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Abstract: We evaluate a coupled oscillator solver by applying it to square lattice (N × N) Ising spin
problems for N values up to 50. The Ising problems are converted to a classical coupled oscillator
model that includes both positive (ferromagnetic-like) and negative (antiferromagnetic-like) coupling
between neighboring oscillators (i.e., they are reduced to eigenmode problems). A map of the
oscillation amplitudes of lower-frequency eigenmodes enables us to visualize oscillator clusters
with a low frustration density (unfrustrated clusters). We found that frustration tends to localize
at the boundary between unfrustrated clusters due to the symmetric and asymmetric nature of the
eigenmodes. This allows us to reduce frustration simply by flipping the sign of the amplitude of
oscillators around which frustrated couplings are highly localized. For problems with N = 20 to 50,
the best solutions with an accuracy of 96% (with respect to the exact ground state) can be obtained by
simply checking the lowest ~N/2 candidate eigenmodes.

Keywords: combinatorial optimization; Ising spin glass; coupled oscillator; eigenmode; clustering

1. Introduction

The spin glass model originates from condensed matter physics, where it was applied
to physical systems in which magnetic atoms are randomly distributed in a non-magnetic
host and induce ferromagnetic and antiferromagnetic interactions between neighboring
magnetic moments. The physical system is mathematically modeled by a weighted graph
where each vertex corresponds to a spin and each edge represents the interaction between
spins with positive and negative signs [1,2]. In the Ising spin model, the spin is a binary
variable that takes the value ± 1 [3,4]. The Ising problem is to find a binary spin config-
uration that minimizes the total energy function (the number of frustrated edges) for a
given set of edges. A variety of combinatorial optimization problems, such as sequencing
and ordering problems, resource allocation problems, and clustering problems [5,6], can be
mapped to the Ising problem [7].

To solve the Ising problem using a brute force combination approach, we need to
check 2n possibilities, where n is the total number of spins. The branch and bound method,
which based on a tree search algorithm, is commonly used to find the exact ground state
without an exhaustive search [8]. However, this method still requires a lot of CPU time and
memory and is only applicable to instances with a small number of spins. The potential
applications of the Ising model to optimization problems have motivated the development
of heuristic algorithms for finding high-quality solutions for instances with a large number
of spins [9,10]. Although heuristic algorithms generally do not guarantee an optimal
solution, they can yield good time-to-solution in practice.

Simulated annealing (SA), one of the most common heuristic algorithms, mimics
the physical process of annealing, where a material is slowly cooled to obtain the lowest
energy state [11–13]. Its algorithm is based on Monte Carlo simulation. Starting with
an initial spin configuration, a new candidate configuration is selected in each iteration
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of the simulation. If the total energy decreases for the new candidate, that candidate is
accepted and the iterative process continues. Otherwise, it is accepted with a probability
given by the Boltzmann factor, which decreases with temperature. This random acceptance
allows the algorithm to escape local minima. The system eventually cools into the global
minimum in the spin configuration space.

The growth of data size in Ising problems has spurred interest in physical hardware
systems that directly minimize the energy function [14–21]. Such systems are called Ising
machines. An example of an Ising machine is the quantum annealing machine from
D-Wave Systems, which was implemented using superconducting qubits [22,23]. The
machine operates at a cryogenic temperature. The connectivity between qubits is limited
to rather simple structures. Quantum adiabatic optimization inspired a new heuristic
algorithm for the Ising problem, called simulated bifurcation, which simulates adiabatic
evolution of classical nonlinear oscillators that exhibit bifurcation [24,25].

