⊗U(n−1) ⊗ . . .⊗U(1)
)T

, (11)

∀n = N : Y (N) =

[
Ỹ (N)

Y (t)
(N)

]
=

[
Ũ(N)

U(N)
t

]
G(N)

(
U(N−1) ⊗ . . .⊗U(1)

)T
. (12)

Formula (11) implies that the current sample Y (t) after unfolding with respect to the
n-th mode (n < N) is located as the last I(t)N columns in Y (n), whereas this sample after

unfolding with respect to the N-th mode is located as the last I(t)N rows of Y (n) according
to (12).

2.2. Recursive Algorithm

In NTD, factor matrices U(n) for n < N can be easily estimated from the strongly
over-determined system of linear equations in (4). Assuming that the objective function
in (5) is expressed by the Euclidean distance, system (4) can be transformed to the normal
equations as follows:

∀n : Y (n)U
⊗−n GT

(n) = U(n)G(n)U
⊗−nTU⊗−n GT

(n). (13)

Let Pn = Y (n)U
⊗−n GT

(n) ∈ RIn×Jn
+ and Qn = G(n)U

⊗−nTU⊗−n GT
(n) ∈ RJn×Jn . Insert-

ing (11) into (13), we have for the t-th sample:

P(t)
n =

[
Ỹ (n), Y (t)

(n)

]([ Ũ(N)

U(N)
t

]
⊗ . . .⊗U(n+1) ⊗U(n−1) ⊗ . . .⊗U(1)

)
GT

(n)

=
[
Ỹ (n), Y (t)

(n)

][ Ũ(N) ⊗ . . .⊗U(n+1) ⊗U(n−1) ⊗ . . .⊗U(1)

U(N)
t ⊗ . . .⊗U(n+1) ⊗U(n−1) ⊗ . . .⊗U(1)

]
GT

(n)

= Ỹ (n)

(
Ũ(N) ⊗ . . .⊗U(n+1) ⊗U(n−1) ⊗ . . .⊗U(1)

)
GT

(n)

+ Y (t)
(n)

(
U(N)

t ⊗ . . .⊗U(n+1) ⊗U(n−1) ⊗ . . .⊗U(1)
)

GT
(n)

= Ỹ (n)

[
G ×1 U(1) ×2 . . .×n−1 U(n−1) ×n+1 U(n+1) ×n+2 . . .×N Ũ(N)

]T

(n)
(14)

+ Y (t)
(n)

[
G ×1 U(1) ×2 . . .×n−1 U(n−1) ×n+1 U(n+1) ×n+2 . . .×N U(N)

t

]T

(n)

=
〈
Ỹ ,G ×m 6={n,N}

{
U(m)

}
×N Ũ(N)

〉
−n

+
〈
Y (t),G ×m 6={n,N}

{
U(m)

}
×N U(N)

t

〉
−n

= P(t−1)
n + ∆P(t)

n ,

where

P(t−1)
n =

〈
Ỹ ,G ×m 6={n,N}

{
U(m)

}
×N Ũ(N)

〉
−n
∈ RIn×Jn

+ , (15)
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and

∆P(t)
n =

〈
Y (t),G ×m 6={n,N}

{
U(m)

}
×N U(N)

t

〉
−n
∈ RIn×Jn

+ . (16)

The sign < ·, · >−n stands for the inner product (Let A = [ai1,...,iN ] ∈ RI1×...×IN and
B = [bi1,...,iN ] ∈ RI1×...×IN . The inner product of A and B along all but the n-th mode is

defined as C =< A,B >−n= ∑I1
i1=1 · · ·∑

In−1
in−1=1 ∑

In+1
in+1=1 · · ·∑

IN
iN=1 ai1,...,iN bi1,...,iN ∈ RIn×In .)

of tensors along all, but the n-th mode. Note that Formula (14) can be regarded as an
iterative update rule with respect to the step t.

