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Abstract: One of the most important features in the analysis of the singular perturbation methods
is the reduction of models. Likewise, the bond graph methodology in dynamic system modeling
has been widely used. In this paper, the bond graph modeling of nonlinear systems with singular
perturbations is presented. The class of nonlinear systems is the product of state variables on three
time scales (fast, medium, and slow). Through this paper, the symmetry of mathematical modeling
and graphical modeling can be established. A main characteristic of the bond graph is the application
of causality to its elements. When an integral causality is assigned to the storage elements that
determine the state variables, the dynamic model is obtained. If the storage elements of the fast
dynamics have a derivative causality and the storage elements of the medium and slow dynamics an
integral causality is assigned, a reduced model is obtained, which consists of a dynamic model for the
medium and slow time scales and a stationary model of the fast time scale. By applying derivative
causality to the storage elements of the fast and medium dynamics and an integral causality to
the storage elements of the slow dynamics, the quasi-steady-state model for the slow dynamics
is obtained and stationary models for the fast and medium dynamics are defined. The exact and
reduced models of singularly perturbed systems can be interpreted as another symmetry in the
development of this paper. Finally, the proposed methodology was applied to a system with three
time scales in a bond graph approach, and simulation results are shown in order to indicate the
effectiveness of the proposed methodology.

Keywords: bond graph; singular perturbations; three time scales; reduced systems

1. Introduction

The modeling, analysis, and control of high-order systems are an interesting challenge
to give adequate results. Furthermore, some of these systems may present different time
scales, which are called singularly perturbed systems. Systems of two time scales are the
most common determining slow and fast variables. These systems are characterized by
having parasitic parameters.

Essential references of systems with singular perturbations are found in [1,2]. Model-
ing and its properties of nonlinear systems with multiple time scales are proposed in [3].
The correct application of some of the singular perturbation methods derived in the reduc-
tion of systems given the exact decomposition of the slow and fast modes was proposed
in [4]. Systems with singular perturbations indicate the presence of the parasitic parameter,
and the control of this parameter was described in [5]. Exponential stability applied to
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nonlinear singularly perturbed systems was analyzed in [6]. The asymptotic stability of
time-varying systems with singular perturbations was introduced in [7]. Observers of
singularly perturbed systems were applied in [8,9]. The robust stability of systems with
singular perturbations was described in [10].

More recent references and three time scales are cited below. The control of a helicopter
system that determines a system with three time scales was presented in [11]. Furthermore,
sliding mode control for systems with three time scales and disturbances was proposed
in [12]. An adaptive fault-tolerant control for LTI systems with two or three time scale was
presented in [13]. The control theory with applications in the period 1984-2001 for systems
with singular perturbations was described in [14].

The bond graph methodology allows modeling, analyzing, and controlling systems
in different energy domains (electrical, mechanical, hydraulic, thermal, magnetic) [15,16].
Some papers have been published on systems with singular perturbations with bond graphs
within which the following can be cited. The models and their simplification to singular
perturbation methods were described in [17]. Reciprocal systems to obtain fast dynamics
were introduced in [18]. Reduced models of LTI systems with singular perturbations on
two time scales with different causalities were proposed in [19]. The determination of
approximate models of LTI systems with mixed causalities to the storage elements in the
bond graph was presented in [20].

The determination of bond graph models and their realization in the state space
indicate the graphical and mathematical symmetry of these systems.

The different dynamics of a system through causal loops were identified in [18,21].
State feedback using an observer for LTI systems in the physical domain was proposed
in [22]. Furthermore, the modeling of a class of nonlinear systems with two time scales was
presented in [23]. LTI systems with three time scales, their modeling, and their reduction
with mixed causalities in bond graphs were introduced in [24].

Currently, there are some software programs available for modeling and system
analysis in a bond graph approach, for example the 20-sim software developed at the
university of Twente, BONDLAB introduced by Bond Lab Technologies, SYMBOLS 2000
presented by Mukherjee and Samantaray, and CAMPG developed by Cadsim Engineering.

Control systems modeled in bond graphs require the design of the control law existing
in different procedures, for example bond-graph-based control by Gawthrop [25,26] and
bond graphs in control by Karnopp [27]. A slow state estimated feedback applied to a
bond graph model of a singularly perturbed system was proposed in [22]. Furthermore, a
composite feedback control of a system with singular perturbations in the physical domain
was presented in [28].

In this paper, bond graph models of a class of nonlinear systems with singular per-
turbations on three time scales (fast, medium, slow) are proposed. These systems can
have linearly independent and dependent state variables on each time scale. Due to the
properties of singularly perturbed systems, reduced models can be obtained. The deduction
and comparison of reduced models from the exact models can be manifested as a symmetry
of the systems with singular perturbations.

The first reduced model is when the fast dynamics have converged, which is applied
to the storage elements that represent these dynamics as a derivative causality. The next
reduced model is obtained by assigning derivative causality to the elements of the medium
dynamics, indicating that these dynamics have converged. Therefore, the traditional quasi-
steady-state model with slow dynamics in a bond graph approach is determined. This
paper is based on [19,23]. However, the extension to three time scales to a class of nonlinear
systems and the different dynamics can be linearly independent and dependent, offering
the originality of this paper.

Bond graph modeling has been used extensively in robotic systems and is applied to
internal combustion and electric vehicles today [29]. Furthermore, thermal and chemical
systems have been modeled with bond graphs [15]. These systems generally determine
nonlinear models on various time scales, so this paper can be useful to analyze the behavior
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of reduced models. Complex dynamic systems are an interesting challenge to model in
bond graphs

This paper is organized as follows: Section 2 gives the analysis of systems with
singular perturbations in the algebraic approach. The modeling and reduction in the
bond graph of systems with three time scales is presented in Section 3. A case of study of
an electromechanical system by obtaining the reduced models in the physical domain is
described in Section 4. Finally, in Section 5, the conclusions are given.

2. Singular Perturbation Method

A singularly perturbed nonlinear system is expressed by:

•
x1 = f (x1, x2, u, ε, t), x1(t = 0) = x1(0) x1 ∈ <n (1)

ε
•
x2 = g(x1, x2, u, ε, t), x2(t = 0) = x2(0) x2 ∈ <m (2)

It is assumed that in the domain of interest, f and g are continuous differentiable functions
of their arguments x1, x2, u, ε, and t. Due to the characteristics of systems with singular per-
turbations whose complete order is (n + m) containing small time constants, it is possible
to neglect them by setting ε = 0 in (2):

0 = g(x1, x2, u, 0, t) (3)

and substituting (3) into (1):
•

x1 = f (x1, x2, u, 0, t) (4)

determines a reduced differential equation of order n and an algebraic equation of order m.
It is assumed that one of the several solutions of (3) is defined by:

x2 = φ(x1, u, t) (5)

and substituting (5) into (4), the quasi-steady-state model is obtained by:

•
x1 = f (x1, φ(x1, u, t), u, t)

= f (x1, u, t)
(6)

The validity of the given reduction of a system with singular perturbations is due to
the Tikhonov theorem, which requires the following assumptions.

