
symmetryS S

Article

A Fault Diagnosis and Prognosis Method for Lithium-Ion
Batteries Based on a Nonlinear Autoregressive Exogenous
Neural Network and Boxplot

Yan Qiu 1 , Jing Sun 1,*, Yunlong Shang 2,* and Dongchang Wang 3

����������
�������

Citation: Qiu, Y.; Sun, J.; Shang, Y.;

Wang, D. A Fault Diagnosis and

Prognosis Method for Lithium-Ion

Batteries Based on a Nonlinear

Autoregressive Exogenous Neural

Network and Boxplot. Symmetry 2021,

13, 1714. https://doi.org/10.3390/

sym13091714

Academic Editor: Raúl

Baños Navarro

Received: 18 August 2021

Accepted: 14 September 2021

Published: 16 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Information and Electronic Engineering, Shandong Technology and Business University,
Yantai 264005, China; 2019420076@sdtbu.edu.cn

2 School of Control Science and Engineering, Shandong University, Jinan 250061, China
3 Yantai Dongfang Wisdom Electric Co., Ltd., Yantai 264003, China; wangdongchang@dongfang-china.com
* Correspondence: sunjing@sdu.edu.cn (J.S.); yshang@sdu.edu.cn (Y.S.)

Abstract: The frequent occurrence of electric vehicle fire accidents reveals the safety hazards of
batteries. When a battery fails, its symmetry is broken, which results in a rapid degradation of its
safety performance and poses a great threat to electric vehicles. Therefore, accurate battery fault
diagnoses and prognoses are the key to ensuring the safe and durable operation of electric vehicles.
Thus, in this paper, we propose a new fault diagnosis and prognosis method for lithium-ion batteries
based on a nonlinear autoregressive exogenous (NARX) neural network and boxplot for the first
time. Firstly, experiments are conducted under different temperature conditions to guarantee the
diversity of the data of lithium-ion batteries and then to ensure the accuracy of the fault diagnosis
and prognosis at different working temperatures. Based on the collected voltage and current data,
the NARX neural network is then used to accurately predict the future battery voltage. A boxplot is
then used for the battery fault diagnosis and early warning based on the predicted voltage. Finally,
the experimental results (in a new dataset) and a comparative study with a back propagation (BP)
neural network not only validate the high precision, all-climate applicability, strong robustness and
superiority of the proposed NARX model but also verify the fault diagnosis and early warning ability
of the boxplot. In summary, the proposed fault diagnosis and prognosis approach is promising in
real electric vehicle applications.

Keywords: electric vehicles; lithium-ion batteries; fault diagnosis and prognosis; nonlinear autore-
gressive exogenous neural network; boxplot

1. Introduction

In recent years, electric vehicles powered by lithium-ion batteries have received
widespread attention at home and abroad as the future of the automobile industry is
developed in the direction of high efficiency and sustainability to solve problems such
as the energy crisis and environment pollution [1–4]. As an important part of electric
vehicles, the battery system largely determines the performance of electric vehicles [5,6].
Among them, lithium-ion batteries have been widely used in various energy storage
applications such as electric vehicles and the smart grid because of their advantages of
high energy density, high power density, high cell voltage, long cycle life, light weight
and environmental protection and they have become the hot spot in the development of
global electric vehicles [7,8]. The battery pack usually consists of hundreds or thousands
of cells connected in series and parallel to obtain the desired voltage and capacity [9,10].
Due to defects in the production and manufacturing process, abusive operation during
the actual use process, the aging of the battery and the destruction of the symmetrical
structure, each cell or related components may have various faults and this safety hazard is
huge [11–13]. If these faults are not diagnosed and handled in a timely manner, the safety
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performance of the battery will be significantly reduced and thermal runaway may even
appear in a few extreme cases, posing a serious threat to the normal operation of electric
vehicles and the safety of drivers [14–16]. Many studies have shown that voltage anomalies
are an important fault indicator and the battery voltage will fluctuate differently from
normal when the battery is faulty [17]. Typical voltage abnormalities can be classified as
overvoltage and undervoltage [18]. Overvoltage means that the battery is overcharged and
there may be an open-circuit fault or an overvoltage fault. Undervoltage means that the
battery is discharged excessively, which may cause a short-circuit fault or an undervoltage
fault. Therefore, accurate voltage prediction, rapid voltage abnormality identification,
timely fault diagnosis and fault warnings are essential to guarantee and improve the safety
and durability of lithium-ion batteries and prevent the occurrence of thermal runaway.

