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Abstract: We investigated the dynamic processes in a superconducting neuron based on Josephson
contacts without resistive shunting (SC-neuron). Such a cell is a key element of perceptron-type
neural networks that operate in both classical and quantum modes. The analysis of the obtained
results allowed us to find the mode when the transfer characteristic of the element implements the
“sigmoid” activation function. The numerical approach to the analysis of the equations of motion and
the Monte Carlo method revealed the influence of inertia (capacitances), dissipation, and temperature
on the dynamic characteristics of the neuron.

Keywords: artificial neural networks; nonlinear oscillator; Hamiltonian formalism; Josephson junc-
tion; superconducting quantum interferometer

1. Introduction

Theoretical and practical research of artificial intelligence systems, methods of machine
learning, and artificial neural networks are being actively developed in recent years [1,2].
The main goal of artificial neural networks is to effectively use the features of the human
brain such as the learning ability, the ability to model complex separating surfaces in
a multidimensional feature space, distributed memory in order to solve computational
problems.

The search for the optimal element base and architecture of artificial neural networks
continues [3–6]. In particular, computing accelerators—hardware implementations of
deep neural networks—show high efficiency. The key parameters of such devices are
performance and energy efficiency. As a commercially available example, we can mention
Google’s tensor processor-based supercomputers (TPU) provided in the cloud, whose
performance in 2021 exceeded exaflops (1018 floating-point operations per second).

The first implementations of artificial neural networks were based on semiconductor
CMOS technology. Nevertheless, despite a number of advantages of this technique [4], this
technology has a number of disadvantages for a large number of neurons and synapses, the
main of which are high power consumption, limited clock frequencies, and the complexity
of the aforementioned base cells. The limitations imposed by the dissipative nature of
CMOS technology make the hardware acceleration of both large convolutional neural
networks of deep learning and the increasingly popular transformer networks extremely
difficult to implement [5]. On the other hand, an alternative and actively developing
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approach for the implementation of artificial neural networks (ANN) is the development
of energy-efficient superconducting solutions [1,7–11].

Initially, the concept of a superconducting neural cell for spike neural networks [7,8]
was based on two Josephson transmission lines (JTL) connected via resistors, and where
the magnitude of the conductivity was regarded as a synaptic weight. In this case, pulses
of current and voltage in JTL, which are related to the motion of specific quasiparticles—
fluxons, are considered as neuroimpulses. It worth mentioning that these were ones of the
first experimental results [9] on the study of operation of an integrated superconducting
neural network. We can emphasize several main branches of the further cell design evolv-
ing [10–15] such as using the Josephson comparator as a neuron with a pseudosigmoidal
activation function, replacing resistors in synaptic (connecting) elements with tunable
Josephson junctions, and implementation of the principles of adiabatic superconducting
logic (ASL) [16–18]. The latter helped to overcome the fundamental limitation on energy
efficiency [14]. When using ASL schemes, the functioning of the ANN is based on handling
the information given not in the form of the presence or absence of a quant, but as the
magnitude and direction of circulating superconducting currents. The performance of the
hardware implementation of a superconducting neural processor while executing the test
on examples of standard configurations of neural networks exceeds the performance of
a semiconductor analog (TPU) by 23 times on average [1]. These indicators were demon-
strated when using memory with a bandwidth (300 GB/s) and a typical clock frequency of
a superconducting processor (52.6 GHz) [1]. A number of examples per learning iteration
was set according to the capacity of the on-chip memory, which made it possible to avoid
addressing the external memory inside the loop. At the same time, the energy consumption
is 490 times less, so even with taking into account necessity of cooling from the room
temperature level assuming the required additional power at the rate of 400 W per W, the
superconducting system is more energy efficient.

Unfortunately, the existing prototypes of adiabatic superconducting network cells are
quite large in size [19–21]. By eliminating the resistive shunting of Josephson junctions
from the proposed schemes, we will significantly reduce their size and energy dissipation
per operation. At the same time, the influence of “inertia” (associated with the capacity of
contacts which became significant) on all dynamic processes occurring in the neuron will
become critically important.

In this work, we have developed the design of the basic cell of the neural network
named the SC-neuron, which is based on Josephson junctions without resistive shunting.