Assumption 1 ([1,2]). The functions f and g are continuous with the variables x, y, and t.

Assumption 2 ([1,2]). The differential equation of fast dynamics on the fast time scale:

dx2(τ)

dτ
= g[x1, x2(τ), u, 0, t] (7)

where x1 and t are fixed parameters, is called the boundary layer equation of the system (1) and (2).

Assumption 3 ([1,2]). The root x2 = φ(x1, u, t) of the equation g(x1, x2, u, 0, t) = 0 is called an
isolated root in a domain D of the set of variables x1, u, and t, if there exists an ε > 0 such that the
equation g(x1, x2, u, 0, t) = 0 has no solution other than φ(x1, u, t) for |x2 − φ(x1, u, t)| < ε.

Assumption 4 ([1,2]). The isolated root x2 = φ(x1, u, t) is called stable in D if, for all points
(x1, u, t) ∈ D, the points x2 = φ(x1, u, t) are asymptotically stable equilibrium points according to
Lyapunov with Equation (7) as τ → ∞. This means that the Jacobian matrix gx2 has all eigenvalues
with negative real parts,

Reλ

{
∂g
∂x2

}
≤ −c < 0 (8)
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Assumption 5 ([1,2]). The region of influence R of an isolated stable root x2 = φ(x1, u, t) is the
set of points [x1(0), x2(0), u(0), t0] such that the solution of (7) satisfying the initial condition
x2(τ = 0) = x2(0) tends to the value φ(x1(0), u(0), t0), as τ → ∞.

With the established assumptions, the Tikhonov theorem is enunciated.

Theorem 1 ([1,2]). Let Assumptions 1 to 5 be satisfied. Then, the solutions x1(t, ε) and x2(t, ε)
of the full system (1) and (2) are related to the solutions x1 and x2 of the degenerate model (3)
and (4) as:

lim
ε→0

[x1(t, ε)] = x1(t), 0 ≤ t ≤ T (9)

lim
ε→0

[x2(t, ε)] = x2(t), 0 < t ≤ T (10)

where T is any value such that x2 = φ(x1, u, t) is an isolated stable root of g(x1, x2, u, 0, t) = 0
for 0 ≤ t ≤ T. Thus, the convergence is uniform in 0 ≤ t ≤ T for x1(t, ε) and in any interval
0 < t1 ≤ t ≤ T for x2(t, ε).

A singular perturbed system with three time scales is defined by:

•
x1 = f (x1, x2, x3, u, ε1, ε2, t), x1(t = 0) = x1(0) x1 ∈ <n (11)
•
x2 = g(x1, x2, x3, u, ε1, ε2, t), x2(t = 0) = x2(0) x2 ∈ <m (12)
•
x3 = h(x1, x2, x3, u, ε1, ε2, t), x3(t = 0) = x3(0) x3 ∈ <l (13)

where f , g, and h are assumed to be sufficiently many times continuously differentiable
functions for their arguments x1, x2, x3, ε1, and ε2.

In this paper, the product of state variables is the specific class of nonlinear systems
modeled and analyzed. These systems are described by:

•
x1(t)

ε1
•
x2(t)

ε2
•
x3(t)

 =

 A11(x) A12(x) A13(x)
A21(x) A22(x) A23(x)
A31(x) A32(x) A33(x)

 x1(t)
x2(t)
x3(t)

+

 B1(x)
B2(x)
B3(x)

u(t) (14)

where the slow, medium, and fast dynamics are x1(t)<n, x2(t)<m, and x3(t)<l , respectively,
and the inputs are u(t)<p.

The first reduction of this system is obtained by neglecting the fast dynamics (ε2 = 0)
deriving the following expressions:

•
x1(t)

ε1
•

x2(t)
x3(t)

 = A(x)
[

x1(t)
x2(t)

]
+ B(x)u(t) (15)

where:

A(x) =

 A11(x) A12(x)
A21(x) A22(x)
A31(x) A32(x)


=

 A11(x)− A13(x)A−1
33 (x)A31(x) A11(x)− A13(x)A−1

33 (x)A32(x)
A21(x)− A23(x)A−1

33 (x)A31(x) A22(x)− A23(x)A−1
33 (x)A32(x)

−A−1
33 (x)A31(x) −A−1

33 (x)A32(x)

 (16)
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and:

B(x) =

 B1(x)
B2(x)
B3(x)

 =

 B1(x)− A13(x)A−1
33 (x)B3(x)

B2(x)− A23(x)A−1
33 (x)B3(x)

−A−1
33 (x)B3(x)

 (17)

The last reduction is achieved by removing the medium dynamics with ε1 = 0, and
the system is described by: [ •

x̃1(t)
x̃2(t)

]
= Ã(x)x̃1(t) + B̃(x)u(t) (18)

where:

Ã(x) =

[
Ã11

Ã21

]
=

[
A11(x)− A12(x)

[
A22(x)

]−1 A21(x)
−
[
A22(x)

]−1 A21(x)

]
(19)

and:

B̃(x) =

[
B̃1
B̃2

]
=

[
B1(x)− A12(x)

[
A22(x)

]−1B2(x)
−
[
A22(x)

]−1B2(x)

]
(20)

Bond graph models of singularly perturbed systems are described in the next section.

3. Singularly Perturbed Systems in a Bond Graph Approach

The bond graph methodology provides a modeling platform based on the exchange
of power of the elements that form a system. Power is obtained as the product of two
generalized power variables: effort e(t) and flow f (t), as shown in Figure 1.

( )e t
( )f t

Figure 1.

A B

MSe MSf

A B

BA BA
Figure 2.

R R Figure 3.

C Figure 4.

Figure 5.C

I Figure 6.

I Figure 7.

TF TF

GY GY

Figure 8.

Figure 9.

11

3

2 01

3

2
Figure 10.

Figure 1. Representation of a bond.

In bond graph modeling, two generalized energy variables called momentum p(t) =∫ t
0 e(τ)dτ and displacement q(t) =

∫ t
0 f (τ)dτ are used.

In order to obtain the sets of equations of a system, the constitutive relations of the
elements are required. These relations can be dynamic or algebraic depending on the
element and by the cause–effect assignment. In a bond graph, a bond with a causal stroke
determines the causality assignment, and the assignments of the half arrow and the causal
stroke are independent, as is shown in Figure 2.

( )e t
( )f t

Figure 1.

A B

MSe MSf

A B

BA BA
Figure 2.

R R Figure 3.

C Figure 4.

Figure 5.C

I Figure 6.

I Figure 7.