At present, many researchers have made great efforts in fault diagnosis and the fault
diagnosis methods proposed in the existing literature can be classified into three cate-
gories: threshold-based methods, model-based methods and data-driven-based methods.
The threshold-based fault diagnosis methods include the fixed-threshold method, multi-
threshold method and adaptive-threshold method. For example, Zhao et al. [19] detected
overvoltage/undervoltage faults by judging whether the battery voltage exceeded the
threshold. Duan et al. [20] calculated the evaluated values of twelve cells under three
evaluation factors based on information entropy then calculated the standard deviation of
the evaluated values and finally compared the standard deviation with the set threshold
to evaluate the degree of the battery pack inconsistency. This kind of method has the
advantages of simplicity and easy implementation but it is a great challenge to determine
the appropriate thresholds in practical applications. If the threshold is set too high, the
sensitivity of the fault diagnosis will be reduced and the alarm may not be triggered.
Conversely, a too low threshold makes it more likely to be triggered, which can easily
lead to false alarms. In contrast, the model-based methods can accurately describe the
dynamic characteristics of the battery and distinguish the fault when the voltage is within
a safe range [21–23]. A great deal of research has been devoted to modeling lithium-ion
batteries and the most commonly used of these is the equivalent circuit model (ECM) [24].
Liu et al. [25] proposed a series battery pack sensor fault detection and isolation scheme
based on a second-order ECM and an adaptive extended Kalman filter. Xiong et al. [26]
proposed a two-step ECM-based method for the diagnosis of an external short-circuit (ESC)
fault in a battery pack. However, the model-based methods rely heavily on the accuracy
of the battery model. In addition, battery systems are highly nonlinear and usually a
model can only be used to detect a specific fault type. Therefore, this requires a large
amount of modeling effort resulting in an online implementation complexity. In order
to deal with the strong nonlinearity of the battery system and to find simple, efficient,
easy to implement and robust fault diagnosis methods, data-driven-based methods have
been widely explored and have become a hot spot for fault diagnosis research [27–30].
Kang et al. [31] proposed an online multi-fault diagnosis method for a series battery pack
based on an improved correlation coefficient method and a nonredundant crossed-style
measurement circuit. Shang et al. [32] proposed an early multi-fault diagnosis method
for batteries based on modified sample entropy. However, most of these fault diagnosis
methods only amplify abnormal voltages to diagnose early minor faults and they cannot
predict future voltages and battery faults.

The frequent occurrence of electric vehicle fire accidents has caused several scholars
to pay great attention to the prediction of battery faults [33]. With the rapid development
of artificial intelligence, machine learning technologies are considered to be powerful tools
for modeling highly nonlinear systems, which provide great opportunities to achieve
battery fault diagnosis and prognosis. A few scholars have begun to use neural networks
to predict battery voltage and realize battery fault prognosis. Hong et al. [17] used a long
short-term memory (LSTM) neural network for the multi-step voltage prediction of a
battery system and combined this with the alarm threshold to evaluate the safety of the
battery to determine whether the battery would fail. In addition, Li et al. [34] proposed a
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new battery fault diagnosis method combining the LSTM model and the ECM to perform
a risk assessment of potential faults and realize an early warning of thermal runaway.
Although the applications of neural networks in battery management systems (BMS) are
increasing, they are mostly focused on the state of charge (SOC) estimation [35,36], state of
health (SOH) estimation [37,38] and remaining useful life (RUL) prediction [39,40]. Battery
voltage prediction and fault prognosis has not been fully explored and are still controversial.
In order to fill the gap in this area, this paper proposes a fault diagnosis and prognosis
method for lithium-ion batteries based on an accurate voltage prediction using a nonlinear
autoregressive with exogenous input (NARX) neural network. The NARX neural network
is one of the most widely used neural networks in nonlinear dynamic systems, which can
effectively handle time series data. This method includes the time delay feedback of the
network and is able to retain the past values of input and output data and apply them
to the calculation of the current output, which can effectively deal with the long-term
dependence of the data. Although the NARX neural network has a strong predictive and
nonlinear mapping ability, no research has been seen in the literature that is devoted to
developing a voltage prediction and fault prognosis model for lithium-ion batteries.