On the basis of the Hamiltonian formalism and using the Monte Carlo method, the
analysis of dynamic processes affecting the neuron’s activation function calculated in one
clock cycle is carried out, and the nature of switching is studied taking into account the
inertia (the capacitance in the circuit), dissipation, and the temperature. We carried out
the selection and optimization of the parameters of a perceptron-type superconducting
circuit for the implementation of the “sigmoid” activation function, which is most conve-
nient for neural network training algorithms and solving problems of pattern recognition
and images.

2. Neuron Model and Research Methods

The most important characteristic of the cells of superconducting adiabatic ANNs is
the flux-to-current transformation. This is the dependence of the output current, Iout, versus
input signal (applied magnetic flux, Φin). In Figure 1a, we schematically showed the corre-
sponding normalized values. Earlier in [18–22], it was demonstrated how it is necessary to
change the quantron to obtain a computationally effective transfer characteristic (activation
function). In this case, the quantron is actually a single-contact Josephson superconducting
interferometer for which it is assumed that the critical current of its Josephson contact can
change under the influence of an external signal. The inertia-less mode of operation of this
device was studied.
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Figure 1. (a) Schematic representation of an artificial SC-neuron cell. (b) Input signal at different
rise/fall rates D = 0.006 (black solid curve), D = 0.008 (blue dashed curve); D = 0.02 (red dash-dot
curve) for Ain = 4π. The arrows mark three stages of the external action (the start the rise, and the
middle). ωC is the characteristic Josephson frequency.

To study the flux-to-current transformation, we will consider the SC-neuron shown in
Figure 1a. The idea of the proposed circuit is to combine the nonlinearity of the Joseph-
son junction (quantum part) with the linear flux-to-current transformation of a conven-
tional inductance in order to obtain a transfer characteristic close to the mathematical
sigmoidal function.

We assume that during operation, a magnetic flux pulse, ϕin(t) = 2πΦin(t)
Φ0

, is supplied
to the input of the Sc neuron, which we normalize to the magnetic flux quantum Φ0:

ϕin(t) = Ain

(
1

1 + exp[−2D(t− t1)]
+

1
1 + exp[2D(t− t2)]

)
− Ain. (1)

In this case, the amplitude, Ain, and the duration of the action, τ = t2 − t1 (t2 > t1),
are selected on the basis of considerations for the system to go through the entire cycle
of evolution (activation function). In addition, the rate of rise/fall of the control signal is
determined by the parameter D in Expression (1), see Figure 1b.

The flux-to-current transformation of the system in Figure 1a can be represented as a
joint solution of the Kirchhoff equations and the phase balance condition in superconduct-
ing circuits: 

ϕ + l · i = ϕin
2 + loutiout

ϕ + l · i = ϕin + laia
i + iout + ia = 0

, (2)

where ϕ is the phase drop across the Josephson contact, the output current iout = Iout
Ic

is
normalized to the critical current Ic, and inductances, l, la, lout, are normalized to 2π Ic

Φ0
, as

shown in Figure 1a.
From the first equation in system (2), it is easy to obtain the dependence of the

output current iout on the input flux ϕin, defined by Expression (1), and the current i at the
Josephson junction:

iout =
ϕin − 2lai

2(la + lout)
, i = bϕin − aϕ, (3)

where the parameters are defined as a = la+lout
l·la+lout ·(l+la)

and b = la+2lout
2(l·la+lout ·(l+la))

.
In this case, within the framework of the “resistive—capacitance model” for a Joseph-

son junction (RCSJ-model), by introducing the Stewart-McCumber parameter β = 2πR2 IcC
Φ0

and the characteristic Josephson junction frequency ωc = 2eRIc
} (here R and C are the

characteristic resistance and capacitance of the junction), we can write the equation that
determines the dynamics of the phase at a given current:

β

ω2
c

..
ϕ +

1
ωc

.
ϕ + sin ϕ =

ϕin · (la + 2lout)− 2ϕ · (la + lout)

2(l · la + lout · (l + la))
. (4)
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In the case of contact with low losses (taking into account only conservative forces),
we have:

1
ωc

=
}

2eRIc
→ 0 ,

β

ω2
c

=
}C
2eIc

=
1

ω2
p

,

where ωp is the plasma frequency of the Josephson junction. Therefore, for a system
without dissipation, the following equation can be used:

1
ω2

p

..
ϕ + sin ϕ = ϕin · b− ϕ · a. (5)

In this case, it will be convenient to rescale the time according to t̃→ ωpt . Note
that the equation for the inertialess model of a neuron is obtained when C → 0 , i.e., for

1
ω2

p
→ 0 .