TF TF

GY GY

Figure 8.

Figure 9.

11

3

2 01

3

2
Figure 10.

Figure 2. Representation of causal bonds.

The different physical systems that can be used to build a dynamic system are de-
scribed below:

• One-port passive elements are defined by:

– Resistance taking whatever causality shown in Figure 3. This element represents
damper, resistor, or fluid resistance, and the constitutive relationship is given by:

e = R f (21)

( )e t
( )f t

Figure 1.

A B

MSe MSf

A B

BA BA
Figure 2.

R R Figure 3.

C Figure 4.

Figure 5.C

I Figure 6.

I Figure 7.

TF TF

GY GY

Figure 8.

Figure 9.

11

3

2 01

3

2
Figure 10.

Figure 3. Representation of a resistive bond.
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– Capacitance in integral causality assignment where the flow variable is integrated
to produce the effort variable, as illustrated in Figure 4. Accumulator, linear,
and torsional springs represent capacitances whose constitutive relationship is
described by:

e =
1
C

∫
f dt (22)

( )e t
( )f t

Figure 1.

A B

MSe MSf

A B

BA BA
Figure 2.

R R Figure 3.

C Figure 4.

Figure 5.C

I Figure 6.

I Figure 7.

TF TF

GY GY

Figure 8.

Figure 9.

11

3

2 01

3

2
Figure 10.

Figure 4. Representation of a capacitive bond in integral causality.

This element in a derivative causality assignment is shown in Figure 5 and the
corresponding constitutive relationship given by:

f = C
de
dt

(23)

( )e t
( )f t

Figure 1.

A B
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A B
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Figure 2.

R R Figure 3.

C Figure 4.

Figure 5.C

I Figure 6.

I Figure 7.
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Figure 9.

11

3

2 01

3

2
Figure 10.

Figure 5. Representation of a capacitive bond in derivative causality.

– Inertance in integral causality assignment where the effort variable is integrated
to produce the flow variable, which is shown in Figure 6. This element is repre-
sentative of a mass, inductor, or flywheel, and its constitutive relationship is:

f =
1
C

∫
edt (24)
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Figure 10.

Figure 6. Representation of an inductive bond in integral causality.

When a derivative causality is assigned to this element, the constitutive relation-
ship is described by:

e = I
d f
dt

(25)

and Figure 7 shows this element with the causality applied.

( )e t
( )f t

Figure 1.
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Figure 2.
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3
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Figure 7. Representation of an inductive bond in derivative causality.

• One-port active elements denoted by
(

MSe, MS f

)
represent the power sources. These

sources have only one causality, and this is shown in Figure 8;

( )e t
( )f t

Figure 1.

A B

MSe MSf

A B

BA BA
Figure 2.

R R Figure 3.

C Figure 4.

Figure 5.C
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I Figure 7.
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GY GY

Figure 8.

Figure 9.

11

3

2 01

3

2
Figure 10.

Figure 8. Representation of power sources: MSe is an effort source; MS f is a flow source.

• Two-port elements represent distribution elements denoted by (TF, GY), which are
transformers and gyrators, and Figure 9 shows these elements;
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Figure 2.
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Figure 8.

Figure 9.

11

3

2 01

3

2
Figure 10.

Figure 9. Representation of transformers, TF, and gyrators, GY.
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The constitutive relationships for the transformers are given by:

e1 = ae2 (26)

f1 =
1
a

f2 (27)

and for gyrators are:

e1 = b f2 (28)

f1 =
1
b

e2 (29)

• Three-port elements represent junctions and are denoted by (1, 0), which determine
the different connections of the elements, and these junctions are shown in Figure 10;

( )e t
( )f t

Figure 1.

A B

MSe MSf

A B

BA BA
Figure 2.

R R Figure 3.

C Figure 4.

Figure 5.C

I Figure 6.

I Figure 7.

TF TF

GY GY

Figure 8.

Figure 9.

11

3

2 01

3

2
Figure 10.

Figure 10. Connection representation: series junctions, 1, and parallel junctions, 0.

A one-junction is defined by:

ein1 + ein2 + · · ·+ einm = eout1 + eout2 + · · ·+ eoutn (30)

fin1 = fin2 = · · · = finm = fout1 = fout2 = · · · = foutn (31)

and for a zero-junction:

ein1 = ein2 = · · · = einm = eout1 = eout2 = · · · = eoutn (32)

fin1 + fin2 + · · ·+ finm = fout1 + fout2 + · · ·+ foutn (33)

where m and n are the entry and exit bonds to the one-junction.

The different elements of a bond graph can be grouped into fields, and the use of
junction structures allows relatively complex systems to be modeled and analyzed in this
approach. A bond graph model with a preferred integral causality assignment (BGI) of a
system with singular perturbations is shown in Figure 11. The junction structure of a bond
graph model with three time scales is based on the junction structure of a basic bond graph
model introduced in [30].

x
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Figure 11. Diagram of a junction structure with all storage elements in a predefined integral causality:
energy state variables x; inputs, u; dissipation field variables, (Din, Dout); derived from states in

integral and derivative causality,
(
•
x,
•
x

d
)

; co-energy variables in integral and derivative, causal-

ity
(

z, zd
)

.

The block diagram of Figure 11 is described by:

• The source field denoted by
(

MSe, MS f

)
that determines the plant input u(t) ∈ <p;
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• The junction structure denoted by (0, 1, MTF, MGY) with zero and one junctions,
transformers MTF, and gyrators MGY, which can be modulated by state variables x(t);

• The energy storage field denoted by (C, I) that defines energy variables q(t) and
p(t) associated with C and I storage elements in an integral causality assignment
describing linearly independent state variables of energy x(t) and co-energy z(t) and
storage elements with a derivative causality assigned describing linearly dependent
state variables of energy xd(t) and co-energy zd(t).
This storage field is defined by elements that represent the slow, medium, and fast
dynamics that are indicated in Figure 11. The storage elements for each dynamic can

have an integral causality whose state vector is x(t) =

 x1(t)
x2(t)
x3(t)

 and a derivative

causality with state vector xd(t) =

 xd
1(t)

xd
2(t)

xd
3(t)

.

Therefore, the smallest circle in Figure 11 defines all the storage elements, and the
largest circle indicates that this field is formed by the dynamics of three time scales.
These dynamics are:

– Slow dynamics x1(t) ∈ <n and xd
1(t) ∈ <nd with constitutive relationships:

z1(t) = F1x1(t) (34)

zd
1(t) = Fd

1 xd
1(t) (35)

– Medium dynamics x2(t) ∈ <m and xd
2(t) ∈ <md with constitutive relationships:

z2(t) = F2x2(t) (36)

zd
2(t) = Fd

2 xd
2(t) (37)

– Fast dynamics x3(t) ∈ <l and xd
3(t) ∈ <ld with constitutive relationships:

z3(t) = F3x3(t) (38)

zd
3(t) = Fd

3 xd
3(t); (39)

• The energy dissipation field denoted by (R) that defines Din(t) ∈ <r and Dout(t) ∈ <r

as a mixture of power variables e(t) and f (t) indicating the energy exchanges between
the dissipation field and the junction structure.