Since U(N)TU(N) =
[
Ũ(N)T , U(N)T

t

][ Ũ(N)

U(N)
t

]
= Ũ(N)TŨ(N)

+ U(N)T
t U(N)

t , matrix

Qn for the t-sample can be expressed in a similar manner:

Q(t)
n = G(n)U

⊗−nTU⊗−n GT
(n) = G(n)

(
U(N)TU(N) ⊗U⊗−{n,N}TU⊗−{n,N}

)
GT

(n)

= G(n)

(
Ũ(N)TŨ(N) ⊗U⊗−{n,N}TU⊗−{n,N}

)
GT

(n)

+ G(n)

(
U(N)T

t U(N)
t ⊗U⊗−{n,N}TU⊗−{n,N}

)
GT

(n) (17)

=
〈
G ×m 6={n,N}

{
U(m)

}
×N Ũ(N),G ×m 6={n,N}

{
U(m)

}
×N Ũ(N)

〉
−n

+
〈
G ×m 6={n,N}

{
U(m)

}
×N U(N)

t ,G ×m 6={n,N}

{
U(m)

}
×N U(N)

t

〉
−n

= Q(t−1)
n + ∆Q(t)

n ,

where U⊗−{n,N} = U(N−1) ⊗ . . .⊗U(n+1) ⊗U(n−1) ⊗ . . .⊗U(1),

Q(t−1)
n =

〈
G ×m 6={n,N}

{
U(m)

}
×N Ũ(N),G ×m 6={n,N}

{
U(m)

}
×N Ũ(N)

〉
−n

∈ RJn×Jn
+ , (18)

and

∆Q(t)
n =

〈
G ×m 6={n,N}

{
U(m)

}
×N U(N)

t ,G ×m 6={n,N}

{
U(m)

}
×N U(N)

t

〉
−n

∈ RJn×Jn
+ . (19)

Since matrix Q(t)
n is square and symmetric, i.e., Q(t)

n = Q(t)T
n , factor U(n) can be

updated for ∀n < N by solving the following equation:

P(t)T
n = Q(t)

n U(n)T . (20)

To estimate factor matrix U(N)
t , the system of linear equations in (12) is used. Note that

YT
(N) =

[
ỸT
(N), Y (t)T

(N)

]
= ZN

[
Ũ(N)T , U(N)T

t

]
, (21)

where ZN =
(

U(N−1) ⊗ . . .⊗U(1)
)

GT
(N). Hence:

ỸT
(N) = ZNŨ(N)T , (22)

and

Y (t)T
(N)

= ZNU(N)T
t . (23)
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Transforming system (23) to the normal equations, we have: ZT
NY (t)T

(N)
= ZT

N ZNU(N)T
t .

Following the similar calculations as in (14) and (17), we obtain:

P(t)
N = Y (t)

(N)
ZN = Y (t)

(N)

(
U(N−1) ⊗ . . .⊗U(1)

)
GT

(N)

=
〈
Y (t),G ×m 6={N}

{
U(m)

}〉
−N
∈ RI(t)N ×JN

+ (24)

Q(t)
N = ZT

N ZN = G(N)

(
U(N−1)TU(N−1) ⊗ . . .⊗U(1)TU(1)

)
GT

(N)

=
〈
G ×m 6={N}

{
U(m)

}
,G ×m 6={N}

{
U(m)

}〉
−N
∈ RJN×JN

+ . (25)

Matrix U(N)
t can be readily estimated from the system:

Q(t)
N U(N)T

t = P(t)T
N , (26)

using any nonnegatively constrained linear least-squares solver.
Applying the concept of the Gauss–Seidel method for least-squares problems, factors

{U(n)} can be updated with the following block-coordinate descent update rule:

∀n, t : u(n)
jn ←

u(n)
jn +

p(n,t)
jn −U(n)q(n,t)

jn

q(n,t)
jn jn


+

, for jn = 1, . . . , Jn, (27)

where q(n,t)
jn jn is the jn-th diagonal entry of Q(t)

n , and u(n)
jn , p(n,t)

jn , and q(n,t)
jn are the jn-th

columns of U(n), P(t)
n , and Q(t)

n , respectively.
Since ZN is common in both systems (22) and (23), then Q(t)

N = Q(t−1)
N , and

P(t−1)
N = Ỹ (N)ZN =

〈
Ỹ ,G ×m 6={N}

{
U(m)

}〉
−N
∈ RIN×JN

+ . (28)