In the context of the Josephson junction working as a part of a SC-neuron, the inverse
characteristic Josephson frequency, 1/ωc, determines the characteristic relaxation time of
the neuron, and the ωp parameter is responsible for the oscillatory mode at low dissipation.
This will be clearly seen in the next section.

To describe the SC-neuron (see Figure 1a), we will use the Hamiltonian formalism.
The Equation (5) can be written as a system of two first-order equations:

.
ϕ = ∂H(p,ϕ)

∂p = p,
.
p = − ∂H(p,ϕ)

∂ϕ = −aϕ + bϕin − sin ϕ,
(6)

where the Hamilton function is introduced:

H(ϕ, p) =
p2

2
+ U(ϕ, ϕin). (7)

Note that the system under consideration becomes similar to the motion of a classical
particle with unit mass and momentum p =

.
ϕ in the potential:

U(ϕ, ϕin) =
(bϕin − aϕ)2

2a
+ 1− cos ϕ. (8)

The symmetry of the potential in (7), and, consequently, the dynamic processes in the
system, significantly depends on the inductances included in the parameters a and b of the
system under consideration. For a shunted Josephson junction [21], the following relation
should be satisfied: la = 1 + l. Having fixed this condition, we analyzed the changes in
the potential during the operation of the SC-neuron. Note that the input signal smoothly
changes the potential of the system between two stable equilibrium positions near φ = 0
and ϕ = 2π. As can be seen from Figure 2, the behavior of the potential significantly
depends on the inductance parameter l of the circuit. At the same time, two fundamentally
different modes can be distinguished: “neural mode”, when φ(φin) is uniquely defined,
and “logical element mode”, when there is an ambiguity area for the dependence of the
junction phase on the input flux. For the neural mode, there is a symmetric adiabatic and
reversible transition of the system between the initial and final states: ϕ = 0⇔ 2π . At the
same time, the potential energy always has one minimum. In the “logical element mode”,
the potential energy becomes double-well (bistability arises, as in the cells of ASL-circuits)
near ϕ = π (see Figure 2b).
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Figure 2. Dependence of the potential energy on the phase of the Josephson junction, φ, at various
stages of the operation: at the initial moment of time (a), at the rising phase of the impact (b) and
at the middle time, when φin = 2π (c) for l = 0.22 (black curves), 0.75 (blue dots), 1.5 (green dashed
curves), 2.5 (red dot-dashed curves) for lout = 0.1, la = 1 + l; β = 1.

The range of parameters for the existence of a logical mode is not difficult to obtain
from the condition:

ϕ +
1
a

sin ϕ =
b
a

ϕin,

Whatwhich follows from Equation (5), when C → 0 . This equation is transcendental
and will have a pair of solutions if the coefficient at sinφ is greater than one. Therefore, we
have the condition

1
a

= l +
la · lout

la + lout
= {la = l + 1} > 1, l2 + 2lout · l − 1 > 0.

This inequality will hold (the potential will have more than one extremum) and have
physical meaning only if l >

√
lout2 + 1− lout.

Dissipative effects in the system, according to [23], are taken into account by adding
non-conservative forces to Equation (6):{ .

ϕ = p,
.
p = −aϕ + bϕin − sin ϕ− γp,

. (9)

where γ =
ωp
ωc

is the damping parameter.
Thus, the established relationships between the inductances of the circuit show how

to control the potential relief, providing bistable states of the neuron. If the capacitance and
resistance can be neglected, then the inertia-less mode of the neuron takes place, when the
output current immediately follows the control flux [18–22]. The presence of capacitance
will lead to nontrivial dynamics in the phase space, which will also depend on the initial
conditions of the phase and its velocity. In this case, the role of the initial temperature-
dependent distribution of the phase and its velocity becomes essential: the distribution
determines the available regions in the phase space of states and their final distribution that
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arises after the action of the input flux. In the next section, we will simulate the processes
of switching a neuron under the action of these factors.

3. Results of the Analysis of Dynamic Processes
3.1. Excluding Dissipation

First, we investigated numerically dynamic processes in the system described by
Equation (9) for the case T → 0 . Let at the initial moment of time that the system was
localized at the minimum of the potential, which is equivalent to considering the dynamics
of the behavior of a particle with the initial conditions: ϕ(t = 0) = 0; p(t = 0) = 0. We
have studied the behavior of the flux-to-current transformation and the phase portrait of
the system for two typical modes of operation (neuro- and logic-mode).