The mathematical model of the diagram in Figure 11 is obtained from the follow-
ing lemma.

Lemma 1. Consider a class of nonlinear systems of the type of product of state variables composed
of three time scales modeled by bond graphs in a preferred integral causality assignment whose
junction structure is defined by:


•
x(t)

Din(t)
zd(t)

 =

 S11(x) S12(x) S13(x) S14(x)
S21(x) S22(x) S23(x) 0
S31(x) 0 0 0




z(t)
Dout(t)

u(t)
•
x

d
(t)

 (40)

where the state variables are:

x(t) =

 x1(t)
x2(t)
x3(t)

 (41)
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x1(t), x2(t), and x3(t) being the slow, medium, and fast dynamics, respectively, with linear
constitutive relationships:

z(t) = Fx(t) (42)

zd(t) = Fdxd(t) (43)

Dout(t) = LDin(t) (44)

then a mathematical model of this system is given by:
•
x1(t)

ε1
•
x2(t)

ε2
•
x3(t)

 = A(x)x(t) + B(x)u(t) (45)

where:

A(x) = εE−1(x)
[

S11(x) + S12(x)M(x)S21(x) + S14(x)
(

Fd
)−1 •

S31(x)
]

F (46)

B(x) = εE−1(x)[S13(x) + S12(x)M(x)S23(x)] (47)

with:

E(x) = I − S14(x)
(

Fd
)−1

S31(x)F (48)

M(x) = L[I − S22(x)L]−1 (49)

and:
ε = diag

{
I, F−1

2 , F−1
3

}
(50)

The proof is presented in Appendix A. The symmetry between graphical modeling in a
bond graph and mathematical modeling in the state space through Lemma 1 is established.

In order to obtain the mathematical model with the conditions of this paper from a
bond graph model of a class of nonlinear systems with singular perturbations, the following
assumptions have to be considered.

Assumption 6. The constitutive relationships of the storage elements and dissipation elements
are linear.

Assumption 7. The product of the state variables defines the class of nonlinear systems.

Assumption 8. The relationships between storage elements in integral and derivative causality
defined by E(x) are structurally invertible.

Assumption 9. The algebraic loops between dissipation elements defined by M(x) are struc-
turally invertible.

The bond graph methodology allows deriving different models depending on the
causality applied to its elements. Furthermore, when a system has the properties of having
different time scales, reduced models can be obtained. Therefore, the direct determination
of reduced models for a class of nonlinear systems with three time scales in a bond graph
approach is presented.

In the analysis of singularly perturbed systems, the fast dynamics reach the steady
state when the medium and slow dynamics are developing their transitory period. These
reduced models can be obtained by assigning a derivative causality to the storage elements
of the fast dynamics and maintaining integral causality to the storage elements of the
medium and slow dynamics. This formulation is proposed in Figure 12.
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Figure 12. Diagram of a junction structure with storage elements in integral causality for slow and
medium dynamics x1,2 and in derivative causality for fast dynamics x3,d; energy state variables x;
inputs, u; dissipation field variables

(
DH

in , DH
out
)
.

The junction structure of Figure 12 indicates that for the elements of the storage field of
the slow and medium dynamics, an integral causality is assigned, which is denoted by x1,2,
and all the elements of the fast dynamics have a derivative causality, that is the elements
that are in Figure 11 in integral causality x3 and derivative xd

3 will all have derivative
causality and are denoted by x3,d. Therefore, these key vectors are a compact representation
of the storage field:

• x1,2 state variables of slow and medium dynamics in integral causality;
• x3,d state variables linearly independent and dependent on fast dynamics in deriva-

tive causality.

The representation of the left part of Figure 12 shows individually the causality for
each of the slow, medium, and fast dynamics. The causality of the dissipative field has to be
adjusted with its key vectors

(
DH

in, DH
out
)

so that the entire bond graph is causally corrected.
Based on the diagram in Figure 12, the junction structure that allows deriving the

reduced models is introduced in the following lemma.

Lemma 2. Consider a class of nonlinear systems with singular perturbations modeled by bond
graphs where the storage elements that represent slow and medium dynamics have an integral
causality assignment, and for the storage elements for the fast dynamics, a derivative causality is
assigned, whose junction structure is defined by:


•
x1,2(t)
z3,d(t)
DH

in(t)
zd

1,2(t)

 =


H(1,2)(1,2)

11 (x) H(1,2)(3,d)
11 (x) H(1,2)

12 (x) H(1,2)
13 (x) H(1,2)

14 (x)
H(3,d)(1,2)

11 (x) H(3,d)(3,d)
11 (x) H(3,d)

12 (x) H(3,d)
13 (x) 0

H(1,2)
21 (x) H(3,d)

21 (x) H22(x) H23(x) 0
H(1,2)

31 (x) 0 0 0 0




z1,2(t)
•
x3,d(t)
DH

out(t)
u(t)
•
x

d
1,2(t)

 (51)

where the state variables are expressed by:

x1,2(t) =
[

x1(t)
x2(t)

]
(52)

and:

x3,d =

[
x3(t)
xd

3(t)

]
(53)

with
DH

out(t) = LH DH
in(t) (54)



Symmetry 2022, 14, 104 11 of 24

then the quasi-steady-state models are given by:[ •
x1,2(t)
x3,d(t)

]
=

[
A(1,2)(x)

A(3,d)(1,2)(x)

]
x1,2(t) +

[
B(1,2)(x)
B(3,d)(x)

]
u(t) (55)

where:

A(1,2)(x) = εH

[
E(1,2)(x)

]−1[
H(1,2)(1,2)

11 (x) + H(1,2)
12 NH(x)H(1,2)

21 (x)

+H(1,2)
14 (x)

(
Fd

1,2

)−1 •
H

(1,2)

31 (x)

]
F1,2

(56)

B(1,2)(x) = εH

[
E(1,2)(x)

]−1[
H(1,2)

13 (x) + H(1,2)
12 NH(x)H(1,2)

23 (x)
]

(57)

A(3,d)(1,2)(x) = (F3,d)
−1
[

H(3,d)(1,2)
11 (x) + H(3,d)

12 NH(x)H(1,2)
21 (x)

]
(58)

B(3,d)(x) = (F3,d)
−1
[

H(3,d)
13 (x) + H(3,d)

12 NH(x)H23(x)
]

(59)

with:

NH(x) = LH [I − H22(x)LH ]
−1 (60)

E(1,2)(x) = I − H(1,2)
14 (x)

(
Fd

1,2

)−1
H(1,2)

31 (x)F1,2 (61)

and:

F1,2 = diag{F1, F2} (62)

Fd
1,2 = diag

{
Fd

1 , Fd
2

}
(63)

F3,d = diag
{

F3, Fd
3

}
(64)

εH = diag
{

I, F−1
2

}
(65)

The proof is presented in Appendix B.
The model described by Lemma 2 represents a system in which the fast dynamics has

converged. However, in an analysis at a time greater than the convergence of the medium
dynamics, reduced models can be obtained.

