
����������
�������

Citation: Zhang, M.; Li, Z.; Zhang, P.;

Zhang, Y.; Luo, X. A Novel

High-Capacity Behavioral

Steganographic Method Combining

Timestamp Modulation and Carrier

Selection Based on Social Networks.

Symmetry 2022, 14, 111. https://

doi.org/10.3390/sym14010111

Academic Editor: Fengyong Li

Received: 8 December 2021

Accepted: 5 January 2022

Published: 8 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

A Novel High-Capacity Behavioral Steganographic Method
Combining Timestamp Modulation and Carrier Selection Based
on Social Networks
Mingliang Zhang 1,2,3 , Zhenyu Li 1,2,3,*, Pei Zhang 1,2,3 , Yi Zhang 1,2,3 and Xiangyang Luo 1,2,3

1 Zhengzhou Institute of Information Science and Technology, Zhengzhou 450001, China;
zmlmail2021@163.com (M.Z.); peizhang0810@163.com (P.Z.); tzyy4001@sina.com (Y.Z.);
luoxy_ieu@sina.com (X.L.)

2 State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450001, China
3 Henan Province Key Laboratory of Cyberspace Situation Awareness, Zhengzhou 450001, China
* Correspondence: zheenyuli@gmail.com

Abstract: Behavioral steganography is a method used to achieve covert communication based on the
sender’s behaviors. It has attracted a great deal of attention due to its robustness and wide application
scenarios. Current behavioral steganographic methods are still difficult to apply in practice because
of their limited embedding capacity. To this end, this paper proposes a novel high-capacity behavioral
steganographic method combining timestamp modulation and carrier selection based on social
networks. It is a steganographic method where the embedding process and the extraction process
are symmetric. When sending a secret message, the method first maps the secret message to a set
of high-frequency keywords and divides them into keyword subsets. Then, the posts containing
the keyword subsets are retrieved on social networks. Next, the positions of the keywords in the
posts are modulated as the timestamps. Finally, the stego behaviors applied to the retrieved posts are
generated. This method does not modify the content of the carrier, which ensures the naturalness of
the posts. Compared with typical behavioral steganographic methods, the embedding capacity of
the proposed method is 29.23∼51.47 times higher than that of others. Compared to generative text
steganography, the embedding capacity is improved by 16.26∼23.94%.

Keywords: data hiding; behavioral steganography; post selection; social networks; covert communication

1. Introduction

Steganography [1] is a technique for sending secret messages without being perceived
by others. The embedding process is generally symmetric with the extracting process. The
sender uses the key to hide the secret message in the carrier, then the receiver uses the
key to obtain the secret message from the carrier. Social networks are ideal carriers for
steganography because of the wide geographical distribution of users, rich usage scenarios,
and large data volumes involved. It is worth noting that covert communication in social
networks is also carried out in a symmetric way. This allows the sender and receiver
to achieve covert communication without establishing a peer-to-peer channel, and the
communication behaviors are difficult for a third party to notice in particular. This ensures
the concealment of the communication and the security of both the sender and the receiver.
The study of the use of steganographic methods in social networks has important theoretical
and practical value. It has attracted widespread attention from scholars in this field.

The carriers of steganographic methods based on social networks include image, text,
audio, video, behavior, etc. Steganography can be grouped into carrier selection, carrier
modification, and carrier synthesis (generation) according to different embedding princi-
ples [2]. Steganography based on social network carrier selection includes image selection
steganography [3,4], text selection steganography [5,6], and video selection steganogra-
phy [7,8]. When sending secret message, this type of method is used for finding a carrier

Symmetry 2022, 14, 111. https://doi.org/10.3390/sym14010111 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14010111
https://doi.org/10.3390/sym14010111
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-7569-7602
https://orcid.org/0000-0002-1590-7030
https://doi.org/10.3390/sym14010111
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14010111?type=check_update&version=2

Symmetry 2022, 14, 111 2 of 18

that conforms to the secret message through the constructed carrier database [9]. It does
not modify the carrier data and can effectively resist attacks of steganalysis, but its low
embedding capacity is still a challenge. The steganographic methods used for carrier
modification based on social networks consist of image modification steganography [10,11],
text modification steganography [12], audio modification steganography [13], and video
modification steganography. They make use of the covert features of human organs and the
redundant features of digital carriers to embed a secret message into the carriers by slightly
modifying the social network carriers [14]. These methods are characterized by a high
embedding capacity, robustness, and anti-detection performance. With the development
of machine learning, however, the steganographic methods used for carrier modification
may face new threats [15–18]. Social network-based generative carrier steganography
methods are grouped into generative image steganography [19], generative text steganogra-
phy [20,21], generative audio steganography [22], etc. Early generative methods conformed
to statistical features, but the limitations of algorithms and computational power lead to
content that does not conform to common sense and can be easily recognized [23]. With the
development of artificial neural networks (ANN) and the increase in computing power, the
statistical features and contents of the generated stego are more natural and their quality
has been significantly improved. However, Yang et al. recently pointed out that the better
the quality of the stego generated, the lower the concealment may be [21]. This has caused
some experts and scholars to worry.

In recent years, social networks have developed rapidly. Scholars realize that social
networks not only contain huge multimedia data but also rich behaviors, such as likes,
forwards, posts, comments, and shares, which can be used for covert communication.
Zhang [24] and Hu et al. [25] used WeChat, a mainstream social software in China, to
realize covert communication. Li et al. [26] sent secret messages by reposting posts. Yang
et al. [27] embed secret message through statistical features of posts. Nechta [28] proposed a
method for covert communication through the behavior of adding friends. Wu et al. [29,30]
performed covert communication on social networks by constructing graph structures.
This type of method does not modify the carrier content, resulting in a higher robustness
and invisibility. However, its embedding capacity still needs to be improved.

To improve the embedding capacity, this paper proposes a carrier selection high-
capacity behavioral steganographic method based on timestamp modulation. The main
work is as follows:

• A method is proposed to indicate to the positions of mapping keywords in posts
through timestamps. This method greatly improves the embedding capacity while
keeping the carrier natural.

• An adaptive retrieval algorithm for posts with mapping keywords is given. When the
target post cannot be retrieved on a given social network, this algorithm can automatically
adjust the matching parameters. This ensures that secret messages are sent successfully.

The remainder of this paper is organized as follows: Section 2 briefly introduces
related work on behavioral steganography. Section 3 introduces the method proposed in
this paper. The performance of the proposed method is analyzed in Section 4. After that,
Section 5 gives the experimental results. Finally, we summarize the full text and discuss the
direction of further research in the future.

2. Related Work

The work in this paper focuses on behavioral steganography on social networks based
on timestamp modulation. To this end, this section focuses on the typical behavioral stegano-
graphic methods and timestamp steganographic methods. The advantages and limitations of
the introduced methods are also discussed.

2.1. Behavioral Steganography Based on Social Networks

Many behavioral steganographic methods use graph theory to hide information, so
we first introduce basic symbols. A graph is denoted by G. V is the set of vertices in G

Symmetry 2022, 14, 111 3 of 18

and the set of edges in G is denoted by E. |V| denotes the number of vertices in V and
n denotes the number of accounts actually controlled by the sender. Corresponding to
social networks, the vertices represent social network accounts and the edges represent
interactive behaviors between accounts.

Nechta [28] proposes an undirected graph construction using “request to add friend”
as an interactive behavior to implement a covert communication method. This method uses
the adjacency function to define whether an edge exists between va and vb in G(V, E, ϕ),
which is shown in Equation (1).