We recently developed a heuristic algorithm for the Ising problem in which the Ising
spin system is replaced by a coupled oscillator system, which is possible owing to the
equivalence of their equations of motion [26]. We obtained exact ground states for problems
with a small number of spins by simply calculating the lowest mode of the coupled oscilla-
tors (i.e., the lowest eigenvalue and eigenvector of the matrix representing the equations
of motion). We also developed an error correction algorithm that modifies the coupling
strength depending on the amplitude of individual oscillators. This heuristic algorithm
is a kind of annealing process since the energy landscape in the dipole configuration
space is optimized in such a way that the correct configuration is equivalent to the lowest
eigenmode. Based on this concept, we proposed an Ising machine composed of plasmon
particles with dipole–dipole interaction, whose strength can be modified by a phase-change
material inserted between neighboring particles [27].

In the present paper, we reconsider the coupled oscillator solver (COS) described
above from the following viewpoints: (1) the lowest mode of the coupled oscillators may
not always provide a minimally frustrated spin configuration (exact ground state) for large-
sized Ising problems; and (2) it is desirable to replace the time-consuming error correction
algorithm with a better algorithm inspired by an analysis of good candidate solutions
(i.e., the lowest eigenmodes). We apply the COS to two-dimensional N × N oscillators
for N values of up to 50. A map of the oscillation amplitudes (eigenvector components)
of lower-frequency eigenmodes enables us to visualize unfrustrated clusters. We found
that frustration tends to localize at the boundary between clusters due to the symmetric
and asymmetric nature of the eigenmodes. This allows us to reduce frustration simply by
flipping the sign of the amplitude of highly frustrated oscillators.

2. Coupled Oscillator Solver Applied to Ising Spin Problems

Here, we consider a square lattice (N × N) Ising spin glass problem without an
external magnetic field. The spin configuration that minimizes the Ising energy is given by

EIsing = −
N×N

∑
i=1

N×N

∑
j=1

Jijsisj (1)

where si denotes the ith spin with a value of 1 or −1, and Jij is the coupling coefficient
between the ith and jth spins having both positive (+J; ferromagnetic coupling) and negative
(−J; antiferromagnetic coupling) values. In this study, only four nearest neighbor couplings
are taken into account. For a given spin configuration, when Jijsisj > 0, the coupling Jij is
satisfied, otherwise it is frustrated. Minimizing the Ising energy is equivalent to maximizing
the number of satisfied couplings.

We start with an instance of 10 × 10 (N = 10) spins with 200 couplings. Problems were
generated by randomly assigning ferromagnetic and antiferromagnetic couplings with a
number ratio of 1:1. Figure 1a shows the distribution of frustrated couplings (bold lines)
for the exact ground state provided by a public domain [28], where an algorithm in [29] is
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used. In this algorithm, the original graph underlying the Ising problem is transformed
into a dual graph, and minimum weight perfect matching is calculated. For the backward
transformation, the matching leads to an Eulerian subgraph, the weight of which is also
minimized. Owing to the one-to-one correspondence between the Eulerian subgraphs
(cycles) and cuts in the original graph, the optimum Eulerian subgraphs provide the exact
ground state for the Ising problem. The red circles and blue diamonds represent up-spin
and down-spin states, respectively. The number of satisfied couplings of the exact ground
state was found to be nE = 166.

Figure 1. Instance of square lattice (10 × 10) Ising spin problem solved by the COS. (a) Spin
configuration of the exact ground state. The red circles and blue diamonds represent up-spin and
down-spin states, respectively. Frustrated couplings are indicated by bold lines. (b) Mapping of
oscillation amplitude un,m for the lowest four eigenmodes k = 1 to 4. The circles and diamonds
respectively represent positive and negative signs of un,m. Frustrated couplings are indicated by
bold lines. (c) Plot of the number of satisfied couplings nCO as a function of eigenmode number k.
(d–f) Results for another instance.