When changing the parameters of the system (values of inductances), it was found
that l is responsible for the amplitude of the current value at the output, iout. At the same
time, the general sigmoidal form of the transfer function is preserved, if l is greater, then
the lower the value of the current at the output. The values of the shoulder inductances
and the inductive coupling coefficients affect the “delay” of the supplied flux at the device
input. The quantity la is responsible for the tilt of the symmetry axis of the sigmoid relative
to the horizontal axis [21].

In an adiabatically smooth switching mode (when the particle momentum is less than
the rate of change of the input signal, for example, D = 0.008 in Figure 3) for l < 0.5, a
complete coincidence of the two evolutionary paths of the system is achieved with an
increase in the rising and falling phases: “↑” ( ϕ = 0→ 2π ) and “↓” ( ϕ = 2π → 0) of
the input signal. This is clearly seen in Figure 3a, when the flux-to-current transformation
has a sigmoidal dependence, and the phase trajectories (black curves in Figure 3b) have a
symmetrical shape with the rise/fall of the input flux. With an increase in the inductance
value l →

√
lout2 + 1− lout oscillations appear on the transfer characteristics at a frequency

close to ωp =
√

2eIc
}C . This occurs due to imparting an additional impulse to the particle

(destruction of the adiabatic approximation) upon passing the value φ = φin = π (Figure 2b).
Under this condition, there is a sharp increase/decrease in the signal amplitude caused by
external influence. This is due to the fact that the system does not have time to relax and
cannot reach the minimum of its potential energy during the impact change. It is worth
noting that for the neural mode of operation l <

√
lout2 + 1− lout, the transfer character-

istics averaged over plasma oscillations ϕ = 0⇔ 2π coincide and have a pronounced
sigmoidal character. A different type of dependencies is manifested for the logic element
mode, when the flux-to-current dependencies averaged over the plasma frequency have
a hysteresis character (solid and dotted black curves in Figure 3c). At the same time, on
the phase diagrams (Figure 3d), it can be seen that the particle completes movement near
the equilibrium positions: φ = 0 (the red trajectory in Figure 3d for the rising phase of the
control signal “↑” at ϕ = 0→ ϕ = 2π ) and φ = 2π (the orange trajectory in Figure 3d)
for the falling phase of the control signal “↓” at ϕ = 2π → ϕ = 0).

For a more detailed study of the dynamic processes associated with inertia in the
system, we investigated the behavior of integral characteristics, such as the amplitudes of
A/Ic current oscillations at the output and their period Tp = 2π

ωp
at the different values of

inductors and capacitance. The whole process of evolution was divided into two parts: the
rise of the input signal, ϕ = 0→ ϕ = 2π and its fall, ϕ = 2π → ϕ = 0 . As can be
seen from Figure 3a,c current oscillations in the course of evolution reach stationary values
A↑ and A↓ (solid and dashed curves in Figure 4a, respectively), except for the transition
region (hysteresis loop in Figure 3c). Dependencies in Figure 4 show that at low values of
the inductance l in the circuit (up to l < 0.5), the system evolves adiabatically slowly between
the equilibrium positions ϕ = 0⇔ ϕ = 2π . In this case, the amplitude of oscillations
on the transfer function is equal to zero even with an increase in inertia (see curves for
different values of the Stewart-McCumber parameter in Figure 4a). The contribution of
kinetic energy, and, consequently, an increase in the amplitude and period of oscillations is
observed for the logic element mode. This is manifested by the fact that the amplitudes
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of plasma oscillations are correlated, but in absolute values A↓ and Tp↓ are 1.2 times
higher than A↑ and Tp↑. At the same time, with an increase in the capacity (Stewart-
McCumber parameter), there is an increase in the amplitude of oscillations during the
“reverse way” ( ϕ = 2π → ϕ = 0) and the period of oscillations, Tp, which is associated
with an increase in the effective “mass” for the system.

Figure 3. (a,c) Transfer functions and (b,d) phase portraits of processes for the SC-neuron for various
inductances. The colours of the dependencies in image (a,b) correspond to l = 0.22 (black curve),
l = 0.5 (grey curve), l = 0.75 (blue curve “↑” corresponds to ϕ = 0→ ϕ = 2π and the light blue
curve “↓” corresponds to ϕ = 2π → ϕ = 0 ). For (c,d) l = 2.5 (red, “↑”, and orange, “↓”, curves);
β = 1, D = 0.008; lout = 0.1, la = 1 + l.