In this study, we propose a new fault diagnosis and prognosis method for lithium-
ion batteries. When the NARX voltage prediction model is built, based on the accurate
prediction of the future battery voltage, a boxplot is used to further identify the abnormal
voltage and provide an early fault warning for the battery. The flowchart of the battery
voltage prediction and the fault prognosis based on the NARX network is shown in
Figure 1, including offline and online parts. In the development of the voltage prediction
model, the influence of temperature is comprehensively considered in this study and the
all-climate applicability of the NARX voltage prediction model is verified. In addition,
unlike other studies, the validation dataset used in this study is completely new, rather
than using the traditional K-fold cross-validation method, which validates the robustness
and generalization of the proposed NARX voltage prediction model. Finally, the voltage
abnormality levels and types are classified based on the boxplot, which can effectively
realize the fault diagnosis of the battery.
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Figure 1. The flowchart of the voltage prediction and fault prognosis based on the proposed
NARX model.

The rest of the paper is organized as follows: Section 2 describes the acquisition
of the lithium-ion battery characteristic data and the development of the NARX voltage
prediction model in detail. In Section 3, the voltage prediction results and a comparative
study discussion are given. Section 4 describes the fault diagnosis and early warning
strategy. Finally, Section 5 summarizes this work.

2. Voltage Prediction Model Development
2.1. Description of the Data Acquisition

The development of a voltage prediction model requires sufficient datasets so the
acquisition of lithium-ion battery characteristic data is the premise of building a robust
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voltage prediction model. The battery characteristic data used in this work were obtained
by means of a full set of battery test simulation equipment owned by the laboratory of the
electric vehicle power battery research group at Shandong University. The experimental
apparatus mainly included a host computer, a Jufu (Suzhou) low and high temperature
testing machine, an Arbin power battery tester and test batteries. The specific parameters
of the test battery are shown in Table 1. The 1865 EH consists of twenty 1.6 Ah Lishen
18,650 lithium-ion batteries in parallel. Its typical application is as power battery for electric
vehicles. In this work, twenty-three batteries of the same specification were used for
charging and discharging experiments according to the test temperatures summarized in
Table 2 and the data acquisition frequency was 1 Hz. The collected battery data included
the normal and faulty data. In order to achieve an online diagnosis and an early warning
of battery faults, it was necessary to make full use of the easily accessible voltage, current
and temperature data. However, the temperature data could not well-reflect the electrical
characteristics of the battery system and the correlation analysis showed a weak correlation
between the temperature and voltage so the battery current was finally selected as the
input of the NARX in this work.

Table 1. Battery specification parameters.

Items Parameters

Battery type 1865 EH
Nominal voltage 3.2 V

Charge cut-off voltage 3.65 ± 0.05 V
Discharge cut-off voltage 2.0 ± 0.05 V
Nominal rated capacity 32 Ah

Table 2. Cells cycled at eight experimental temperatures to obtain the characteristic data.

Test Mode Temperature/◦C Number of Cells Cell Index

1 −20 2 1,2
2 −10 2 3,4
3 0 5 5,6,7,8,9
4 10 2 10,11
5 25 3 12,13,14
6 40 4 15,16,17,18
7 55 3 19,20,21
8 60 2 22,23

2.2. NARX Architecture

Nonlinear autoregressive with exogenous input (NARX) neural network is a dynamic
neural network with time delay and feedback mechanisms, thus enhancing its ability to
memorize historical data and effectively handle long-term dependencies. The output data
y(t) of this network depends on the past value of y(t) and the past value of the external
input data x(t). The mathematical model of the NARX can be expressed as [41]:

y(t) = f
(
y(t − 1), y(t − 2), · · · , y(t − dy), x(t − 1), x(t − 2), · · · , x(t − dx)

)
(1)

where f (, ) is the nonlinear mapping function, dx is the input time delay and dy is the
output time delay.