To solve the problem, we converted it to a classical coupled oscillator model by re-
placing the ferromagnetic and antiferromagnetic couplings with positive and negative
couplings, respectively, between neighboring oscillators, as illustrated in Figure 2a. A
normal attractive spring connecting neighboring masses gives rise to a positive interac-
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tion, and the masses tend to move in the same direction at lower frequency. A negative
interaction is implemented by a repulsive spring (which does not exist in reality) to allow
the masses to move in opposite directions. Due to the mathematical similarity between
the inter-spin and inter-oscillator interactions, we anticipate that the sign of the oscillator
amplitude for the lowest mode is the same or close to the spin configuration for the exact
ground state for the original Ising problem.

Figure 2. (a) Coupled oscillator model that includes both positive (ferromagnetic-like) and negative
(antiferromagnetic-like) coupling. (b) Definition of the superscripts and subscripts associated with γ.

The equation of motion for the masses on the square lattice is given by

..
xn,m = α2(γT

n,mxn−1,m + γL
n,mxn,m−1 + γT

n+1,mxn+1,m + γL
n,m+1xn,m+1) (2)

where xn,m is the displacement of a mass at the (n, m) lattice site and α is the square root
of the spring constant divided by the mass, which represents the strength of the coupling
between neighboring oscillators. Here, γn,m is +1 for positive interaction and −1 for
negative interaction, and “T” and “L” indicate the transverse and longitudinal directions,
respectively. The definition of the superscripts and subscripts associated with γ is given
in Figure 2b. The eigenmodes of the collective motion of oscillators can be calculated by
substituting xn,m = un,m exp(−iωt) into Equation (2) to obtain

ω2un,m = α2(γT
n,mun−1,m + γL

n,mun,m−1 + γT
n+1,mun+1,m + γL

n,m+1un,m+1) (3)

By assuming a periodic boundary condition for γn,m, Equation (3) for the N × N
system can be reduced to the problem of calculating the eigenvalue (frequency) ω and
eigenvector (amplitude) un,m for N2 elements. Figure 1b shows a map of the oscillation
amplitude un,m of the lowest four eigenmodes (eigenmode number k = 1 to 4) for the
original Ising problem. The circles and diamonds respectively represent positive and
negative signs of un,m. The distribution of un,m is not localized; it covers the entire system.
If two neighboring oscillators connected by positive (negative) coupling move in opposite
directions (the same direction), they are considered to be frustrated, analogous to the Ising
spin model. Frustrated couplings are indicated by bold lines in Figure 1b. For instance, the
two oscillators enclosed by the dotted ellipse in Figure 1b move in opposite directions, as
indicated by un,m < 0 for the upper oscillator and un,m > 0 for the lower oscillator. Since the
coupling is positive, which is evident by the frustrated coupling (connected by the bold
line) of the two corresponding spins with opposite signs shown in Figure 1a, the oscillators
are also frustrated for the eigenmode with k = 1. A lower frequency (eigenmode number)
typically yields a smaller number of frustrated couplings (but not strictly, as demonstrated
in Figure 1c).
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The number of satisfied couplings nCO as a function of eigenmode number k is plotted
in Figure 1c. nCO is maximized at the second lowest mode (k = 2) and tends to decrease with
k. The maximum nCO (nCO

max) is 164, which corresponds to 98.7% of nE (=166). Figure 1d–f
show the results for another instance of the system. Also in this case, the distribution of the
amplitude un,m is delocalized. nCO is a maximum at k = 3, for which nCO

max is 166 or 97.6%
of nE (=170). Table 1 summarizes the values of k that maximize nCO and nCO

max/nE for
nine different instances. For all cases, nCO is a maximum at k ≤ 3 and nCO

max/nE is larger
than 94.1%.

Table 1. Values of k required to maximize nCO and nCO
max/nE for nine instances of problem with N = 10.