Following the similar strategy to estimate tensor G, we have:

Y (t) ×m

{
U(m)T

}
= G ×m

{
U(m)TU(m)

}
, (29)

which can be equivalently rewritten in the vectorized form:

vec
{
Y (t) ×m

{
U(m)T

}}
=
(

U(m)TU(m)
)⊗

g, (30)

where g = vec{G} ∈ R∏p Jp
+ . Vector g, estimated from (30) using any NNLS solver, is then

tensorized to G.
Due to the scaling ambiguity, the columns in factors must be scaled to the unit norm,

i.e., l1-norm. For n < N, the scaling was performed by mapping: ∀n < N : U(n) ←
U(n)diag

{
||u(n)

j ||
−1
1

}
, where u(n)

j is the j-th column of U(n). For n = N, the updated block

is U(N)
t , and we assume that block Ũ(N) has been already normalized. Hence, we have the

mapping: U(N)
t ← U(N)

t diag
{(

1 + ||u(N)
j,t ||1

)−1
}

, where u(N)
j,t is the j-th column of U(N)

t .

The samples {Y (t)} can be proceeded sequentially for t = 1, 2, . . ., however, this
process must be initialized by performing a batch decomposition on a small initial sample
Ỹ using any NTF algorithm. Having the objects {G, U(1), . . . , Ũ(n)} estimated from Ỹ , the
matrices P(0)

N , Q(0)
N , P(0)

n , and Q(0)
n are computed using (28), (25), (15), and (18) for t = 1,
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respectively. The recursive incremental NTD (RI-NTD) algorithm for updating objects
{G, U(1), . . . , U(n)

t } given {Y (t)} for t = 1, 2, . . . is expressed by Algorithm 1.

Algorithm 1: RI-NTD

Input :Y (t) ∈ RI1×...×I(t)N
+ – input t-th sample of N-way array,

{G, U(1), . . . , Ũ(N), P(t−1)
1 , . . . , P(t−1)

N , Q(t−1)
1 , . . . , Q(t−1)

N } – set of input
objects
Output :G ∈ RJ1×...×JN

+ – core tensor, {U(n)} – set of factors, {P(t)
n }, {Q

(t)
n }

1 for n = N, N − 1, . . . , 1 do
2 if n = N then
3 Compute U(N)

t from (26) with any NNLS solver given P(t−1)
N and Q(t−1)

(N)
;

4 Scale U(N)
t ← U(N)

t diag
{(

1 + ||u(N)
j,t ||1

)−1
}

// Scaling to unit

l1-norm columns

5 Z = Y (t) ×N U(N)T
t , Q = U(N)T

t U(N)
t ;

6 else
7 Compute Zn = G ×m 6={n,N}

{
U(m)

}
×N U(N)

t ;

8 Compute ∆P(t)
n =

〈
Y (t),Zn

〉
−n

;

9 Compute ∆Q(t)
n = 〈Zn,Zn〉−n;

10 Compute P(t)
n = P(t−1)

n + ∆P(t)
n and Q(t)

n = Q(t−1)
n + ∆Q(t)

n ;
11 Compute U(n) using rule (27);

12 Scale U(n) ← U(n)diag
{
||u(n)

j ||
−1
1

}
// Scaling to unit l1-norm

columns
13 Z ← Z ×n U(n)T , Q← Q⊗U(n)TU(n);

14 Compute g = NNLS(Q, vec(Z));
15 G = tensorization(g);

Remark 1. The computational complexity of computing tensor Zn = G ×m 6={n,N}

{
U(m)

}
×N

U(N)
t amounts to

O

 ∑
m 6={n,N}

Jm

m

∏
p 6=n

Ip

N

∏
s=m

Js + I(t)N Jn JN ∏
p 6={n,N}

Ip

. (31)

To compute (16) and (19), we need O(I(t)N In ∏N−1
p=1 Ip) and O(I(t)N Jn ∏N−1

p=1 Ip), respectively.
The update rule in (27) requires O(Kinner In J2

n), where Kinner is the number of inner iterations run
on this rule, and this cost is negligible if Kinner is relatively small, i.e., Kinner << ∏N−1

p=1 Ip. The

computation of (24) and (25) involves O(I(t)N JN ∏N−1
p=1 Ip) and O(J2

n ∏N−1
p=1 Ip), respectively. The

computation of G is the most computationally involving when computing the left-hand side in (29),
and it can be approximated byO