A standard NARX neural network is composed of an input layer, a hidden layer
and an output layer as well as an input and output time delay. The network structure is
shown in Figure 2 where the time delay line (TDL) is the input and output time delay, IW
is the input weight, b is the bias, LW is the layer weight and f is the activation function.
The hidden and output layers constitute a two-layer feedforward network in which the
activation functions of the hidden layer and the output layer are the sigmoid function and
linear function, respectively. The NARX network uses the TDL to store the past values
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of x(t) and y(t) and applies them to the calculation of the current output, updating the
current value of the output accordingly. Therefore, the input of the NARX network includes
time delay X(t):

X(t) =
[

x(t − 1), x(t − 2), · · · , x(t − dx)
y(t − 1), y(t − 2), · · · , y(t − dy)

]
. (2)
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Battery faults will lead to voltage abnormities and an abnormal voltage also means that
battery faults have occurred or potential faults will occur. Therefore, the abnormal voltage
is an important indicator of battery faults and battery faults diagnosis can be performed by
the predicted voltage. Lithium-ion batteries are a dynamic system with strong nonlinearity
and it is difficult to accurately describe the drastic voltage changes by traditional modeling
methods. As mentioned above, the NARX dynamic neural network contains the time
delay X(t), which has the ability to cope with the nonlinear behavior of system and can be
effectively used for the voltage prediction of the nonlinear battery system.

2.3. Model Training and Voltage Prediction Based on the NARX

Before training the NARX network, the input delay, feedback delay, size of the hidden
layer, feedback mode and training function should be determined in advance. In addition,
each time the neural network is trained, different outputs may be generated due to different
initial weights and biases and different ways of dividing the dataset into training data,
validation data and test data. Therefore, multiple retraining is required to find an accurate
and reliable voltage prediction model. After network training, it is an essential step to
evaluate the prediction performance of the NARX voltage prediction model.

2.3.1. Determination of the Time Delays and Hidden Layer Size

The selection of the size of delay and hidden layer neurons also has a certain impact
on the prediction accuracy of the NARX network. When the training performance of
the network is unsatisfactory, it can try to increase the number of delay and hidden
layer neurons. Increasing the number of neurons also means that more computations
are required. Moreover, when the number is set too high, there may be a tendency of
overfitting, resulting in a very small error in the training data but a large error in the test
data. Therefore, the selection of the number of delay and hidden layer neurons should
maintain the high prediction accuracy of the model and also avoid overfitting to ensure the
generalization ability of the network as well as achieving a balance between the two.

2.3.2. Determination of the Feedback Mode

The NARX network contains two feedback modes: the parallel mode and the series-
parallel mode [42]. The parallel mode is also called the close-loop mode. In this mode,
the output of the network is the feedback to the input of the feedforward neural network
through the time delay. Its structure is shown in Figure 3a. As the real output is available
during the training period of the network, the feedback loop can be opened and use an
open-loop architecture (series-parallel architecture) as shown in Figure 3b, where the real
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output was used instead of the feedback estimated output. For effective training, we chose
the series-parallel architecture for this work. As the expected output feeds back to the input
in this mode, the prediction performance is more accurate and the generated network is a
pure feedforward architecture that can be trained with more efficient algorithms.
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2.3.3. Determination of the Train Function