ϕ =

{
0, Ea, b /∈ E
1, Ea, b ∈ E

(1)

It first constructs an undirected graph G and traverses the vertex (va, vb) to generate
the edge, where a < b. When sending a secret message, only the edge corresponding to
binary 1 generates behavior and the secret message can be sent. The embedding principle
is shown in Figure 1.

v0 v1

v2v3

e1

e2

e3 e4

e5

e6

Figure 1. The embedding principle in [28].

The sequence of secret messages can be extracted by sequential splicing SM = {e1, e2, . . . , e6}
= {110111}. This method is easy to implement and can successfully send a secret message
to the receiver through a lossy channel.

Wu et al. [29] propose a covert communication method. This method uses undirected
graphs to hide a secret message and directed graphs to hide the topology. Then, they
enhance the security of the proposed method. This method uses additional vertices to hide
the topology with strong security, but this also reduces the embedding capacity.

Wu et al. [30] propose a method to remap the correspondence between vertices of
graph structure by key based on [29]. This method uses n + 2 vertices, which are indexed
from v0 to vn+1 and V = {v1, v2, . . . , vn}. The set of edges whose start and end points belong
to the vertex set V is denoted as E, which is denoted by:

E = {ei = (va, vb)|va, vb ∈ V, 1 ≤ i ≤ m, 1 ≤ a 6= b ≤ n}, (2)

where m is the numbers of edges and m is an integer power of 2.
When embedding the secret message, the method first selects m edges in E based on a

random seed R and assigns indexes to them. Then, the secret message is converted into a binary
sequence and each log2

m group is converted into a decimal sequence D = {d1, d2, . . . , dm}.
Finally, the secret message is sent to the social network by performing m + 1 operations.
When extracting the secret message, the receiver rebuilds the graph structure with the
shared parameters.

2.2. Timestamp-Based Steganography

A timestamp is a form of recording time, which is calculated from 1 January 1970 00:00:00.
Taking Beijing time as an example, the timestamp of 1 October 1980 00:00:00 is 339177600, and
the timestamp of 1 October 2020 00:00:11 is 1601481611. The behaviors generated by social

Symmetry 2022, 14, 111 4 of 18

network users have time attributes, which record the generation time of the behaviors such as
likes, comments, and reposts.

Recently, some scholars have carried out research on covert communication based
on timestamps. Giffin et al. [31] sent a secret message by modulating the timestamp of
data packets. This method changes the timestamp by modifying the Linux kernel code
and is able to deliver the secret message accurately on low-latency channels. However, on
high-latency channels, the receiver may not be able to extract the secret message correctly.
Neuner et al. [32] used file creation timestamps and modified timestamps in an operating
system to hide a secret message. The timestamp for hiding secret messages does not differ
from the normal timestamp and has some resistance to detection. Bedia et al. [33] used
the timestamp field in IPV4 to achieve covert communication. Experiments show that
the method is able to deliver secret messages correctly, but the embedding capacity of the
method is low.

From the above introduction, we can see that the existing behavioral steganography
methods have a good performance in terms of security, but that their embedding capacity
still needs to be improved. In addition, the steganography method based on timestamps still
has great limitations in its performance of embedding capacity. To improve the embedding
capacity, this paper uses a combination of timestamps and social network steganography
methods to correlate the positions of keywords in posts using behavioral timestamps.
Among the related works most relevant to our paper are [28–30], as these are all based on
behavioral steganography in social networks. In Section 5, we will compare these methods
in detail.

3. Proposed Method

Firstly, this section introduces each step of the proposed method. Next, three key steps are
explained in detail. Finally, the process of sending secret message is explained by an example.

In order to achieve the high embedding capacity of the behavioral steganography
on social networks and at the same time ensure the naturalness of content and behaviors,
we propose a symmetric covert communication method that combines the time attribute
of the behavior and the carrier selection. It converts secret message into high-frequency
mapping keywords and adaptively retrieves eligible keyword posts on social networks.
The behavioral attributes are dynamically used to point to the positions of keywords in
posts, which in turn greatly improves the embedding capacity of behavioral steganography.

There are 9 steps in this method, as shown in Figure 2. Steps 1–5 belong to the embedding
process, and steps 6–9 belong to the extracting process.

Step 1: Map secret message. This first combines the commonly used secret words
with the public word frequency table to generate a table named a self-built word frequency
table. Then, a mapping relationship table is constructed by combining the self-built word
frequency table with the public word frequency table. The words in the secret message are
called secret keywords. Finally, the secret keywords are converted into mapping keywords
by the mapping relationship table that has been disordered, which can map one word
to another one. The purpose of the self-built word frequency table is to ensure that all
keywords in the secret message exist in the mapping relationship table shared by the sender
and receiver. The purpose of the mapping relationship table is to map a keyword in the
self-built word frequency table to another keyword so as to prevent the secret message
from directly appearing in the post and ensure the security of the secret message. The
out-of-order mapping table is used to fine-tune the order of the keywords in the mapping
relationship table according to the key. If the key does not match, the secret message cannot
be extracted by the receiver.

Step 2: Measure behavioral delays. The purpose of measuring behavioral delays is to
address the impact they have on timestamps. Automated interactions on social networks,
behavioral delays for a while are recorded and the maximum behavioral delay is obtained.

Step 3: Adaptively retrieve mapping posts. The purpose of this step is to find a set of
posts that can contain all the secret keywords. We set an initial number of keywords and

Symmetry 2022, 14, 111 5 of 18

group the mapping keywords into subsets according to the initial number of keywords.
Each subset is called a mapping group. The post that contains one mapping group is
dynamically retrieved on the social networks and the post is called a mapping post. If
the mapping post that contains the mapping group is not found, the initial number of
keywords is shortened and the retrieval continues. If it is retrieved, the information of
the post is saved. This retrieval process does not end until all the mapping keywords
are retrieved.

Step 4: Generate a stego timestamp sequence. The purpose of generating the stego
timestamp sequence is to hide the positions of the mapping keywords in the mapping
post into timestamps. The timestamp of the post that already exists on social networks is
no longer affected by the behavioral delay, and this kind of post is noted as an ordinary
post. To hide the positions of the mapping keywords, the accounts controlled by the sender
interact with other posts. The behaviors generated in this process are called interactive
behaviors. The positions of the mapping keywords in the mapping posts are specified by
both the timestamp of the ordinary posts and the timestamp of the interactive behaviors,
which are shown in Figure 3. In Figure 3, the colored font indicates the timestamps of the
interactive behaviors, such as t1, t2, and so on, while the black font indicates the timestamp
of the ordinary post, such as t3, t6. When hiding the positions of the mapping keywords
with timestamps, the sender first extracts all the positions of mapping keywords from
all the mapping groups to form a mapping position sequence and converts the mapping
position sequence into a binary position string. Then, the timestamps of ordinary posts and
interactive behaviors can carry a secret message of different lengths. The binary position
string is divided according to their length. Finally, the split binary string is used to modulate
the timestamp sequence, which is called the stego timestamp sequence.

Step 5: Generate interactive behaviors. The purpose of generating interactive behaviors
is to release the stego timestamp sequence to social networks. The sender’s account interacts
with mapping posts and ordinary posts at the time corresponding to the stego timestamps,
generating interactive behaviors. The secret message will eventually be hidden on the
social network.