Figure 4. Dependence of the amplitude, (a), and period of plasma oscillations, Tp, (b) of the output
current as a function of inductance l for various values of the Stewart-McCumber parameters
β = 0.5 (black curves), β = 1 (blue curves), β = 2 (red curves). Solid curves with the index “↑”
correspond to ϕ = 0→ ϕ = 2π and the dashed curves (“↓”) correspond to ϕ = 2π → ϕ = 0 .
Other parameters of the system are similar to those shown in Figure 3.
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3.2. Influence of the Dissipation

Undoubtedly, an important point in studying the principles of operation of an artificial
SC-neuron is taking into account the processes associated with energy dissipation due to the
appearance of voltages on the resistive element and the destruction of the superconducting
state. We have investigated the dynamic processes in the system based on the solution of
the system of Equation (9) for two operating modes: the neuro-mode at l = 0.22 (Figure 5a)
and the bistable logical element mode at l = 2.5 (Figure 5b). The presence of dissipation in
the system is associated with a nonzero rate of change in the phase of the Josephson junc-
tion under the action of a current pulse. This leads to the suppression of plasma oscillations
on the transfer characteristics iout(ϕin), as well as the establishment of a stationary value of
the output current for the logic element mode (Figure 5b). Note that the sigmoidal form of
the activation function is preserved, which indicates the possibility of creating a supercon-
ducting neuron without resistive shunting (with the large Stewart-McCumber parameter).
We calculated the dissipation energy Ed =

∫ (
uJ J(t)

)2dt, where uJ J(t) = p(t)2/2 is the
voltage across the Josephson junction under prolonged external action ϕin(t). The inset
in Figure 5a shows that an increase in the Stewart-McCumber parameter β leads to an
increase in energy losses in the system. However, we can choose the parameters of the
circuit so as to suppress unwanted processes of inertia (plasma oscillations) and at the
same time reduce the geometric dimensions of the artificial neuron circuit (by reducing
shunting), which is important for integrating it onto a chip. For typical parameters of
the neuron circuit (Ic = 100 mA, R = 1 Ω, C = 10 pF), we estimated the operation time:
τ = 10 ns (ωp~1012c−1). The dissipation energy in the neuro-mode (l = 0.22) Ed = 1.6 aJ; for
the logical mode (l = 2.5) Ed = 75 aJ at the value of the Stewart-McCumber parameter β = 5.

Figure 5. Transfer function for two modes of operation at l = 0.22 (a) and at l = 2.5 (b), taking into
account the effect of dissipation at β = 5. In this case, the solid curves on (a, b) and the inserts of
the phase portraits (p, ϕ) correspond to ϕ = 0→ ϕ = 2π , and the dotted curves correspond to
ϕ = 2π → ϕ = 0 . The inset Ed(β) in (a) represents the dissipated power in the system for l = 0.22
(black curve); l = 0.75 (blue dots curve); l = 1.5 (green dashed curve); l = 2.5 (red dot-dushed curve).
Other parameters of the system are similar to those shown in Figure 2.

3.3. Influence of Temperature on the Dynamics of a Neuron

Let us now analyze the influence of the initial distribution of the phase and its velocity
on the behavior of the trajectories of the system in the phase space of states and on their
final distribution that arises after the action of the control flux. In other words, we are
interested in the effect of thermal “blur” on the output characteristic of the device.
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We carried out a numerical solution of the system of Equation (9) by the Monte
Carlo method to take into account the effect of temperature on the dynamic characteristics
and phase portraits. We believe that at the initial moment of time the SC-neuron is in
thermodynamic equilibrium with the external environment at a final temperature T. In
this case, the numerical method consists in generating random initial states of system (9)
according to the Gibbs distribution law:

ρ(ϕ, p, t = 0) =
1
Z

e−
EJ H(ϕ,p,t = 0)

kT , (10)

where H(ϕ, p, t = 0) is the dimensionless Hamiltonian defined by expression (7), Z is the
partition function, k is the Boltzmann constant, and EJ = }Ic

2e is the characteristic Josephson
energy. The evolution of a set of states in time gives an idea of the density distribution
function at each of these moments.