There are various training functions to train the NARX network, among which the
Levenberg–Marquardt (LM), Bayesian regularization (BR) and scaled conjugate gradient
(SCG) are the three most commonly used training algorithms. In this work, the LM
algorithm was chosen. The LM algorithm is a hybrid algorithm combining the Gauss–
Newton method and the gradient descent method [43]. The gradient descent method
ensures that the loss function decreases at each iteration but the convergence is slow. The
Gauss–Newton method converges very quickly but does not guarantee that the function is
going down at each iteration. The LM algorithm integrates the advantages of these two
methods. By adjusting the damping factor µ, the optimization can switch between the
gradient descent method and Gauss–Newton method freely. It not only guarantees that
the loss function descends at each iteration but also guarantees a fast convergence. The
LM algorithm is described in Equation (3). When µ is large it is equivalent to the gradient
descent method and when µ is small it is equivalent to the Gauss–Newton method. A
relatively small µ should be set at first when using the LM algorithm. When the objective
function increases, µ should be increased by using the gradient descent method to find the
minimum value of the loss of function and then µ should be decreased to find it using the
Gauss–Newton method.(

JTJ + µI
)

hlm = −g with g = JTf and µ ≥ 0 (3)

where I is the identity matrix, g is the gradient, µ is the damping factor and µ > 0 ensures
that hlm is a descent direction. Here, J = J(x) and f = f(x) and J is a Jacobian matrix that
contains the first-order partial derivatives of the function f(x).

2.3.4. Predictive Performance Evaluation

After the parameters of the NARX network were determined, we began to train the
network and the training continued until the validation error failed to decrease for six
iterations. After training the network, it was necessary to evaluate the performance of
the well-trained NARX voltage prediction model. The most commonly used performance
indicators are the root mean square error (RMSE), mean absolute error (MAE) and R-square
(R2) [44]. The values of RMSE and MAE were closer to zero and the value of R2 was closer
to 1, indicating that the accuracy of the model was higher and the predicted value was
closer to the real value. The performance indicators in this work were defined as follows:

RMSE =

√√√√ 1
n

n

∑
t=1

(
Ût − Ut

)2

(4)
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MAE =
1
n

n

∑
t=1

∣∣(Ût − Ut
)∣∣ (5)

R2 = 1 − ∑n
t=1
(
Ût − Ut

)2

∑n
t=1
(
Ut − U

)2 (6)

where n is the time step, Ût and Ut represent the predicted voltage and real voltage,
respectively, and U is the mean value of the voltage sequence U.

3. Voltage Prediction Results and Discussion

In this work, the dataset obtained through the experiment contained the voltage
and current data collected from twenty-three batteries of the same specification in charge
and discharge experiments at eight temperatures, which enabled us to develop a voltage
prediction model in an all-climate condition. Among them, the voltage and current are
the most easily accessible battery characteristic data so using the current as the input
of the NARX network and the voltage as the output of the NARX network effectively
reduces the complexity of NARX network with a low computational cost. It is worth
noting that a good voltage prediction model should be able to perform well on unseen
data. To achieve this goal, all cells (Cell 12, Cell 13 and Cell 14) at 25 ◦C were selected for
validation. In addition, the developed model should also be able to predict the voltage
effectively at extreme temperatures, so one cell each at extreme temperatures of −20 ◦C
and 60 ◦C (Cell 1 and Cell 22) were selected for validation. It is well-known that due to the
performance defects of the battery itself, it will exhibit great differences under different
external environmental temperatures. As can be seen from Figure 4, when the battery was
in a low temperature environment and because the temperature was lower than the optimal
operating temperature range of the battery system, the voltage fluctuated more drastically
than other temperatures. As the validation dataset contained the untrained data of all
batteries at 25 ◦C as well as the characteristic data of batteries at extreme temperatures, the
proposed model was guaranteed to have an excellent predictive performance for unknown
data and at all temperatures. In this way, we could ensure that the proposed voltage
prediction model had excellent generalization ability and all-climate applicability.
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3.1. Voltage Prediction Results

As described in Section 2.3, the input delay, feedback delay, size of the hidden layer,
feedback mode and training function were determined before training the NARX network.
In this work, the input and feedback delays were selected as five, the size of the hidden
layer neurons was selected as ten, the network was trained in a series-parallel mode and
the LM algorithm was used as the training function. In the training phase, the whole
training dataset was divided into three parts, namely, training, validation and testing data.
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From this dataset, 70% was used for training the network, 15% was used for the validation
and the remaining 15% was used for testing. The training data were all presented to the
network during the training phase and the network adjusted according to the errors. The
validation data were used to evaluate the generalization ability of the network to avoid
the overfitting of training and to stop training when the generalization stopped improving.
The testing data had no effect on training and were used to evaluate the training quantity
and model performance after training.