Step 1: Map secret message

Step 2:
Measure behavioral delays

Step 3: Adaptively
retrieve mapping posts

Step 4 :
Generate

stego
timestamp
sequence

Step 5: Generate
interactive behaviors

Step 6: Extract
interactive

behaviors data
Step 9: Merge secret message groups

Step 8: Extract the
secret keywords

Public word
frequency

table

Mapping
relationship

table

Key

Behavior
timestamps

Behaviors

Posts

Groups of secret message

Stego posts
Secret

message
Step 7: Extract

 timestamps

Stego timestamps Microblog

Lossy channels

Social networks

Facebook

Twitter

Linkedin

Commonly used
secret words

Self-built word
frequency table

Mapping

Out-of-order mapping
relationship

table

Secret message

Mapping
keywords

Stego posts
Behavior

timestamps

Timestamp

E
m

b
e
d
d
in

g
 p

ro
ce

ss
E

x
tractin

g
 p

ro
cess

Figure 2. Steps of the proposed method.

Symmetry 2022, 14, 111 6 of 18

Mapping post 1 Mapping post 2 Mapping post 3 Mapping post i

Ordinary post 1 Ordinary post 2 Ordinary post 3 Ordinary post j

t1

t2

t4 t7 ti+2j-2

t5 t8 ti+2j-1

Legend

t3 t6 t9 ti+2j
Repost

Like

Comment

Figure 3. Schematic diagram of generating a sequence of stego timestamps.

The following are the steps used to extract the secret message.
Step 6: Extract interactive behavior data. The purpose of this step is to extract data

from the accounts shared by the sender to extract secret keywords. According to the
information such as the mapping relationship table and the number of accounts shared by
the sender, the receiver extracts interactive behavior data over a period of time from the
corresponding accounts of the social network. This data includes behaviors such as posted
posts, reposted posts, comments, and likes.

Step 7: Extract timestamps. The purpose of extracting the timestamps is to obtain
the positions of keywords. When extracting timestamp information from the interactive
behavioral data, the stego timestamps are identified based on the secret key and identifica-
tion fields.

Step 8: Extract the secret keywords. The positions of the keywords in the mapping
posts are determined according to the mapping timestamps, and the mapping keywords
are converted to secret keywords by the mapping relationship table. The embedding and
extracting of a secret message is symmetric and the step is the reverse process of Step 4.

Step 9: Merge secret message groups. The secret message is extracted by merging the
secret message groups.

There are three key steps in this method, which are: mapping a secret message, adap-
tively retrieving mapping posts, and generating a stego timestamp sequence. Next, the
details of the key steps will be introduced in turn.

3.1. Map Secret Message

When sending a secret message, two problems will arise if secret keywords are carried
directly by mapping posts. First, secret keywords may not be commonly used words. Even
the public word frequency table may not contain certain out-of-the-way secret keywords.
If they appear directly in the posts, this may cause anomalies. Second, keywords that are
not frequently used have a low probability of appearing on social networks and may not
be easily retrieved.

For this reason, we will take two measures to solve these two problems. On the one
hand, a self-constructed word frequency table is constructed by combining the commonly
used secret keywords with the public word frequency table. In other words, the self-built
word frequency table contains both secret keywords and the public word frequency table.
For example, when we send the Declaration of Independence as a secret message, there is a
word “sufferable” that does not appear in the public word frequency table. For this reason,
we have added “sufferable” to our selected public word frequency table. On the other
hand, a mapping relationship is constructed between the self-built word frequency table
and the public word frequency table. This is based on the principle that the commonly used
secret keywords are mapped to the high-frequency words in the public word frequency
table. In addition, the public word frequency table in the self-built word frequency table is
mapped to the high-frequency words as much as possible. In this way, the secret keywords
do not appear directly in the posts and the first problem is solved. The secret keywords are

Symmetry 2022, 14, 111 7 of 18

mapped as high-frequency words that are easily retrieved on social networks, and thus the
second problem is solved.

The disordered mapping relationship table is denoted as Mv, and the secret keywords
table Ts to be sent by the sender is converted into the mapping keywords table Tm by Mv.
This process can be formalized as:

Tm = Mv(Ts, k, Mr), (3)

where k denotes the key and Mr denotes the mapping relationship table.
The word frequency table composed of frequently used secret keywords is denoted by

Tf . The self-built word frequency table is composed of Tf and the public word frequency
table Tw. The construction process of Mr is shown in Algorithm 1.

In the Algorithm 1, it can be found that a small number of low-frequency words in the
self-built word frequency table are ignored.

Algorithm 1: Generation algorithm for the mapping relationship table.
Input: Tw, Tf
Output: Mr

1 counter← 0
/* The len function means the length of the sequence. */

2 while len(Tf) − 1 > counter do
3 index← Tw.getIndex(Tf [counter]) /* The getIndex function means obtaining

the position of the element in the sequence. */
4 Mr.append([Tf [counter], Tw[index]]) /* The append function means appending an

element to the sequence. */
5 counter← counter + 1

6 counter← 0
7 while len(Tw) − len(Tf) − 1 > counter do
8 value← Tw[counter]
9 if value not in Mr then

10 Mr.append([value, Tw[counter]])

11 counter← counter + 1

12 return Mr

3.2. Adaptively Retrieve Mapping Posts

The initial number of keywords is denoted by li, which is used to specify the maximum
number of mapping keywords contained in a mapping post. The number of mapping
keywords contained in a retrieved mapping post is often not li. Its actual number of
keywords is denoted by lr. The algorithm for adaptively retrieving mapping posts is shown
in Algorithm 2.

The Algorithm 2 first takes li mapping keywords from Tm. Next, the mapping posts
containing li of the specified mapping keywords are retrieved on the social networks. If no
keyword is found, the number of keywords searched in the previous round is subtracted by
one and the retrieval continues. If a post is found, the number of keywords is set to li and
the retrieval continues until all the mapping keywords are hidden in the found mapping
posts. If it is still not found when lr = 0, the retrieval fails, which rarely happens.

It is worth noting that li will affect the efficiency of retrieval. When li is too large, posts
containing li mapping keywords may not be retrieved on social networks, which can lead
to a decline in the number of keywords. For each reduction, the retrieval will be performed
again, which will consume additional time.

Symmetry 2022, 14, 111 8 of 18

Algorithm 2: Algorithm used for adaptively retrieving mapping posts.
Input: Tm, li
Output: Sr

1 lc ← li
2 Initialize a result sequence Sr
3 is ← 0
4 while true do
5 Ms ← Tm[is : is + li]
6 if Ms == Null then
7 return Sr

8 ret = searchPosts(Ms) /* The searchPosts function means to search for posts
on social networks */

9 if ret != Null then
10 Sr.append(ret)
11 lc ← li
12 is ← is + lc
13 else if ret == Null & lc > 1 then
14 lc ← lc − 1
15 else Retrieval failed ;

3.3. Generate Stego Timestamp Sequence

In this paper, timestamps of ordinary posts and interactive behaviors are used to hide the
positions of mapping keywords. This step focuses on three issues regarding timestamps: first,
the factors that influence the secret message in the timestamp cannot be extracted correctly;
second, the amount of information that the timestamp can carry; third, the process by which
the secret message is converted into timestamps.