We investigated the dynamics of 104 particles for switching a neuron at a characteristic
temperature of 4 K. The initial conditions are specified according to distribution (10) for
the case of a neuro mode for a potential with one local minimum (l = 0.22, solid black
curve in Figure 2) and a sigmoidal transfer characteristic (see Figure 6a). In Figure 6
we observe that all particles move adiabatically slowly ϕ = 0⇔ ϕ = 2π (the particle
velocity is less than the rate of potential change), which can be seen in Figure 6b at time tm
(see Figure 1b). The color in Figure 6 and lines show equipotential levels, corresponding to
the same energy. It was found that the form of the dynamic characteristic after averaging
over the ensemble of particles remains similar to Figure 5a, which indicates the stable
operation of the proposed artificial neuron at a finite temperature.

Figure 6. Phase portraits of dynamic processes in a SC-neuron at T = 4K for l = 0.22 at the initial
moment (t = 0) (a) and in the middle (ωct = 1000) (b) exposure at lout = 0.1, la = 1 + l, β = 1,
D = 0.008. The color scale is shown in the insert.

For the case of a logical element (l = 2.5), we investigated the phase trajectories of an
ensemble of 104 particles. As can be seen from Figure 7, all particles for the rising phase
of the input signal ϕ = 0→ ϕ = 2π evolve in a correlated manner and acquire a final
momentum, moving in a circle in Figure 7b. Further, due to giving the system an additional
pulse at the signal decay interval (Figure 7c), a rearrangement of particles is observed. Some
of them evolve to the initial state ϕ = 0 at the time of the termination of one pulse cycle, and
the second group of particles continues to move with a finite momentum (Figure 7d).
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Figure 7. Phase portraits of dynamic processes in a SC-neuron at T = 4 K for l = 2.5 at different stages
of external influence: at times ωct = 0 (a); 1000 (b); 1500 (c); 2000 (d) at lout = 0.1, la = 1 + l, β = 1,
D = 0.008. The color scale is shown in the insert to Figure 6.

Thus, taking into account the capacity, the final state of the system depends on the
ratio between the effective depths of the wells and the temperature. In this case, taking
into account the effects of dissipation leads to the localization of the distribution of states
(the mode of attractors), similar to what was shown in Figure 5 for one path. In addition,
as a result of a numerical calculation, it was found that the final distribution of states
depends on the switching time; in this case, with an increase in the duration of the input
signal (a decrease in the parameter D in Expression (1)), the density of states becomes more
localized (occupies a smaller area). In the adiabatic switching mode (when the particle
velocity is less than the rate of potential change), the distribution function becomes more
and more symmetric with respect to the initial distribution, and the finite temperature
leads to smearing.

4. Conclusions

We have studied the dynamics of a superconducting neuron based on non-shunted
Josephson contacts (SC-neuron) in different situations. Earlier, the functioning of a super-
conducting neuron was discussed only within the framework of the inertialess model, in
which the output current instantly follows the change in the control magnetic flux (instanta-
neous flux-to-current transformation). As it was shown in this paper, if we take into account
the capacity of the Josephson contact, this leads to a qualitative change in the switching
mode: i) if the element in “logical mode” was initially in the equilibrium position and its
state was represented by a point in the phase space (phase-conjugate momentum); ii) then
after half of the switching cycle, its states are described by the dots on a closed curve. After
single cyclic switching, the element does not return to its original state, which indicates its
hysteretic behavior. This property can be used to remember the history of the process. We
also investigated the effect of dissipation on the switching process and obtained a picture
of the formation of an attractor in the phase space for the realistic system parameters. An
interesting prediction is related to the effect of the initial thermal “blurriness” on the states
of the system. As it turned out, the initial heat spot in the phase space undergoes a complex
transformation after a switching cycle.
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We believe that the newfound features of the switching process can be attributed
to an additional appealing step to design superconducting neurons and neuromorphic
networks. The results from the analysis estimates of the performance and energy efficiency
of the analog part of hybrid analog-digital “adiabatic” superconducting circuits allow
us to raise the question of the prospects of their application in hardware accelerators of
neural networks. The utilization of verified technologies for creating basic components of
a universal set of logic elements (with reasonable values of the capacity of the Josephson
junctions) allows us to count on the creation of a neuroprocessor with target performance
indicators of the order of 10−11J and energy consumption at the level of 10−18J per operation
of “calculating” the activation function. Examples of practical tasks with high requirements
for performance, energy efficiency, and the accuracy of synchronization of the hardware
platform that require the development of such devices are listed below [24,25]:

1. Internet search using neural networks-transformers that places extremely high re-
quirements on the hardware platform;

2. Object detection in aerial and satellite images;
3. Analysis of network traffic in order to ensure network information security and

neutralize Internet fraud.
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