The application of Lemma 2 requires that the following assumptions be satisfied.

Assumption 10. The equation:

A31(x)x1(t) + A32(x)x2(t) + A33(x)x3(t) + B3(x)u(t) = 0 (66)

can be solved in terms of:

x3(t) = φi(x1, x2, u), i = 1, 2, · · · , k (67)

where k are distinct roots.

Assumption 11. The A33(x) matrix is nonsingular.

Assumption 12. The algebraic loops matrix NH(x) is nonsingular.

This new model reduced in a bond graph approach is obtained by assigning derivative
causality to the storage elements of the medium and fast dynamics and to the storage
elements of the slow dynamics, and an integral causality is assigned. This last reduction is
illustrated in Figure 13.
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Fig. 13.Figure 13. Diagram of a junction structure with storage elements in integral causality for slow
dynamics, x1, and in derivative causality for fast and medium dynamics, x2,3;energy state variables x;
inputs, u; dissipation field variables

(
DR

in, DR
out
)
.

The junction structure of Figure 13 indicates that all the storage elements of the
medium and fast dynamics have derivative causality in compact form denoted by x2,3,
and for the linearly independent elements of the slow dynamics defined by x1, an integral
causality is assigned. The left part of Figure 13 shows the causality assignment for each
dynamics of the system. Due to the change of causalities in the elements described, the
causality in the dissipation elements will have to be adjusted through the key vectors(

DR
in, DR

out
)

so that the bond graph is causally correct.
The mathematical model according to Figure 13 is obtained by applying the follow-

ing lemma.

Lemma 3. Consider a class of nonlinear singularly perturbed systems modeled by bond graphs
where for the storage elements that determine the slow dynamics, an integral causality is assigned,
and the storage elements for the medium and fast dynamics have a derivative causality assignment
with a junction structure defined by:


•
x1(t)

z2,3(t)
DR

in(t)
zd

1(t)

 =


R11

11(x) R1(2,3)
11 (x) R11

12(x) R11
13(x) R11

14(x)
R(2,3)1

11 (x) R(2,3)(2,3)
11 (x) R(2,3)

12 (x) R(2,3)
13 (x) 0

R11
21(x) R(2,3)

11 (x) R22(x) R23(x) 0
R11

31(x) 0 0 0 0




z1(t)
•
x2,3(t)
DR

out(t)
u(t)
•
x

d
1(t)

 (68)

where the state variables for the medium and fast dynamics are described by:

x2,3(t) =


x2(t)
xd

2(t)
x3(t)
xd

3(t)

 (69)

with
DR

out(t) = LRDR
in(t) (70)

then the quasi-steady-state models are given by:

•
x̃1(t) = Ã11(x)x̃1(t) + B̃1(x)u(t) (71)

x̃2,3(t) = Ã23(x)x̃1(t) + B̃2,3(x)u(t) (72)

where:
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Ã11(x) = Ẽ1
−1

(x)
[

R11
11(x) + R11

12(x)NR(x)R11
21(x) + R11

14(x)
(

Fd
1

)−1 •
R

11

31(x)
]

F1 (73)

Ã23 = F−1
2,3

[
R(2,3)1

11 (x) + R(2,3)
12 NR(x)R11

21(x)
]

F1 (74)

B̃1(x) = Ẽ1
−1

(x)
[

R11
13(x) + R11

12(x)NR(x)R23(x)
]

(75)

B̃2,3(x) = F−1
2,3

[
R(2,3)

13 (x) + R(2,3)
12 NR(x)R23(x)

]
F1 (76)

with:

NR(x) = LR[I − R22(x)LR]
−1 (77)

F2,3 = diag{F2, F3} (78)

The proof is presented in Appendix C.
The application of Lemma 3 requires that the following assumptions be satisfied.

Assumption 13. The equation:

A21(x)x1(t) + A22(x)x2(t) + A23(x)x3(t) + B2(x)u(t) = 0 (79)

can be solved in terms of:
x2(t) = φi(x1, u), i = 1, 2, · · · , k (80)

where k are distinct roots.

Assumption 14. The A22(x) matrix is nonsingular.

Assumption 15. The algebraic loops matrix NR(x) is nonsingular.

The reduced models of a system with singular perturbations can be obtained by
applying Lemmas 2 and 3, determining a symmetry with the exact models for each of
the dynamics.

The most important limitation of this paper is if the fast and medium dynamics’
storage elements cannot accept derivative causality due to the configuration of the model.
A possible solution to this problem is to include dissipative elements with small or large
numerical values in order to be able to assign derivative causality to the storage elements
for fast and medium dynamics. Other limitations are that the given assumptions cannot
be applied.

The proposed methodology was applied to the following case study.

4. Case Study as an Illustrative Example

DC motors represent electromechanical systems that are widely used as actuating
elements in industrial applications, whose advantages are easy speed and position control
and a wide adjustability range. In the modeling of a DC motor, it is common to neglect
nonlinearities in order to find a simple model. However, the assumption that the nonlinear
elements on the system are negligible may give to big modeling errors. Likewise, it is
common for the supply of energy to the DC motor to be obtained through the activation of
elements of fast reaction electronics.

Therefore, the complete system will have three times scales and qualify as a singularly
perturbed nonlinear system shown in Figure 14.
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Fig. 15.

Figure 14. Diagram of a physical system with three time scales.

In Figure 14, R1, L1, and C1 represent the resistance, inductance, and capacitance,
respectively, from the electronic input stage through which the supply voltage V1 is in-
troduced to the system. The armature winding is defined by the resistance Ra and the
inductance La; R f and L f are the resistance and inductance of the field winding with the
voltage Vf applied to this circuit. The mechanical load to the motor is the connection of
two inertias J and Je by using a transformer a and a damping b.

The bond graph in an integral causality assignment of the system is shown in Figure 15.
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Fig. 15.

Figure 15. Bond graph with three time scales in an integral causality predefined.