To begin with, let us consider the first problem. It often happens in life that when we
access a website, we may have to wait for a short period before we can see the content of the
page. In fact, when posting a post on a social network, it may be necessary to wait a while
for this post to be seen by other users, even if this time is very short. This situation is the
behavioral delay, which may result in the secret message not being properly embedded in the
timestamps. For example, a sender intends to deliver a decimal number 2 and start hiding
the message at timestamp 1735150139. The sender reposts a post when the timestamp is
1735150141. However, the behavior is delayed due to a series of requests and is only recorded
by the social network at timestamp 1735150142. When the secret message is extracted, the
receiver subtracts 1735150142 from 1735150139 to obtain 3. At this point, the receiver extracts
the wrong secret message. To solve this problem, the sender needs to measure the maximum
behavioral delay dmax on the social networks for a while before sending the secret message.
When sending a secret message, the secret message is converted to decimal and multiplied
by dmax + 1 to prevent errors in the secret data. The detailed analysis and data can be found
in Section 4.1.

Next, we give equations for the number of bits that can be carried by different kinds
of timestamps. An interactive behavior timestamp uses lt bits to encode the positions of
keywords, which are calculated as follows (b.c denotes rounding down):

lv = (10b − 1)/(dmax + 1), (4)

where b denotes the last b digits of the timestamp used to encode the positions in mapping
posts. The number of bits that can be carried by the timestamp of an interactive behavior is
denoted by lv, and 10b − 1 denotes the length that can be used for encoding. Considering
the existence of behavioral delays in social networks, this decimal number, if used directly
to encode the message, will cause the message hidden in the timestamp to change, resulting
in the secret message not being extracted correctly by the receiver. Equation (4) gives some
redundancy capability.

Symmetry 2022, 14, 111 9 of 18

lt = blog2lvc =
⌊

log2(10b − 1)/(dmax + 1)
⌋

(5)

When sending a secret message, the secret message needs to be converted to binary
and then to decimal. For this purpose, taking the logarithm of lv and rounding down will
give the number of bits lt of binary that lv can represent.

In addition, the timestamp of an ordinary post is denoted by to. The number of bits it
can carry is denoted by lo, and is calculated as follows:

lo = blog2(tc − ts)c (6)

The timestamp when the sender is about to send a secret message is denoted by tc.
The minimum timestamp of a certain social network is denoted by ts. When ts is the earliest
timestamp of this social network, lo takes the maximum value. tc is the timestamp of a
behavior that already exists on the social network and is no longer affected by the behavior
delay, so there is no need to set redundant information for this timestamp. For Twitter,
lo can take the maximum value when ts is the timestamp of the first post on the Twitter.
The timestamp for the interaction between the account controlled by the sender and the
mapping post is denoted by tm, and the time for interaction with the ordinary post is
denoted by tb. The timestamp of an ordinary post is denoted as to. If corresponding to
Figure 3, tm, tb, and to can be t1, t2, and t3, respectively.

A sender is able to send a secret message by interacting with a mapping post and an
ordinary post on a social network. The number of bits that these two behaviors can carry is
denoted by ls, and the equation is as follows:

ls = lt + lo + lt (7)

= 2log2

⌊
(10b − 1)/(dmax + 1)

⌋
+ log2(btc − tsc) (8)

Finally, an algorithm for the generation of the stego timestamps is given as Algorithm 3.
Among the parameters, the sequence of mapping groups is denoted by Sp, the generated
sequence of stego timestamps is denoted by St. The algorithm first calculates the number
of bits that can be hidden by different types of timestamps and then generates a sequence
of secret timestamps based on it.

Algorithm 3: Algorithm used for the generation of stego timestamps.
Input: Sp, tc, b, dmax, ts, n
Output: St

1 lg ← len(Sp)
2 lo ← blog2(tc − ts)c;
3 Get the position of each mapping keyword and convert it to binary to get Sb
4 lv ← (10b − 1) // (dmax + 1)
5 lt ← blog2lvc
6 ltm ← Sb[0:lv * lg]
7 for i = 0; i < lg − 1, i++ do
8 St.append(tc + dec(ltm)*b) /*dec function means binary to decimal*/
9 tc ← tc + dec(ltm)*b

10 lc ← lg ∗ lv
11 while true do
12 so ← Sp[lc:lc + lo]
13 lc ← lc + lo
14 sb ← Sp[lc:lc + lv]
15 lc ← lc + lv
16 tl ← get the last 1 element of St
17 St.append(tl−dec(so))
18 tl ← get the penultimate element of St
19 St.append(tl + dec(sb))

20 return St

Symmetry 2022, 14, 111 10 of 18

3.4. Example

In this subsection, we briefly describe the process of embedding and extracting secret
messages using an example. In this example, the sender sends a secret message to the
receiver on a social network. Suppose we send a secret message as “This is a secret message.”
Their mapping keywords are “can”, “a”, “good”, “not”, “search”, and “.” by Algorithm 1
respectively, which form a mapping group. Suppose the minimum timestamp available
for the social network carrying the secret message is 1633017600 and the timestamp for
sending the secret message is 1577808000. The maximum behavioral delay of the current
network is 2. The last 2 digits of the timestamp are used to convey secret messages. So,
tc = 1633017600, ts = 1577808000, b = 3, d = 2. Calculated by Equations (4)–(7), lo = 25, lt = 8,
ls = 41. The mapping posts containing this mapping group is retrieved on social networks
by Algorithm 2, and one of the results is shown in Figure 4. The higher the frequency of the
mapping keyword in the public word frequency table, the more likely the post containing
the keyword is to be retrieved. The positions of the mapping keywords in the post are 9, 19,
27, 13, 22, and 30.

I havent read the spoiler article but i can confirm it does

Not mention tyrell (after doing a quick word search) idk

whether that s good or bad.

clearsurance@Tamun5558354 . 17m

15 2 98

There are days when the sky here in #Alberta is so

beautiful it doesn t seem real.

Bramusa@bramusa . 20:42:53 PM.Jul 09, 2021

20 21 10

Figure 4. Posts retrieved based on the secret message sent.

The positions are converted to binary and are split into three groups. The number of
each group is 8, 25, 8, and then each group is converted from binary to decimal. tm = tc +
37 × (dmax + 1) = 1633017711, to = tm − 7183027 = 1625835084, tb = tm + 192 × (dmax + 1) =
1633018687. The calculation process and data are shown in Table 1. The mapping keywords
are sent when the sender interacts with the post on the left side of Figure 4 at 1 October
2021 00:01:51. When the sender interacts with the post to the right of Figure 4 at 1 October
2021 00:09:36, the positions of mapping keywords are sent. Corresponding to the Figure 3,
tm is equivalent to t1, tb is equivalent to t2, and to is equivalent to t3. The extracting process
is the inverse of the embedding process and will not be repeated here.

Table 1. The process when sending a secret message.

Position 9 19 27 13 22 30

Binary string 001001 010011 011011 001101 010110 011110

Split binary string 00100101 0011011011001101010110011 11000000

Converted Decimal 37 7183027 192

Timestamp calculation tc + 37 × (dmax + 1) tm − 7183027 tm + 192 × (dmax +1)

Timestamp 1633017711 1625835084 1633018687

Corresponding time 1 October 2021 00:01:51 9 July 2021 20:51:24 1 October 2021 00:18:07

4. Performance Analysis

Embedding capacity and robustness are important metrics for measuring the perfor-
mance of steganographic methods. In this paper, embedding capacity refers to the number
of bits carried by each behavior. Robustness generally refers to the property that the stego
can be successfully communicated despite being attacked by an attacker or a channeled
attack [11]. This section will analyze the performance of our method from these two aspects.