Sample# 1 2 3 4 5 6 7 8 9

k 1 2 2 1 1 2 1 1 3

nCO
max/nE (%) 94.2 95.3 98.8 96.4 96.6 96.5 96.4 98.8 97.6

3. Eigenmode Mapping to Visualize Frustration Localization

Next, we increase the problem size to 20 × 20 (N = 20). The distribution of frustrated
couplings for the exact ground state is shown in Figure 3a. The problem was converted
to the coupled oscillator model and the eigenvalues and eigenvectors were calculated.
Figure 3b shows a map of the oscillation amplitude and frustrated couplings for eigenmode
numbers of k = 1 to 5. Figure 3d,e show the results for another instance. In contrast to the
smaller problem with N = 10, the collective oscillation is spatially localized and clusters
form depending on k. It is reasonable that the distribution of the signs of un,m in each
cluster is in complete agreement with that of the spin configuration in the exact ground
state. The formation of such unfrustrated clusters can specify the region where frustration
occurs with high probability since the oscillator system lowers the eigenfrequency by
reducing the amplitude of the oscillators around which frustrated couplings are localized.
In particular, for lower eigenmodes, the unfrustrated clusters tend to extend as widely as
possible, making frustrated couplings as localized as possible at the boundary between
unfrustrated clusters. In Figure 3b, there are many oscillators around which three of the
four couplings are frustrated. For these oscillators, the number of frustrated couplings can
be reduced from three to one by flipping the sign of the amplitude. Figure 3c shows nCO

before and after the flipping process as a function of k, demonstrating the effectiveness of
flipping in reducing frustration. nCO

max is obtained for k = 4 after flipping and nCO
max/nE

reaches 97.7%. For the other problem (Figure 3f), nCO
max/nE is a maximum (97.6%) at k = 3.

Table 2 shows the results for nine instances, including the value of k required to
maximize nCO and nCO

max/nE before and after flipping, to evaluate the effectiveness of
flipping. For all cases, nCO is a maximum at k ≤ 8 and nCO

max/nE after flipping is larger
than 96.7%. The eigenmode calculation is useful for visualizing unfrustrated clusters to find
a fairly good solution, in which frustrated couplings are strongly localized around specific
oscillators. The solution is effectively improved by flipping the sign of the amplitude to
reduce frustration. It should be mentioned that it is relatively less probable for the lowest
eigenmode (k = 1) to provide the highest nCO

max/nE. This might be due to the fact that
the amplitude distribution has more nodes between unfrustrated clusters for a few higher
eigenmodes and the frustration is more localized in the vicinity of the nodes. To summarize,
what the COS does before flipping is to find the eigenmode consisting of clusters without
nodes (locally symmetric), and simultaneously localizing nodes at the cluster boundaries
(globally asymmetric).
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Figure 3. Instance of square lattice (20 × 20) Ising spin problem solved by the COS. (a) Spin configuration of the exact
ground state. The red circles and blue diamonds represent up-spin and down-spin states, respectively. Frustrated couplings
are indicated by bold lines. (b) Mapping of oscillation amplitude un,m for the lowest five eigenmodes k = 1 to 5. The
circles and diamonds respectively represent positive and negative signs of un,m. Frustrated couplings are indicated by
bold lines. (c) Plot of the number of satisfied couplings nCO before and after flipping as a function of eigenmode number k.
(d–f) Results for another instance.

Table 2. Values of k required to maximize nCO and nCO
max/nE before and after flipping for nine instances of problem with

N = 20.

Sample# 1 2 3 4 5 6 7 8 9

k 2 6 8 5 6 4 2 8 3

nCO
max/nE

before flipping (%)
94.7 96.2 96.2 95.0 95.3 95.6 94.7 95.3 95.5

nCO
max/nE

after flipping (%)
96.7 97.9 97.4 97.4 97.6 97.7 96.7 97.1 97.6

4. Application to Larger Problems and Benchmark

To demonstrate the performance of the algorithm, we applied it to larger problems.
Tables 3 and 4 summarizes the value of k required to maximize nCO and nCO

max/nE before
and after flipping for nine instances of problems with N = 30 and 40, respectively. It is
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confirmed that lower eigenmodes provide good candidates and that the flipping process
effectively improves the candidates. For N = 30, nCO is a maximum at k ≤ 9 and nCO

max/nE

after flipping is larger than 96.6%. For N = 40, nCO is a maximum at k ≤ 13 and nCO
max/nE

after flipping is larger than 96.7%. Overall, for N = 10 to 40, the best solution can be found
by checking the lowest ~N/2 candidates.