(
∑N

n=1 ∏n
p=1 Ip ∏N

s=n Js

)
. Assuming ∀n : Jn < In, all these costs

can be upper-bounded by the term:

O
(

α + βI(t)N

N−1

∏
p=1

Ip

)
, (32)

where α and β are some constants that are not dependent on I(t)N .
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Remark 2. Following the similar analysis as in Remark 1 for the full batch NTD, and assuming
the same rules for updating {U(n)} and G, its computational complexity can be upper-bounded by
O
(

Kα + βKIN ∏N−1
p=1 Ip

)
, where K is the number of alternating steps.

Assuming the batch data are divided into L equal size multi-way samples, i.e., IN = LI(t)N ,
an overall computational complexity of processing L samples with Algorithm 1 amounts to
O
(

Lα + βIN ∏N−1
p=1 Ip

)
. Since α < βI(t)N ∏N−1

p=1 Ip, it is thus obvious that the full batch NTD has
a higher computational complexity than Algorithm 1 if K > 1.

2.3. Block Kaczmarz Algorithm

Model (11) for n < N can be equivalently expressed in the transposed form:

YT
(n) =

[
ỸT
(n)

Y (t)T
(n)

]
=

([
Ũ(N)

U(N)
t

]
⊗U⊗−{n,N}

)
GT

(n)U
(n)T

=

 (
Ũ(N) ⊗U⊗−{n,N}

)
GT

(n)(
U(N)

t ⊗U⊗−{n,N}
)

G(n)

U(n)T =

[
Z̃(n)

Z(n)
t

]
U(n)T , (33)

where

Z̃(n)
=
(

Ũ(N) ⊗U⊗−{n,N}
)

GT
(n) ∈ R∏p 6={n,N} Ip ĨN×Jn

+ , (34)

and

Z(n)
t =

(
U(N)

t ⊗U⊗−{n,N}
)

GT
(n) ∈ R∏p 6={n,N} Ip I(t)N ×Jn

+ . (35)

Matrix Z(n) =

[
Z̃(n)

Z(n)
t

]
has a block-structure. Assuming that rank(Z̃(n)

) = Jn and

rank(Z(n)
t ) = Jn, the k-th iterative update of matrix U(n)T for k = 0, 1, . . . can be obtained

using the block Kaczmarz method with nonnegativity constraints:

U(n)
k+1 =

[
U(n)

k +
(

Y (t)
(n) −U(n)

k Z(n)T
t

)(
Z(n)T

t

)†
]
+

, (36)

where
(

Z(n)T
t

)†
= Z(n)

t (Z(n)T
t Z(n)

t )−1 is the pseudo-inverse of Z(n)T
t .

Matrix U(N)
t can be estimated from (23) using the same computational approach

as presented in Section 2.2. Similarly, tensor G can be directly obtained from (30). The
block Kaczmarz NTD (BK-NTD) for updating objects {G, U(1), . . . , U(n)

t } for t = 1, 2, . . . is
presented by Algorithm 2, which additionally has the inner iterations.

Sweeping over the blocks across the N-th mode, the convergence rate of rule (36) can
be analyzed using the concept of row paving in [50].

Lemma 1. Let (m, α, β) be the row paving of

Z(n)
f =

[
Z̃(n)T

0 , Z(n)T
t1

, Z(n)T
t2

, . . . , Z(n)T
tm

]T

that is composed from all the block matrices {Z(n)
t } for t ∈ {t1, t2, . . . , tm}, where m denotes the

number of blocks across the N-th mode. Let α ≤ λmin(Z(n)
t Z(n)T

t ) and λmax(Z(n)
t Z(n)T

t ) ≤ β
determine the respective the lower- and upper bound of the row paving. The λmin(·) and λmax(·)
refer to the minimal and maximal eigenvalue, respectively.
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Algorithm 2: BK-NTD