Symmetry 2022, 14, 111 11 of 18

4.1. Robustness

In addition to using text to hide the mapping keywords, this paper also uses times-
tamps to hide the positions of the keywords. Generally, the text data can exist stably on
social networks, and the text content except for blank characters is not modified. The factor
that threatens the robustness of this method originates from the timestamps. This is because
the expected behaviors must be executed at the same time as the time recorded by the social
network. In practice, it is difficult to satisfy this condition.

Figure 5a shows the expected execution time and the actual execution time of behaviors
for Weibo, Twitter, and Facebook for a certain period. The dotted line represents the
execution time of interactive behavior, while the solid line represents the time when the
interactive behavior is recorded by the social network. From Figure 5a, we can see that the
time being recorded is not equal to the time being executed in most cases, which indicates
that behavioral delays are present in most cases.

In Figure 5b, the value of the behavioral delays is obtained by calculating the difference
between the actual time and the expected time, which indicates the maximum behavioral
delay dmax = 2 during this time.

0 1 2 3 4 5 6 7 8 9

1635150125

1635150130

1635150135

1635150140

1635150145

1635150150

1635150155

1635150160

Ti
m
es
ta
m
ps

Number of tests

 Expected timestamps on Weibo
 Actual timestamps on Weibo
 Expected timestamps on Twitter
 Actual timestamps on Twitter
 Expected timestamps on Facebook
 Actual timestamps on Facebook

(a)

0 1 2 3 4 5 6 7 8 9

0.0

0.5

1.0

1.5

2.0
Be

ha
vi

or
al

 d
el

ay
s(

s)

Number of tests

 Weibo
 Twitter
 Facebook

(b)

Figure 5. Behavioral delays on different social networks. (a) Differences in behavioral timestamps for
a while; (b) Behavioral delays of multiple social networks for a while.

If there is a behavioral delay when sending a secret message, this will lead to an
error in the positions of the keywords and subsequently cause the secret message not to
be extracted correctly. To solve this problem, this paper uses a time-redundant control
mechanism to measure the behavioral delays over some time and obtain the maximum
value dmax. Then, the secret message that is converted to decimal is multiplied by dmax + 1
to resist the effect of behavior delays. For example, the secret data sent by the sender are 47,
dmax = 2, and the current timestamp tc = 1635150139. Next, an behavior can be executed
until the timestamp is 1635150141. If the behavior is delayed by 2 s, the time of execution is
recorded by the social network as 1635150143. The receiver divides this timestamp by 3
and takes the value downward, and the value obtained is still 47. Therefore, the robustness
of this method on both text content and timestamp can be guaranteed.

4.2. Embedded Capacity

The size of the embedding capacity is influenced by various factors. It is related to
variables such as the last b digits of the timestamp, the ordinary post timestamp lo, and the
maximum behavioral delay dmax. There are two questions that need to be addressed in this
subsection. The first question is what is the appropriate value or range for each variable to
take? For b, if b ≤ 2 will lead to frequent operations and cause abnormal behavior. If b is too

Symmetry 2022, 14, 111 12 of 18

large, it can encode more information but consumes too much time. In addition, we refer to
many references to make lo as maximum as possible and to make this method applicable
to mainstream social networks. According to [34–36], mainstream social networks such
as Facebook, Twitter, and Weibo already had a large amount of user and post data by
2011. Therefore, the starting time can be set to 1 January 2011 00:00:00, corresponding
to a timestamp is ts = 1293811200. Suppose the current time is 1 October 2021 00:00:00,
then tc = 1633017600, and lo = 28 according to Equation (6). By Section 4.1, dmax should be
greater than or equal to 2.

Table 2 gives the corresponding values of lv, log2lv, blog2lvc and ls for different dmax.
It shows that when dmax = 1/2 (dmax = 1 or dmax = 2), the value of ls is the same. When
dmax = 3/4/5/6, ls is the same. When dmax are the same, the same ls means the same
number of bits sent.

Another question is how many bits can represent a position. To answer this question,
we first crawl 10,731,668 posts from Twitter. We select 300,000 posts and divided them into
3 groups. Next, each post is divided into words, and the number of words in the posts is
counted. Finally, the frequency of keywords appearing in each group of posts is counted.
The corresponding experimental results are shown in Figure 6.

Table 2. Number of bits that can be carried by timestamp with different time delays.

dmax lv log2lv lt ls li

0 999.00 9.96 9 46 7

1 499.50 8.96 8 44 7

2 333.33 8.38 8 44 7

3 249.75 7.96 7 42 7

4 199.80 7.64 7 42 7

5 166.50 7.38 7 42 7

6 142.71 7.16 7 42 7

7 124.88 6.96 6 40 6

In this paper, the number of words in a post is denoted by X. Figure 6 shows X ∈ [1, 60]
for almost all the posts. According to 26 = 64, we know that using 6 bits we can represent
64 positions, which can satisfy the need to index positions in the post. According to this,
the last column of Table 2 gives the value of li. The remaining part is distributed in [61, 67].

Let pi denote the probability that the number of keywords is i. The expectation E(X)
of X is given by the following equation:

E(X) =
67

∑
i=1

i · pi (9)

The results calculated by Equation (9) have been labeled in Figure 6. By calculating the
average of 3 experiments, E(X) = 22.67. This shows that the average number of words per
post is 22.67, by which the average embedding capacity can be obtained. Assuming that

each word contains an average of
−
l letters, the average embedding capacity is

−
l ·E(X) · 8.

The actual embedding capacity depends on the secret message sent, and the experimental
results can be seen in Section 5.2.

Symmetry 2022, 14, 111 13 of 18

 3rd group

E(X)=22.07

E(X)=21.44

E(X)=24.56

Figure 6. Number of words in each post.

5. Experiments

In this section, we design several groups of experiments to evaluate the performance
of our method in terms of embedding capacity and number of behaviors. We use the
third-party library Selenium [37] for python with the WebDriver [38] to control the browser,
using them as automation tools which can simulate human behavior. It can be used to
implement functions such as clicking the button on the webpages, inputting data, and
obtaining data. In addition, we also conduct experiments and evaluations on the initial
number of keywords li.

5.1. Experimental Settings

In our experiments, we use the Declaration of Independence as the secret message and
the Kaggle [39] word frequency database as the public word frequency table. A total of
10,731,668 post data were crawled on Twitter using Twint [40]. They contain fields such as
username, post, creation time, etc. Twint is a crawler tool on Github, which can accurately
obtain posts, comments, and followers and other information through keywords within a
stipulated time period. We use it as a tool for retrieving posts on social networks. Figure 5
shows that dmax should be greater than or equal to 2. For this reason, we conduct the
following experiments under dmax = 2.

5.2. Comparative Experiments on Embedding Capacity

The maximum behavioral delay dmax and the initial number of keywords li carried by
the mapping posts on social networks can have an impact on the embedding capacity. To this
end, we first design a set of comparative experiments with a varying number of keywords
to test the effect. The results are shown in Figure 7. Next, we select a set of parameters to
compare with existing behavioral steganography work, whose data are shown in Table 3.
Finally, our proposed method is compared with the generative text steganography method
in terms of embedding capacity.

In the experiment corresponding to Figure 7, the secret message is divided into
mapping groups by Algorithm 2. The number of bits that can be sent for a mapping post
containing a secret message is shown in Figure 7. We can find the maximum, minimum,
and average values carried by the groups.