Table 3. Values of k required to maximize nCO and nCO
max/nE before and after flipping for nine instances of problem with

N = 30.

Sample# 1 2 3 4 5 6 7 8 9

k 7 2 2 7 9 2 5 2 6

nCO
max/nE

before flipping (%)
95.9 94.9 95.3 95.4 95.8 95.1 95.7 95.4 95.2

nCO
max/nE

after flipping (%)
97.2 96.6 97.4 97.6 97.1 97.1 97.5 97.3 96.9

Table 4. Values of k required to maximize nCO and nCO
max/nE before and after flipping for nine instances of problem with

N = 40.

Sample# 1 2 3 4 5 6 7 8 9

k 7 1 13 6 1 10 10 4 10

nCO
max/nE

before flipping (%)
95.0 94.9 95.4 94.8 95.0 95.6 94.8 94.9 94.9

nCO
max/nE

after flipping (%)
97.1 97.3 97.3 97.6 97.2 97.5 97.3 96.7 97.1

As a benchmark study, the computation time is compared between the COS and a
standard SA algorithm for ten instances of problems with N = 50. All trials were performed
on a MacBook Pro with a 2.6-GHz Intel® Core i7 processor (6 cores) and 16 GB of RAM.
The COS generated nCO

max in 2.74 s, including the time required for the flipping process.
Figure 4 shows the evolution of the number of satisfied couplings with iteration number in
SA for a given problem. nCO

max and nE are also indicated. After 27 iterations, SA provides
a better solution than that provided by the COS. The computation time required to reach
nCO

max (27 iterations) was 8.63 s. Table 5 compares the computation time required to reach
nCO

max between the COS and SA for ten instances. Assuming that an nCO
max/nE value of

97% is satisfactory, the COS is three times faster than SA in generating the solution.

Table 5. nCO
max/nE and computation time required to reach nCO

max with the COS (TCO) and SA (TSA).

Sample# 1 2 3 4 5 6 7 8 9 10

k 15 12 13 4 25 19 2 5 21 7

nCO
max/nE (%) 97.2 97.5 97.0 97.0 96.8 97.5 96.9 97.0 97.4 97.3

TCO 2.74 2.71 2.74 2.73 2.75 2.74 2.73 2.73 2.76 2.74

TSA 8.89 9.50 7.60 8.20 8.21 8.40 7.37 7.65 8.83 8.60
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Figure 4. Evolution of the number of satisfied couplings with iteration number in SA for a
given problem.

5. Conclusions

We evaluated the COS for Ising spin problems based on eigenmode characterization.
After a square lattice (N × N) Ising problem was converted to a coupled oscillator model
that includes positive and negative coupling, the equation of motion, which was reduced
to an eigenmode problem, was solved. For smaller problems (N = 10), the oscillation
amplitude (eigenvector) was delocalized (i.e., it covered the entire oscillator lattice) and a
fairly good solution was obtained. For larger problems, the oscillation became localized,
forming oscillator clusters with low frustration density (unfrustrated clusters). From a
map of unfrustrated clusters for lower eigenmodes, we found that frustration tends to
localize at the boundary between clusters. Frustration localization, where three of the
four couplings are frustrated, is useful for reducing frustration by flipping the sign of the
amplitude. Localization and the flipping method were applied to problems with N = 40.
Good solutions with an accuracy of 97.2% in average (with respect to the exact ground
state) were obtained simply by checking the lowest 13 (≤N/2) candidate eigenmodes. A
benchmark study demonstrated that the computation time required to reach a fairly good
solution (nCO

max) for the COS is three times shorter than that for SA.
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