Input :Y (t) ∈ RI1×...×I(t)N
+ – input t-th sample of N-way array,

{G, U(1), . . . , Ũ(N)} – set of input objects, Ki – number of inner iterations
Output :G ∈ RJ1×...×JN

+ – core tensor, {U(n)} – set of factors

1 for k = 1, 2, . . . , Ki do
2 for n = N, N − 1, . . . , 1 do
3 if n = N then
4 Compute ZN =

(
U(N−1) ⊗ . . .⊗U(1)

)
GT

(N);

5 Compute U(N)
t from (23) with any NNLS solver;

6 Scale U(N)
t ← U(N)

t diag
{(

1 + ||u(N)
j,t ||1

)−1
}

// Scaling to unit

l1-norm columns

7 Z = Y (t) ×N U(N)T
t , Q = U(N)T

t U(N)
t ;

8 else
9 Compute Z(n)

t using (35);
10 Update U(n) with rule (36), // block Kaczmarz update rule

11 Scale U(n) ← U(n)diag
{
||u(n)

j ||
−1
1

}
// Scaling to unit l1-norm

columns
12 Z ← Z ×n U(n)T , Q← Q⊗U(n)TU(n);

13 Compute g = NNLS(Q, vec(Z));
14 G = tensorization(g);

Assuming in each iterative step k, a new block for tk is selected, and rank(Z(n)
f ) = J, the

sequence {U(n)
k } generated by (36) for any initial guess U(n)

0 satisfies the inequality:

E
{
||U(n)

k+1 −U(n)
∗ ||2F

}
≤

1−
λ2

min(Z(n)
f )

βm

k

||U(n)
0 −U(n)

∗ ||2F +
β||R||2F

αλ2
min(Z(n)

f )
, (37)

where U(n)
∗ is the unique least-squares solution to the problem minU (n) ||Y (n) −U(n)Z(n)T

f ||F,

and R = Y (n) −U(n)
∗ Z(n)T

f is the residual matrix.

The proof of Lemma 1 can be easily obtained considering the result given in [50].
Lemma 1 shows that the convergence rate of rule (36) is linear.

Remark 3. The computational complexity for updating matrix U(n)
t in Algorithm 2 is the same as

in Algorithm 1, i.e., upper-bounded by O(I(t)N In ∏N−1
p=1 Ip). The computation of Z(n)

t in (35) needs

O
(

I(t)N Jp ∏p 6={n,N} Ip Jp

)
. The update rule in (36) can be upper-bounded by O

(
I(t)N Jn ∏N−1

p=1 Ip

)
.

Finally, the overall computational complexity of Algorithm 2 can be modeled by the term in (32).
Obviously, this complexity increases linearly with the number of inner iterations.

Remark 4. The output arrays obtained from both algorithms (RI-NTD and BK-NTD) can be con-
catenated along the t-th mode. Thus we have: ∀n < N : U (n) = cat

{
U(n)

1 , U(n)
2 , . . . , U(n)

T , 3
}
∈

RIn×Jn×T
+ , where U(n)

t is the n-th factor matrix obtained by the selected algorithm for the t-th
sample, i.e., Y (t) for t = 1, 2, . . . , T. Similarly, Ḡ = cat{G1,G2, . . . ,GT , N + 1} ∈ RI1×...×IN×T

+ .
Note that U (n) and Ḡ contain the time-varying or dynamic features, assuming t represents the time.
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Thus, the corresponding model will be referred to as the dynamic Tucker decomposition model, which
has the following form with respect to the n-th mode:

Y (t) = Gt ×1 U(1)
t ×2 . . .×N−1 U(N−1)

t ×N U(N)
t , (38)

where ∀n < N : U(n)
t ∈ RIn×Jn

+ and U(N)
t ∈ RI(t)N ×Jn

+ .

3. Numerical Simulations

The proposed algorithms were extensively tested using various benchmarks of syn-
thetic data and observation scenarios.

3.1. Setup

The following benchmarks were used in the experiments:

• Benchmark I: the observed dataset Y ∈ RI1×I2×I3
+ was created according to model (3).

Factor matrices U(n) = [uin ,jn ] ∈ RIn×Jn
+ for n = 1, 2, 3 were generated using the zero-

mean normal distribution, where ∀n, in, jn : uin ,jn = max{0, ûin ,jn} and ûin ,jn ∼ N (0, 1).
Thus, such factors have the sparsity of 50%.