When li = 7, the average value of the secret message that each group can carry is
164.95 bits, the highest is 328.00 bits and the lowest is 40.00 bits. When li = 9, both the
maximum and average values increase to 352.00 bits and 167.23 bits, respectively. Figure 7
shows that when li is in a certain range, the amount of information carried by the group is
gradually increased as li is raised.

Symmetry 2022, 14, 111 14 of 18

0 1 0 0 2 0 0 3 0 00

9 5

1 9 0

2 8 5

3 8 0

4 0

1 6 4 . 9 5

3 2 8

0 1 0 0 2 0 0 3 0 0
0

1 1 0

2 2 0

3 3 0

1 6

1 6 6 . 1 7

3 3 6

0 1 0 0 2 0 0 3 0 0
0

1 1 0

2 2 0

3 3 0

1 6

1 6 7 . 2 3

3 5 2

Nu
mb

er
of

bit
s s

ent
(bi

ts)

S e q u e n c e o f s e n t p o s t s

 l i = 7

 l i = 8

 l i = 9

Figure 7. Number of bits carried by each group when sending the Declaration of Independence.

Table 3. Embedding capacity when dmax = 2 and li = 7 (bits).

n = 7 n = 8 n = 9

Group Number [28] [29] [30] Our [28] [29] [30] Our [28] [29] [30] Our

1–50 2.25 2.26 1.81 83.28 2.23 2.25 1.81 83.28 2.24 2.23 2.20 83.28

51–100 2.39 2.44 1.79 80.00 2.34 2.39 1.79 80.00 2.32 2.34 2.17 80.00

101–150 2.32 2.55 1.82 92.08 2.35 2.32 1.82 92.08 2.30 2.35 2.15 92.08

151–200 2.43 2.32 1.84 83.92 2.28 2.43 1.84 83.92 2.21 2.28 2.14 83.92

201–250 2.34 2.44 1.83 74.48 2.23 2.34 1.83 74.48 2.17 2.23 2.14 74.48

250–300 2.20 2.52 1.87 86.24 2.17 2.20 1.87 86.24 2.23 2.17 2.13 86.24

Mean value 2.32 2.42 1.83 83.33 2.27 2.32 1.83 83.33 2.24 2.27 2.16 83.33

Minimum 2.20 2.26 1.79 74.48 2.17 2.20 1.79 74.48 2.17 2.17 2.13 74.48

Maximum 2.43 2.55 1.87 92.08 2.35 2.43 1.87 92.08 2.32 2.35 2.20 92.08

Minimum multiple 29.23 37.91 31.64

Maximum multiple 51.47 51.47 43.15

To verify the performance of the embedding capacity, we implement the [28–30] and
compare them with our method. When li = 7, the Declaration of Independence used as a secret
message needs to be sent 317 times using our method. Every 50 times data is sent, the
average of the bits carried by each behavior is calculated once. The experimental data are
shown in Table 3. When n = 7, the 101st to 150th mapping posts are sent. The average
embedding capacity of [28–30] and our method are 2.32, 2.55, 1.82, 92.08 bits, respectively. As
n increases, there is a decreasing trend in the embedding capacity of the compared methods.
This is caused by the increase in the number of behaviors, while the change in n has no effect
on our proposed method. The maximum value of the embedding capacity of this method
divided by the minimum value of the compared method yields the maximum multiplication
of the embedding capacity increase. On the contrary, the minimum multiplication of the
enhancement can be obtained. The Table 3 shows that our method has higher performance
in embedding capacity than compared methods. It is 29.23∼51.47 times higher than the
compared methods.

Our method is also compared with the generative text steganography method [20].
The embedding capacity of a generative text steganography method is the number of bits
carried per word. According to Section 4.2, each post contains an average of 22.67 words.
For this, we can get the corresponding embedding capacity under different parameters
in [11]. The [19] point out that when [20] carries 4 bits per word, the probability of being
recognized reaches 0.8. For this reason, we conduct a comparative experiment below 4 bpw.
The experimental results are shown in the Table 4.

When each word carries 3 bits, each post can carry 68.01 bits in [20]. For our method,
at dmax = 2 and li = 7, it can carry 83.60 bits per time. As li increases, the embedding capacity
will increase, but the retrieval efficiency will decrease. When dmax increases, the embedding
capacity decreases. The embedding capacity will exceed our method when carrying 4 bits
per word in [20], but it has a high probability of 0.8 to be recognized, while our method uses

Symmetry 2022, 14, 111 15 of 18

natural text without that risk. The [20] is safer when carrying 3 bits per word, and each post
can carry 68.01 bits. Compared with this method, our method improves by 16.26∼23.94%.
Thus, both groups of comparative experiments show that our method is superior in terms
of embedding capacity.

Table 4. Comparison experiment with [20] on embedding capacity (bits).

[20] li

dmax 1 bpw 2 bpw 3 bpw 4 bpw 7 8 9

2

22.67 45.34 68.01 90.68

83.60 84.16 84.29

3 81.27 81.76 81.92

7 79.07 79.38 79.53

5.3. Comparative Experiments on the Number of Behaviors

Frequent and large numbers of behaviors performed by the same user on social
networks may cause behavioral anomalies. In addition, the methods compared in the paper
achieve steganographic communication due to the use of graph theory, and they require
a fixed length of information to be passed each time during the transmission of a secret
message. If the sender sends a secret message that does not reach this length, a certain
amount of redundant information is appended until this fixed length is satisfied. Therefore,
the fewer the number of behaviors generated by sending a secret message, the better. For
this purpose, we design a set of comparative experiments. When sending secret messages
of the same length, we compare their performance in terms of the number of behaviors.
The experimental results are shown in Figure 8a.

When sending 16-bit information, the number of behaviors required for [28–30] and our
method are 10, 10, 13, and 2, respectively. It is worth noting that the number of behaviors for
the compared methods fluctuates with the different messages sent. Specific experimental data
are provided in Figure 8a.

In Figure 8b, we can observe the trend in the number of behaviors for each method
as the number of bits sent increases. Figure 8b shows that as the number of bits passed
increases, the number of behaviors for our method is lower than the compared methods.

2 2 2 2 2 2 2 2 2 2 2
2

6
8

10
12

16
18 18

21
23

2626

15
13 14 13

15
17

20
22 23

25 2626

0 10 20 30 40 50
0

5

10

15

20

25

30

N
um

be
r o

f b
eh

av
io

rs
 to

 b
e

ge
ne

ra
te

d(
pc

s)

Number of bits sent(bits)

 Our method
 Wu2020
 Wu2019
 Nechta2017

(a)

2 4 4 6 6 8 8 8 10 10
44

77
111

144
177

211
244

277
311

342

44

95

141

189

240
283

330

375

419

464

44

95

141

189

240
283

330

375

419

464

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

N
um

be
r o

f b
eh

av
io

rs
 to

 b
e

ge
ne

ra
te

d(
pc

s)

Number of bits sent(bits)

 Our method
 Wu2020
 Wu2019
 Nechta2017

(b)

Figure 8. Number of behaviors generated by each method. (a) When sending 1–50 bits; (b) When
sending 1–1000 bits. (Nechta2017, Wu2019 and Wu2020 correspond to references [28], [29], [30],
respectively.)