The bond graph in integral causality assignment allows obtaining the mathematical
model of the complete system using Lemma 1, the first step being the description of the
dynamics that form the system. The variables of the mechanical subsystem describe the
slow dynamics expressed by the key vectors and constitutive relationship:

x1(t) = p18;
•
x1(t) = e18; z1(t) = f18 (81)

F1 =
1
J

(82)

and the key vectors for I : Je with a derivative causality assignment that determines a
linearly dependent state variable are the following:

xd
1(t) = p20;

•
x

d
1(t) = e20; zd

1(t) = f20 (83)

Fd
1 =

1
Je

(84)

The medium dynamics are represented by the storage elements of the electrical sub-
system of the DC motor, whose key vectors and constitutive relationship are:

x2(t) =

[
p10
p12

]
;
•
x2(t) =

[
e10
e12

]
; z2(t) =

[
f10
f12

]
(85)

F2 = diag

{
1
La

,
1

L f

}
(86)
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The electronic subsystem for supplying power to the motor represents the fast dynam-
ics defined by:

x3(t) =

[
p3
q7

]
;
•
x2(t) =

[
e3
f7

]
; z2(t) =

[
f3
e7

]
(87)

F3 = diag
{

1
L1

,
1

C1

}
(88)

according to Figure 11 for the dissipation elements:

Din(t) =


f16
f9
f13
e4

; Dout(t) =


e16
e9
e13
f4

 (89)

L = diag
{

b, Ra, R f ,
1

R1

}
(90)

and the inputs:

u(t) =
[

e1
e2

]
(91)

The system order is given by n = 1, nd = 1, m = 2, and l = 2; thus, n + m + l = 5 and
F = diag{F1, F2, F3}. The junction structure S(x) is described by:



e18
e10
e12
e3
f7
f16
f9
f13
e4
f20


=



0 f12 0 0 0 −1 0 0 0 0 0 −a
− f12 0 0 0 1 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 −1 0 0 1 0
0 0 0 0 −1 0 0 0 0 1 0 0
0 −1 0 1 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 1 0 0
a 0 0 0 0 0 0 0 0 0 0 0





f18
f10
f12
f3
e7
e16
e9
e13
f4
e1
e2
e20



(92)

From (40), (48), (82), (84), and (92), the relationship of the linearly dependent state
variable to the linearly independent variable is described by:

E(x) = diag
{

1 + a2 Je

J
, I4

}
(93)

From (45)–(47), and (49) with (82), (86), (88), and (93), the mathematical model of the
complete system is given by:


•
x1(t)

ε1
•
x2(t)

ε2
•
x3(t)

 =



−b
J+a2 Je

J
J+a2 Je

· p12
L f La

0 0 0
−La p12

JL f
−Ra 0 0 La

C1

0 0 −R f 0 0
0 0 0 0 −L1

C1

0 −C1
La

0 C1
L1

−1
R1


x(t) +


0 0
0 0
0 L f
L1 0
C1
R1

0

u(t) (94)

Assigning a derivative causality to all the storage elements (I : L1; C : C1) that rep-
resent the fast dynamics (x3) and maintaining integral causality to the elements of the
medium and slow state variables

(
I : La; I : L f

)
and (I : J), respectively, the reduced
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model (15) applying Lemma 2 is obtained. Figure 16 shows the bond graph to obtain the
reduced model when the fast dynamics have converged.
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Figure 16. Bond graph with I : L1 and C : C1 in derivative causality.

In this case, the dissipation elements retain the same causality with respect to the bond
graph of Figure 13, then the key vectors and their constitutive relationship are defined by:

DH
in(t) = Din(t); DH

out(t) = Dout(t); LH = L (95)

Applying Lemma 2, the junction structure of the bond graph of Figure 14 is given by:



e18
e10
e12

f3
e7
f16
f9
f13
e4
f20


=



0 f12 0 0 0 −1 0 0 0 0 0 −a
− f12 0 0 −1 0 0 −1 0 0 1 0 0

0 0 0 0 0 0 0 −1 0 0 1 0

0 1 0 0 1 0 0 0 −1 0 0 0
0 0 0 −1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
a 0 0 0 0 0 0 0 0 0 0 0





f18
f10
f12

e3
f7

e16
e9
e13
f4
e1
e2
e20



(96)

From (56), (57), (60), and (61) with (96), the quasi-steady-state model for x1 and x2 is
defined by:

•
x1,2(t) =


−b

J+a2 Je

p12
La L f (J+a2 Je)

0
−p12
JL f

La −Ra 0

0 0 −R f

x1,2(t) +

 0 0
1 0
0 1

u(t) (97)

From (58)–(60) with (96), the expression of the fast dynamics when they have con-
verged is described by:

x3,d(t) =

[
0 L1

La
0

0 0 0

]
x1,2(t) +

[
0 0

C1 0

]
u(t) (98)

The smallest model is obtained by assigning derivative causality to the storage ele-
ments

(
I : La; I : L f

)
of the medium dynamics (x2), which is shown in Figure 17.
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Figure 17. Bond graph with a derivative causality to the fast (I : L1 and C : C1) and medium dynam-

ics
(

I : La and I : L f

)
.

In order to have a correct bond graph, the key vectors and the constitutive relation for
the dissipation elements are defined by:

DR
in(t) =


f16
e9
e13
e4

; DR
out(t) =


e16
f9
f13
f4

; LR = diag

{
b,

1
Ra

,
1

R f
,

1
R1

}
(99)

and the junction structure is obtained by:



e18

f10
f12
f3
e7
f16
e9
e13
e4
f20


=



0 0 0 0 0 −1 f12 0 0 0 0 −a
0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 1 0 0 0 −1 0 0 0
0 0 0 −1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0 0 0
− f12 −1 0 −1 0 0 0 0 0 1 0 0

0 0 −1 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0
a 0 0 0 0 0 0 0 0 0 0 0





f18

e10
e12
e3
f7

e16
f9
f13
f4
e1
e2
e20



(100)

The quasi-steady-state model applying Lemma 3 is obtained from (73), (75), and (77)
with (100) given by:

•
x̃1(t) =

(
1

J + a2 Je

)(
−b
J
−

p2
12

JL2
f Ra

)
x̃1(t) +

(
J

J + a2 Je

)[ p12
L f Ra

0
]
u(t) (101)

The convergence of the medium and fast dynamics is determined from (74), (76),
and (77) with (100) expressed as:

x̃2,3(x) =


−p12La
JL f La

0
−p12L1
JL f La

0

x̃1(t) +


La
Ra

0

0
L f
R f

L1
Ra

−L1
R1

C1 0

u(t) (102)

In order to show the effectiveness of the proposed methodology, Table 1 gives the
numerical parameters of the bond graph illustrated in Figure 15.
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Table 1. Parameters of the case study.

R1 = 100 Ω L f = 0.02 F a = 2

R f = 10 Ω b = 1.2 N-m-s Va = 120 V

Ra = 25 Ω J = 3.5 N-m-s2 Vf = 24 V

L1 = 10 µH Je = 5 N-m-s2

Le = 0.1 H C1 = 1 µF

In order to verify numerically the reduced models with respect to the exact model,
the graphs are illustrated in the following figures. The simulation of this case study was
obtained by using the 20-sim software.