• Benchmark II: the observed dataset Y ∈ RI1×I2×I3
+ was also created using model (3).

Factor matrices U(1) and U(2) were generated similarly as in Benchmark I. Each
column in factor U(3) expresses the periodic Gaussian pulse train obtained by a
repetition of Gaussian-modulated sinusoidal pulse, circularly shifted with a randomly
selected time lag. The negative entries are replaced with a zero-value. One waveform
of such a signal is plotted in Figure 1a. The frequency and the phase of the sinusoid
signal was set individually for each component/column. Assuming U(3) represents
source signals, the fibers in Y along the third mode can be regarded as mixed signals
with a multi-linear mixing operator.

• Benchmark III: the observed dataset Y ∈ RI1×I2×I3
+ was created according to the

dynamic NTD model in (38). For the whole set of temporal samples (t = 1, . . . , T),
factors U(1)

t and U(2)
t take the form of three-way arrays U (1) ∈ RI1×J1×T

+ and U (2) ∈
RI2×J2×T
+ that contain J1 and J2 components, respectively. Each component is ob-

tained by a linear interpolation of a pair of the spectral signals taken from the file
AC10_art_spectr_noi in Matlab toolbox NMFLAB for Signal Processing [66]. Hence, I1
and I2 refer to spectral resolutions, while T denotes the number of time slots within the
interpolated window. The example of one such component is illustrated in Figure 1b
in the form of a 3D plot. Assuming the components in U (1) and U (2) are time-varying
spectral signals, model (38) can be used to represent a time-varying multi-linear
mixing process.
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Figure 1. Original signals: (a) 500 samples of 5 source signals used to generate U(3) in Test B, (b) one
exemplary time-varying component from U(1) used to generate the observed data in Test C.
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The proposed algorithms: BK-NTD (Algorithm 2) and RI-NTD (Algorithm 1) were
compared with the HALS-NTD [67], which is regarded in the literature as one of the most
efficient algorithms for NTD. The maximum number of iterations in the HALS-NTD was
set to 100 and the tolerance for early termination was equal to 10−5. In the incremental
versions of NTD, we set Ĩ3 = 100 (the number of samples in an initial block) and I(t)n = 100
(the number of samples in a regular block). The number of inner iterations in BK-NTD was
set to 5, i.e., Ki = 5. The maximum number of iterations in the NNLS algorithm both for
BK-NTD as well as for RI-NTD was set to 300.

The BK-NTD and RI-NTD were implemented in MATLAB 2016b, and the HALS-NTD
was taken from the Matlab toolbox TENSORBOX (https://faculty.skoltech.ru/people/
anhhuyphan (accessed on 1 August 2018). All of the algorithms were run on a machine
supplied with a 4-core Intel Core i7 CPU, 64 GB RAM, and an SSD drive.

To analyze the susceptibility of the algorithms to noisy perturbations, the synthetic
data were perturbed with an additive zero-mean Gaussian noiseN (0, σ2) with the variance
σ2 selected to satisfy a given level of signal-to-noise ratio (SNR).

The following tests were performed using the above mentioned benchmarks:

• Test A: Benchmark A was used in this test with settings: I1 = I2 = 100 and J1 = J2 =

J3 = 10 in all the observed scenarios. The test was carried out for I3 ∈ {103, 104, 105}.
No noisy perturbations were used in this test.

• Test B: Benchmark A was used in this test with settings: I1 = I2 = 100, I3 = 104,
and J1 = J2 = J3 = 10 in all the observed scenarios. The synthetically generated
data were additively perturbed with the zero-mean Gaussian noise with SNR ∈
{30, 20, 10, 0} [dB]. Note that the noise with SNR = 0 [dB] is very strong – the power
of noise is equal to the power of the true signal.

• Test C: Benchmark B was used in this test with settings: I1 = I2 = 50 and J1 = J2 =

J3 = 5, and I3 ∈ {103, 104, 105}. No noisy perturbations were used in this test.
• Test D: Benchmark B was used in this test with settings: I1 = I2 = 50, I3 = 104,

and J1 = J2 = J3 = 5 in all the observed scenarios. The synthetically generated
data were additively perturbed with the zero-mean Gaussian noise with SNR ∈
{30, 20, 10, 0} [dB].