Symmetry 2022, 14, 111 16 of 18

5.4. Selection of Parameter li
When sending a secret message, the initial number of keywords in the mapping

post is denoted as li. When a post containing li keywords is not retrieved, the mapping
keyword sequence will be shortened, and then we will continue to retrieve appropriate
posts. Considering that repeated retrievals affect the sending efficiency, we design a set of
experiments to compare the sending success rate. This experiment can guide senders to set
the appropriate li to achieve covert communication in an efficient way. The corresponding
experimental results are shown in Figure 9. The actual number of keywords lr in the
mapping post with values less than 3% are not marked in Figure 9.

The different colors in Figure 9 indicate the different lr. The percentage of each color
indicates the probability of a mapping post being sent successfully when the actual number of
mapping keywords is lr. When li = 7, the success rate is 29.02%. When li is 7, the probability
that a mapping post containing less than 6 keywords is sent successfully is 87%. When lr = 4,
mapping posts are more likely to be retrieved. Moreover, for different li, the success rates of
their different lr are all summed up equal to 100%, which indicates that the secret message
can always be sent successfully.

1 3 . 2 5 %

1 3 . 8 8 %

2 0 . 8 2 % 2 9 . 0 2 %

1 5 . 7 7 %

6 . 3 1 %

 1
 2
 3
 4
 5
 6
 7

(a)

5 . 4 1 %7 . 3 2 %

1 4 . 3 3 %

2 1 . 3 4 % 2 8 . 3 4 %

1 5 . 2 9 %

7 . 3 2 %
 1
 2
 3
 4
 5
 6
 7
 8

(b)

7 . 0 5 %

1 4 . 4 2 %

2 1 . 4 7 % 2 8 . 8 5 %

1 5 . 0 6 %

7 . 0 5 % l r = 1
 l r = 2
 l r = 3
 l r = 4
 l r = 5
 l r = 6
 l r = 7
 l r = 8
 l r = 9

(c)

Figure 9. Success rate of sending with lr mapping keywords for different li. (a) Success rate of each lr
when li = 7; (b) success rate of each lr when li = 8; (c) success rate of each lr when li = 9.

6. Conclusions

In this paper, we propose the use of a high-capacity behavioral steganography method
on social networks based on carrier selection with timestamp modulation. This method uses
natural post data to carry the converted secret message and utilizes timestamps of social
network behaviors to indicate the positions of mapping keywords in the posts. Compared
with typical behavioral steganographic methods, the embedding capacity of the proposed
method is 29.23∼51.47 times higher than others because our proposed method can carry
several words. Compared to generative text steganography, the embedding capacity is
improved by 16.26∼23.94%. In future research, we will continue to work on increasing the
embedding capacity of behavioral steganography.

Author Contributions: Methodology, M.Z.; validation, P.Z. and Y.Z.; formal analysis, M.Z., P.Z.
and Y.Z.; investigation, P.Z. and Y.Z.; data curation, M.Z., P.Z. and Y.Z.; writing—original draft
preparation, M.Z.; writing—review and editing, Z.L. and X.L.; visualization, M.Z.; supervision, X.L.
and Z.L.; funding acquisition, X.L. and Z.L. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (grant nos.
U1804263, 62172435, and 62002387) and the Zhongyuan Science and Technology Innovation Leading
Talent Project of China (grant no. 214200510019).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Not applicable.

Symmetry 2022, 14, 111 17 of 18

Acknowledgments: We would like to thank Hao Li, Xiuting Wang, Guo Wei, Yanmei Liu and others
for helping us check the details and providing us with valuable suggestions in this paper.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

References
1. Neil, J.F.; Sushil, J. Exploring steganography: Seeing the unseen. Computer 1998, 31, 26–34.
2. Fridrich, J. Steganography in Digital Media: Principles, Algorithms, and Applications, 1st ed.; Cambridge University Press: New York,

NY, USA, 2009; pp. 1–443.
3. Zhang, X.; Peng, F.; Long, M. Robust coverless image steganography based on DCT and lda topic classification. IEEE Trans.

Multimedia 2018, 20, 3223–3238. [CrossRef]
4. Luo, Y.; Qin, J.; Xiang, X.; Tan, Y. Coverless image steganography based on multi-object recognition. IEEE Trans. Circuits Syst.

Video Technol. 2021, 7, 2779–2791. [CrossRef]
5. Chen, X.; Sun, H.; Tobe, Y.; Zhou, Z.; Sun, X. Coverless information hiding method based on the chinese mathematical expression.

In Proceedings of the 1st International Conference on Cloud Computing and Security (ICCCS), Nanjing, China, 13–15 August
2015; pp. 133–143.

6. Chen, X.; Chen, S. Text coverless information hiding based on compound and selection of words. Soft Comput. 2019, 23, 6323–6330.
[CrossRef]

7. Tan, Y.; Qin, J.; Xiang, X.; Zhang, C.; Wang, Z. Coverless steganography based on motion analysis of video. Secur. Commun. Netw.
2021, 2021, 5554058. [CrossRef]

8. Pan, N.; Qin, J.; Tan, Y.; Xiang, X.; Hou, G. A video coverless information hiding algorithm based on semantic segmentation.
EURASIP J. Image Video Process. 2020, 2020, 23. [CrossRef]

9. Li, Q.; Wang, X.; Wang, X.; Ma, B.; Wang, C.; Shi, Y. An encrypted coverless information hiding method based on generative
models. Inf. Sci. 2021, 553, 19–30. [CrossRef]

10. Muhammad, K.; Sajjad, M.; Mehmood, I.; Rho, S.; Baik, S.W. Image steganography using uncorrelated color space and its
application for security of visual contents in online social networks. Future Gener. Comput. Syst. 2018, 86, 951–960. [CrossRef]

11. Zhang, Y.; Luo, X.; Wang, J.; Guo, Y.; Liu, F. Image robust adaptive steganography adapted to lossy channels in open social
networks. Inf. Sci. 2021, 564, 306–326. [CrossRef]

12. Peng, W.; Zhang, J.; Xue, Y.; Yang, Z. Real-time text steganalysis based on multi-stage transfer learning. IEEE Signal Process. Lett.
2021, 28, 1510–1514. [CrossRef]

13. Han, C.; Xue, R.; Zhang, R.; Wang, X. A new audio steganalysis method basedon linear prediction. Multimed. Tools Appl. 2018, 77,
15431–15455. [CrossRef]

14. Abd EL-Latif, A.A.; Abd-El-Atty, B.; Venegas-Andraca, S.E. A novel image steganography technique based on quantum
substitution boxes. Opt. Laser Technol. 2019, 116, 92–102. [CrossRef]

15. Zhu, Z.; Li, S.; Qian, Z.; Zhang, X. Destroying robust steganography in online social networks. Inf. Sci. 2021, 581, 605–619.
[CrossRef]

16. Wang, Z.; Chen, M.; Yang, Y.; Lei, M.; Dong, Z. Joint multi-domain feature learning for image steganalysis based on CNN.
EURASIP J. Image Video Process. 2020, 2020, 28. [CrossRef]

17. Lin, Y.; Wang, R.; Yan, D.; Dong, L.; Zhang, X. Audio steganalysis with improved convolutional neural network. In Proceedings of
the 7th ACM Workshop on Information Hiding and Multimedia Security (IH&MMSec), Paris, France, 3–5 July 2019; pp. 210–215.