It is important to note that the simulation results for the exact model shown in Figure 15
were obtained directly from the bond graph library of the 20-sim software. However, the
simulation of the reduced model was carried out through Equations (97) and (98) for the
convergence of the fast dynamics. The simulation of the reduced model for the convergence
of the medium and fast dynamics was used in Equations (101) and (102).

Figure 18 shows the behavior of the fast state variables, based on the exact model
(p3, q7) and the reduced model (p3, q7) given by (98).
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28.0693

28.0693

28.0693

28.0694

28.0694

:

p�� p�� 

p�� :

Figure 18. Behavior of the fast state variables: exact model (p3, p7); reduced model (p3, p7).

Now, the performance of the state variables of the medium dynamics is shown in
Figure 19. The great closeness of the models reduced to the exact model can be seen.

Figure 19. Behavior of the fast state variables: exact model (p10, p12); reduced model removing fast
dynamics (p10, p12); from (102), reduced model ( p̃10, p̃12).
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Finally, the behavior of the state variable of the slow dynamics is illustrated in Figure 20.
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Figure 20. Behavior of the slow state variable: exact model (p18); reduced model removing fast
dynamics (p18); reduced model removing medium dynamics ( p̃18).

It is clear from Figures 18–20 that the system contains three time scales: the simulation
time for the convergence of the fast dynamics is from 0–0.015 s, of the medium dynamics
from 0–0.03 s, and of the slow dynamics from 0–100 s.

This paper can be applied to multidisciplinary systems, for example mechatronics,
electric vehicles [29], and chemical processes [15], where they are characterized by having
several time scales in their dynamic behavior.

Some complex dynamical systems have been modeled in bond graphs, for example [31–33],
and the possible application of this paper requires that the system contains several time
scales and the class of nonlinear systems be according to the product of the state variables.

5. Conclusions

The analysis of a class of nonlinear systems with singular perturbations in a bond graph
approach was presented. The type of systems, although they are specific, can be found in
many electrical machines, as well as in aeronautical systems. One of the main objectives of
singularly perturbed systems is to obtain simplified models. Therefore, reduced models in
the physical domain have been proposed. The key for the direct determination of these
models is to assign derivative causality to the storage elements that converge to their steady-
state value, and for the remaining dynamics, an integral causality is assigned. In this way,
the three time scales (fast, medium, slow) are reduced to two time scales (medium, slow)
and finally to one (slow). The proposed methodology was applied to an electromechanical
system, obtaining the reduced models, and the simulation results were shown, verifying
the effectiveness of the presented lemmas.

Through this paper, the direct simulation of the bond graphs for reduced models is a
challenge to achieve using the bond graph library of the 20-sim software, but it is required
as future work to have these objectives.

Finally, the symmetry of graphical and mathematical models was established for
systems modeled in a bond graph. Furthermore, reduced models from exact models for
systems on three time scales by determining symmetries were presented.
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Appendix A. Proof of Lemma 1

Form the third line of (40) with (42) and (43):

xd(t) =
(

Fd
)−1

S31(x)Fx(t) (A1)

deriving with respect to time:

•
x

d
(t) =

(
Fd
)−1 •

S31(x)Fx(t) +
(

Fd
)−1

S31(x)F
•
x(t) (A2)

Now, from the second line of (40) with (44),

Din(t) = [I − S22(x)L]−1[S21(x)z(t) + S23(x)u(t)] (A3)

Substituting (A2) and (A3) into the first line of (40) with (44):

•
x(t) = S11(x)z(t) + S12(x)L[I − S22(x)L]−1[S21(x)z(t) + S23(x)u(t)]

+S13(x)u(t) + S14(x)
[(

Fd
)−1 •

S31(x)Fx(t) +
(

Fd
)−1

S31(x)F
•
x(t)

]
(A4)

With the assumptions that (48) and (49) can be obtained with (46) and (47), the model (45)
is proven.

Appendix B. Proof of Lemma 2

From the fourth line of (51) with (62) and (63),

xd
1,2(t) =

(
Fd

1,2

)−1
H(1,2)

31 (x)F1,2x1,2(t) (A5)

Deriving (A5) with respect to time:

•
x

d
1,2(t) =

(
Fd

1,2

)−1
[
•
H

(1,2)

31 (x)F1,2x1,2(t) + H(1,2)
31 (x)F1,2

•
x1,2(t)

]
(A6)

From the third line of (51) with (54):

DH
in(t) = [I − H22(x)LH ]

−1
[

H(1,2)
21 (x)z1,2(t) + H(3,d)

21 (x)
•
x3,d(t) + H23(x)u(t)

]
(A7)

Substituting (A6) and (A7) into the first line of (51) with (54):
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•
x1,2(t) = H(1,2)(1,2)

11 (x)z1,2(t) + H(1,2)(3,d)
11 (x)

•
x

d
3,d(t) + H(1,2)

13 (x)u(t)+
H(1,2)

12 (x)LH [I − H22(x)LH ]
−1
[

H(1,2)
21 (x)z1,2(t) + H(3,d)

21 (x)
•
x3,d(t)

+H23(x)u(t)] + H(1,2)
14 (x)

(
Fd

1,2

)−1
[
•
H

(1,2)

31 (x)F1,2x1,2(t)

+H(1,2)
31 (x)F1,2

•
x1,2(t)

]
(A8)

With (60) and (61), Expression (A8) can be rewritten by:

E(1,2)(x)
•
x1,2(t) =

[
H(1,2)(1,2)

11 (x) + H(1,2)
12 (x)NH(x)H(1,2)

21 (x)+

H(1,2)
14 (x)

(
Fd

1,2

)−1 •
H

(1,2)

31

]
(x)F1,2x1,2(t) + H(1,2)(3,d)

11 (x)
•
x

d
3,d(t)

+
[

H(1,2)
13 (x) + H(1,2)

12 (x)NH(x)H23(x)
]
u(t)

(A9)

Removing the term
•
x

d
3,d(t) and substituting (56) and (57) into (A9), the first line of (55)

is proven.
From the second line of (51) and (A7) with (A7):

z3,d(t) = H(3,d)(1,2)
11 (x)z1,2(t) + H(3,d)(3,d)

11 (x)
•
x

d
3,d(t) + H(3,d)

13 (x)u(t)

H(3,d)
12 (x)LH [I − H22(x)LH ]

−1
[

H(1,2)
21 (x)z1,2(t)+ (A10)

H(3,d)
21 (x)

•
x3,d(t) + H23(x)u(t)

]
with (60), (62), and (64), (A10) can be rewritten as:

z3,d(t) =
[

H(3,d)(1,2)
11 (x) + H(3,d)

12 (x)NH(x)H(1,2)
21 (x)

]
z1,2(t) +[

H(3,d)
13 (x) + H(3,d)

12 (x)NH(x)H23(x)
]
u(t) (A11)

+A(3,d)(3,d)(x)
•
x3,d(t)

where:
A(3,d)(3,d)(x) =

[
H(3,d)(3,d)

11 (x) + H(3,d)
12 (x)NH(x)H(3,d)

21 (x)
]

(A12)

Substituting (58) and (59) into (A11) and removing
•
x3,d(t), the second line of (55) is proven.