• Test E: Benchmark C was used in this test with settings: I1 = I2 = 200 and J1 = J2 =

J3 = 3, and I3 ∈ {103, 5× 103, 104, 5× 104, 105}. Noise-free and noisy data with
SNR = 10 [dB] were tested.
The algorithms were quantitatively evaluated in terms of the signal-to-interference
ratio (SIR) measure [1], elapsed time (ET) of running (in seconds), and normalized

residual error: r =
||Y − G ×1 U(1) ×2 . . .×N U(N)||2F

||Y||F
. Moreover, the selected esti-

mated signals were also illustrated in the form of 2D plots.
Since the optimization problem in the NTD model is non-convex and, hence, sensitive
to initialization, we performed the Monte Carlo (MC) analysis with 10 runs. In each
run, a new sample of dataset and a new initializer were randomly selected.

3.2. Results

Figure 2 presents the results obtained in Test A. The averaged SIR performance versus
the length of the analyzed tensor with respect to the last mode (the third one) is illustrated
in Figure 2a in the form of a bar plot. The standard deviation in the MC runs is marked
with the whiskers. The averaged ET in Test A is illustrated in Figure 2b.

The results obtained in Test B are depicted in Figure 3. In this test, we demonstrate
how the tested algorithms are prone to noisy perturbations. The averaged SIR performance
and the normalized residual error versus the power of noisy disturbances are illustrated in
Figure 3a,b, respectively. Figure 4a,b present the averaged SIR values and the ET versus the
number of observed samples (I3) in Test C, respectively. Figure 5a illustrates the averaged
SIR performance versus the SNR values. The corresponding normalized residual errors are
depicted in Figure 5b.

https://faculty.skoltech.ru/people/anhhuyphan
https://faculty.skoltech.ru/people/anhhuyphan
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Figure 2. Results obtained in Test A: (a) SIR performance versus the number of entries along the third
mode (IN), (b) elapsed time versus the number of entries along the third mode (IN).

Figures 6 and 7 show the results obtained in Test E in which only BK-NTD was used,
but in the online version expressed by model (38). In this case, the SIR was computed for
U(3) and the last samples in U(1) and U(2) since the temporal resolution decreases with
respect to the original factors (due to sequential batch processing). The SIR performance
versus the number of entries along the third mode is illustrated in Figure 6a for noise-free
and noisy data. The corresponding averaged ET values are presented in Figure 6b.
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Figure 3. Results obtained in Test B: (a) SIR performance versus SNR values, (b) normalized residual
error versus SNR values.
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Figure 4. Results obtained in Test C: (a) SIR performance versus the number of entries along the third
mode (IN), (b) elapsed time versus the number of entries along the third mode (IN).
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Figure 5. Results obtained in Test D: (a) SIR performance versus SNR values, (b) normalized residual
error versus SNR values.
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Figure 6. Results obtained in Test E (only BK-NTD algorithm): (a) SIR performance versus the
number of entries along the third mode (IN), (b) elapsed time versus the number of entries along the
third mode (IN).

The original and estimated spectral signals that are represented by factors U(1) and
U(2) are displayed in Figure 7 in the form of 2D plots with scaled colors. Note that u(1)

3 (t)
in Figure 7a presents the same signal as shown in Figure 1b, but in a more compact and
informative way, especially for subjective evaluation of time-varying peak profiles.

3.3. Discussion

The results demonstrate multiple advantages of the proposed incremental versions
of NTD. First, these methods are much faster than batch processing, especially when the
observed data contain large numbers of samples. Figures 2b and 4b show that BK-NTD
is at least 10 times faster than HALS-NTD, and RI-NTD is about 10 times faster than
BK-NTD. The computational complexities of the proposed methods increase linearly with
IN , and the experimental results confirm the theoretical analyses in Remarks 1, 2, and 3.
Second, the high speed of processing is neither obtained due to a decrease in the quality
of model fitting nor the SIR performance. On the contrary, BK-NTD and RI-NTD in Tests
A and B (Figures 2 and 3) have considerably higher SIR performance than HALS-NTD if
SNR ≥ 10 [dB], at a significantly lower level of the residual error. For a very strong noise
(SNR = 0 [dB]) all algorithms have a similar SIR performance, but HALS-NTD reaches a
lower residual error.
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Figure 7. Results obtained in Test E (only BK-NTD algorithm) presented in the form of 2D color images
(90 degrees viewpoint): (a) original spectral signals used to generate factors U (1) ∈ R200×3×10000