18. Niu, Y.; Wen, J.; Zhong, P.; Xue, Y. A hybrid r-bilstm-c neural network based text steganalysis. IEEE Signal Process. Lett. 2019, 26,
1907–1911. [CrossRef]

19. Yin, Y.; Wu, H.; Zhang, X. Neural visual social comment on image-text content. IETE Tech. Rev. 2021, 38, 100–111. [CrossRef]
20. Yang, Z.; Guo, X.; Chen, Z.; Huang, Y.; Zhang, Y. RNN-Stega: Linguistic steganography based on recurrent neural networks. IEEE

Trans. Inf. Forensic Secur. 2018, 14, 1280–1295. [CrossRef]
21. Yang, Z.; Zhang, S.; Hu Y.; Hu, Z.; Huang, Y. VEA-Stega: linguistic steganography based on variational auto-encoder. IEEE Trans.

Inf. Forensics Secur. 2020, 16, 880–895. [CrossRef]
22. Shiu, H.; Lin, B.; Cheng, C.; Huang, C.; Lei, C. High-capacity data-hiding scheme on synthesized pitches using amplitude

enhancement—A new vision of non-blind audio steganography. Symmetry 2017, 9, 92. [CrossRef]
23. Xiang, L.; Yang, S.; Liu, Y.; Li, Q.; Zhu, C. Novel linguistic steganography based on character-level text generation. Mathematics

2020, 8, 1558. [CrossRef]
24. Zhang, X. Behavior steganography in social network. In Proceedings of the 18th International Workshop on Digital Forensics and

Watermarking (IWDW), Magdeburg, Germany, 23–25 August 2017; pp. 21–23.
25. Hu, Y.; Wang, Z.; Zhang, X. Steganography in social networks based on behavioral correlation. IETE Tech. Rev. 2021, 38, 93–99.

[CrossRef]
26. Li, S.; Ho, A. T.; Wang, Z.; Zhang, X. Lost in the digital wild: Hiding information in digital activities. In Proceedings of the 2nd

International Workshop on Multimedia Privacy and Security (MPS), Toronto, ON, Canada, 15–19 October 2018; pp. 27–37.

http://doi.org/10.1109/TMM.2018.2838334
http://dx.doi.org/10.1109/TCSVT.2020.3033945
http://dx.doi.org/10.1007/s00500-018-3286-7
http://dx.doi.org/10.1155/2021/5554058
http://dx.doi.org/10.1186/s13640-020-00512-8
http://dx.doi.org/10.1016/j.ins.2020.12.002
http://dx.doi.org/10.1016/j.future.2016.11.029
http://dx.doi.org/10.1016/j.ins.2021.02.058
http://dx.doi.org/10.1109/LSP.2021.3097241
http://dx.doi.org/10.1007/s11042-017-5123-x
http://dx.doi.org/10.1016/j.optlastec.2019.03.005
http://dx.doi.org/10.1016/j.ins.2021.10.023
http://dx.doi.org/10.1186/s13640-020-00513-7
http://dx.doi.org/10.1109/LSP.2019.2953953
http://dx.doi.org/10.1080/02564602.2020.1730714
http://dx.doi.org/10.1109/TIFS.2018.2871746
http://dx.doi.org/10.1109/TIFS.2020.3023279
http://dx.doi.org/10.3390/sym9060092
http://dx.doi.org/10.3390/math8091558
http://dx.doi.org/10.1080/02564602.2020.1721340

Symmetry 2022, 14, 111 18 of 18

27. Yang, Z.; Hu, Y.; Huang, Y.; Zhang, Y. Behavioral security in covert communication systems. In Proceedings of the 18th International
Workshop on Digital Forensics and Watermarking (IWDW), Melbourne, Australia, 25–27 November 2020; pp. 377–392.

28. Nechta, I. Steganography in social networks. In Proceedings of the 2017 Siberian Symposium on Data Science and Engineering
(SSDSE), Novosibirsk, Russia, 12–13 April 2017; pp. 33–35.

29. Wu, H.; Wang, W.; Dong, J.; Wang, H. New graph-theoretic approach to social steganography. In Proceedings of the 2019
IS&T International Symposium on Electronic Imaging: Media Watermarking, Security, and Forensics, Burlingame, CA, USA,
13–17 January 2019; pp. 539-1–539-6.

30. Wu, H.; Zhou, L.; Li, J.; Zhang, X. Securing graph steganography over social networks via interaction remapping. In Proceedings
of the 6th International Conference on Artificial Intelligence and Security (ICAIS), Hohhot, China, 17–20 July 2020; pp. 303–312.

31. Giffin, J.; Greenstadt, R.; Litwack, P.; Tibbetts, R. Covert messaging through tcp timestamps. In Proceedings of the 2nd
International Conference on Privacy Enhancing Technologies (PET), San Francisco, CA, USA, 14–15 April 2002; pp. 194–208.

32. Neuner, S.; Voyiatzis, A.G.; Schmiedecker, M.; Brunthaler, S.; Katzenbeisser, S.; Weippl, E.R. Time is on my side: Steganography in
filesystem metadata. Digit. Investig. 2016, 18, 76–86. [CrossRef]

33. Bedi, P.; Dua, A. Network steganography using the overflow field of timestamp option in an IPv4 packet. In Proceedings of the
3rd International Conference on Computing and Network Communications (CoCoNet), Trivandrum, India, 18–21 December
2019; pp. 1810–1818.

34. Zhuang, K.; Shen, H.; Zhang, H. User spread influence measurement in microblog. Multimed. Tools Appl. 2017, 76, 3169–3185.
[CrossRef]

35. Speck, R.; Moussallem, D.; Ngomo, A.C.N. Twitter network mimicking for data storage benchmarking. In Proceedings of the 15th
IEEE International Conference on Semantic Computing (ICSC), Laguna Hills, CA, USA, 27–29 January 2021; pp. 298–305.

36. Lombardo, G.; Fornacciari, P.; Mordonini, M.; Sani, L.; Tomaiuolo, M. A combined approach for the analysis of support groups on
Facebook—The case of patients of hidradenitis suppurativa. Multimed. Tools Appl. 2019, 78, 3321–3339. [CrossRef]

37. Selenium. Available online: https://www.selenium.dev/ (accessed on 6 August 2021).
38. WebDriver | Selenium. Available online: https://www.selenium.dev/documentation/webdriver/ (accessed on 6 August 2021).
39. English Word Frequency | Kaggle. Available online: https://www.kaggle.com/rtatman/english-word-frequency/version/1

(accessed on 8 August 2021).
40. Twintproject/Twint: An Advanced Twitter Scraping & OSINT Tool Written in Python That Doesn’t Use Twitter’s API, Allowing

You to Scrape a User’s Followers, Following, Tweets and More While Evading Most API Limitations. Available online: https:
//github.com/twintproject/twint (accessed on 6 August 2021).

http://dx.doi.org/10.1016/j.diin.2016.04.010
http://dx.doi.org/10.1007/s11042-016-3818-z
http://dx.doi.org/10.1007/s11042-018-6512-5
https://www.selenium.dev/
https://www.selenium.dev/documentation/webdriver/
https://www.kaggle.com/rtatman/english-word-frequency/version/1
https://github.com/twintproject/twint
https://github.com/twintproject/twint

	Introduction
	Related Work
	Behavioral Steganography Based on Social Networks
	Timestamp-Based Steganography

	Proposed Method
	Map Secret Message
	Adaptively Retrieve Mapping Posts
	Generate Stego Timestamp Sequence
	Example

	Performance Analysis
	Robustness
	Embedded Capacity

	Experiments
	Experimental Settings
	Comparative Experiments on Embedding Capacity
	Comparative Experiments on the Number of Behaviors
	Selection of Parameter li

	Conclusions
	References