Equation (A11) with (A11) can be expressed by:

•
x3,d(t) = −

[
A(3,d)(3,d)(x)

]−1
A(3,d)(1,2)(x)x1,2(t) +

[
A(3,d)(3,d)(x)

]−1
x3,d(t)

−
[

A(3,d)(3,d)(x)
]−1

B(3,d)(x)u(t)
(A13)

The fast state variables in integral and derivative causality are not related, so considering
the linearly independent state variable:

•
x3(t) = −

[
A(3,d)(3,d)

11 (x)
]−1

A(3,d)(1,2)
11 (x)x1(t)−

[
A(3,d)(3,d)

11 (x)
]−1

A(3,d)(1,2)
12 (x)x2(t)

+
[

A(3,d)(3,d)
11 (x)

]−1
x3(t)−

[
A(3,d)(3,d)

11 (x)
]−1

B(3,d)
1 (x)u(t)

(A14)
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comparing (A14) with respect to the third line of (45) and (16):

A(3,d)(3,d)
11 (x) = A−1

33 ε2 (A15)

A(3,d)(1,2)
11 (x) = −A−1

33 A31 = A31(x) (A16)

A(3,d)(1,2)
12 (x) = −A−1

33 A32 = A32(x) (A17)

B(3,d)
1 (x) = −A−1

33 B3 = B3(x) (A18)

Equation (A9) with (56) and (57) can be given by:

•
x1,2(t) = A(1,2)(x)x1,2(t) + B(1,2)(x)u(t) + A(1,2)(3,d)(x)

•
x3,d(t) (A19)

Substituting (A13) into (A19) and removing x3(t),

•
x1,2(t) =

{
A(1,2)(x)− A(1,2)(3,d)(x)

[
A(3,d)(3,d)(x)

]−1
A(3,d)(1,2)(x)

}
x1,2(t)

+

{
B(1,2)(x)− A(1,2)(3,d)(x)

[
A(3,d)(3,d)(x)

]−1
B(3,d)(x)

}
u(t)

(A20)

expression (A20) is a compact representation of (16) and (17); therefore, the first reduction
is verified.

Appendix C. Proof of Lemma 3

From the third line of (68) with (70),

DR
in(t) = [I − R22(x)LR]

−1
[

R11
21(x)z1 + R(2,3)

21 (x)
•
x2,3(t) + R23(x)u(t)

]
(A21)

and substituting (A21) into the second line of (68) with (70),

z2,3(t) = R(2,3)1
11 z1(t) + R(2,3)

12 LR[I − R22(x)LR]
−1
[

R11
21(x)z1(t) + R(2,3)

21 (x)
•
x2,3(t)

+R23(x)u(t)] + R(2,3)
13 (x)u(t) + R(2,3)(2,3)

11 (x)
•
x2,3(t)

(A22)

with (77), Equation (A22) can be rewritten in the following form:

z2,3(t) =
[

R(2,3)1
11 + R(2,3)

12 NR(x)R11
21(x)

]
z1(t)

+
[

R(2,3)
13 (x) + R(2,3)

12 NR(x)R23(x)
]
u(t)+[

R(2,3)(2,3)
11 (x) + R(2,3)

12 NR(x)R(2,3)
21 (x)

]•
x2,3(t)

(A23)

Removing
•
x2,3(t) and substituting (73) and (75) into (A23) with (78), Equation (72) is proven.

From the fourth line of (68) with (34) and (35),

xd
1(t) =

(
Fd

1

)−1
R11

31(x)x1(t) (A24)

deriving this expression with respect to time:

•
x

d
1(t) =

(
Fd

1

)−1 •
R

11

31(x)F1x1(t) +
(

Fd
1

)−1
R11

31(x)F1
•
x1(t) (A25)

and substituting (A21) and (A25) with (70),

•
x1(t) = R11

11(x)z1 + R11
12(x)LR[I − R22(x)LR]

−1
[

R11
21(x)z1(t) + R(2,3)

21 (x)
•
x2,3(t)

+R23(x)u(t)] + R1(2,3)
11 (x)

•
x2,3(t) + R11

13(x)u(t)

+R11
14(x)

(
Fd

1

)−1 •
R

11

31(x)F1x1(t) + R11
14(x)

(
Fd

1

)−1
R11

31(x)F1
•
x1(t)

(A26)
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from (77), Equation (A26) can be written as:[
I − R11

14(x)
(

Fd
1

)−1
R11

31(x)F1

]
•
x1(t) =

[
R11

11(x) + R11
12(x)NR(x)R11

21(x)+

R11
14(x)

(
Fd

1

)−1 •
R

11

31(x)
]

z1 +
[

R1(2,3)
11 (x)

+R11
12(x)NR(x)R(2,3)

21 (x)
]•

x2,3(t) +
[
R11

13(x)
+R11

12(x)NR(x)R23(x)
]
u(t)

(A27)

Removing
•
x2,3(t) with (73) and (75) representing the quasi-steady-state model, (71) is proven.

Now, (A23) can be written as:

•
x2,3(t) =

[
Ã2,3

(2,3)
(x)
]−1[

−Ã2,3
(1)

(x)x1(t) + x2,3(t)− B2,3(x)u(t)
]

(A28)

Compared to:

ε1
•

x2(t) = A21(x)x1(t) + A22(x)x2(t) + B2(x)u(t)

the following expressions are obtained:

Ã2,3
(2,3)
11 (x) =

[
A22(x)

]−1
ε1 (A29)

Ã2,3
(1)
11 (x) = −

[
A22(x)

]−1 A21(x) (A30)

B2,31(x) = −
[
A22(x)

]−1B2(x) (A31)

Equation (A27) can be expressed by:

•
x1(t) = A11(x)x1(t) + A23(x)

•
x2,3(t) + B1(x)u(t) (A32)

Substituting (A29)–(A31) into (A32):

•
x1(t) =

{
A11(x)− A2311(x)

[
Ã2,3

(2,3)
11 (x)

]−1
Ã2,3

(1)
11 (x)

}
x1(t)

+

{
B1(x)− A2311(x)

[
Ã2,3

(2,3)
11 (x)

]−1
B2,31(x)

}
u(t)

(A33)

and comparing (A33) with respect the first line of (19) and (20), (18) is proven.
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