+

and U (2) ∈ R200×3×10000
+ , (b) estimated spectral signals obtained from factors U (1) ∈ R200×3×100

+ and
U (2) ∈ R200×3×100

+ with the following SIR values for the subsequent components from U (1): 19.33,
23.21, 27.35 [dB], and 25.34, 39.42, 27.54 [dB] for U (2) (I3 = 104 and noise-free data).

Benchmark II is more difficult for the proposed algorithms than Benchmark I. However,
BK-NTD considerably outperforms HALS-NTD for noise-free data with IN = 104, as
demonstrated in Test C. For other test cases (in Test C and D), there is no significant
difference in the SIR performance between BK-NTD and HALS-NTD. RI-NTD yields
the factors of a similar quality as the other algorithms, but only for strongly noisy data
(SNR ≤ 10 [dB]). Comparing RI-NTD with BK-NTD, we observed that the former is much
faster, but has a better SIR performance only for very noisy data from Benchmark II.

The next advantage of the proposed algorithms is that they can process nearly an
infinitely long sequence of multi-way samples, which is intractable for batch NTD algo-
rithms, e.g., such as HALS-NTD. We were unable to run HALS-NTD when I3 = 105 due
to the limit of RAM memory (we used 64 GB RAM), while the limit for the incremental
versions of NTD restricts mostly to processing time in practice. Due to the incremental
processing of multi-way data, factors U(1) and U(2) can capture a dynamic characteristics
of the underlying processes. In other words, the factors can vary with time or along with
the mode representing the samples. The results obtained in Test E confirmed that BK-
NTD demonstrates a high efficiency in recovering dynamic factors U(1) and U(2), even for
strongly noisy data. As shown in Figure 6a, the difference in the SIR performance between
the noise-free and noisy data with SNR = 10 [dB] is statistically not significant. The quality
of estimation depends on the length of an input sequence but the SIR performance weakly
changes if the sequences are not shorter than 104 samples (see Figure 6a). The quality of
the estimated factors can also be confirmed by the results shown in Figure 7. Similarly as
in Tests A and B, the time complexity is linear in terms of the number of samples, which is
confirmed by the results plotted in Figure 6b.

4. Conclusions

In this study, we proposed new computational algorithms for an incremental version
of the NTD model. One of them is based on the concept of row-action projections with
the block Kaczmarz method, and the other uses the recursive nonnegative least-squares
updates. The algorithms were applied both for performing the NTD of a long sequence of
multi-way samples as well as for extracting time-varying multi-linear features. All of the
proposed solutions were validated experimentally with respect to multiple benchmarks
and criteria, including the quality of estimated factors and the runtime. The numerical
results demonstrated that both algorithms are at least ten times faster than the batch version
of NTD (HALS-NTD), keeping at least the same quality of estimated factors. In a few test
cases, the block Kaczmarz algorithm considerably outperforms the baseline version of
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NTF with respect to the quality of the estimated factors and the residual error, even for
moderately noisy data. The block Kaczmarz method also demonstrated a high efficiency
in processing a dynamic NTD model with all of the time-varying estimated factors. This
approach can find a number of potential applications, e.g., for solving a blind source
separation problem with a time-varying mixing operator or for a spectral signal unmixing
problem with dynamic endmember spectra.

To summarize, we proposed efficient computational approaches for incremental pro-
cessing of a long sequence of multi-way samples with the NTD model and for estimating
time-varying features in the dynamic NTD model. The efficiency is confirmed with mul-
tiple experimental results. Obviously, the proposed methodology can be extended in the
future, e.g., to tackle partially orthogonal time-varying features or as an extension to other
tensor decomposition models, such as tensor networks.
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