After training the NARX voltage prediction model, it was crucial to verify the voltage
prediction performance of the model on untrained batteries. As mentioned before, five
batteries were used for the validation and the voltage prediction results for these five
batteries are shown in Figure 5. As can be seen from the figure, the NARX model showed
an outstanding prediction performance. It is worth noting that the three cells (Cell 12, Cell
13 and Cell 14) at 25 ◦C were not used for training and the NARX model also performed
with a high prediction accuracy. Another noteworthy point is that the voltage of Cell 1
fluctuated greatly at a low temperature but the NARX model still accurately predicted
the cell voltage even at a high temperature. Table 3 summarizes the voltage prediction
performance of the proposed NARX model. The RMSEs of the five validation datasets
were 4.2273 × 10−2, 9.2318 × 10−3, 7.9855 × 10−3, 9.6344 × 10−3 and 7.6182 × 10−3. It
was clear that the RMSE was the smallest at a higher temperature and the RMSE at a
lower temperature was slightly higher than at other temperatures, indicating that the
accuracy of the voltage prediction was affected by the temperature. The slightly higher
RMSE at a lower temperature might have been due to the fact that the internal resistance
of the cell increased and the nonlinear Butler–Volmer effects and diffusion were more
prevalent [45]. In addition, the voltage fluctuations were more severe at low temperatures
making the voltage harder to predict than at other temperatures. However, in general, the
RMSE at each temperature was low, which verified the accuracy and effectiveness of the
proposed NARX voltage prediction method. In conclusion, the results confirmed that the
proposed NARX model had an excellent prediction ability with strong robustness and all-
climate applicability and could effectively predict the cell voltage at different temperatures.
Moreover, it is important to note that the performance of battery will gradually degrade
over time due to battery aging and thus the accuracy of the prediction model may be
reduced. Therefore, when the RMSE is greater than 0.1, it indicates that the prediction error
of the model is large. It is then necessary to retrain the network to maintain the reliability
of the prediction model and ensure the accuracy of the predicted voltage to guarantee the
accuracy of the fault prognosis.

Table 3. The evaluation of the NARX voltage prediction performance for untrained and extreme
temperature cells.

Cell Index RMSE (V) MAE (V) R2 Computational
Time (s)

1 0.042273 0.027807 0.93504 14.69
12 0.0092318 0.0064715 0.89038 13.23
13 0.0079855 0.0052514 0.94849 11.84
14 0.0096344 0.0060982 0.92077 12.51
22 0.0076182 0.0053174 0.88271 13.02

3.2. The Comparison of NARX with Back Propagation Neural Network

In order to verify the superiority of the proposed NARX model, this section will
discuss the advantages of the NARX model compared with a back propagation (BP) neural
network. BP neural network is a kind of multi-layer feedforward neural network trained
according to error back propagation and is a widely used neural network at present [46]. It
has the general advantages of neural networks with a strong nonlinear mapping ability, self-
learning ability, self-adaptive ability, generalization ability and fault tolerance ability [47].
Unlike the NARX, it does not contain the feedback connection of the network. To compare
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the performance of the NARX network with the BP network, we trained the BP network
with the same size of hidden layer and the same training function. The structure of the
BP neural network is shown in Figure 6. The size of the hidden layer was ten and the
voltage at the time instant t was determined by the voltages and currents of the previous
five time intervals. In the training phase, the input data were normalized to obtain a better
convergence. As with the NARX, 70% of the input data was used for training, 15% was used
for validation and the remaining 15% was used for testing. After training, it was validated
by using the new validation dataset as described before to test the prediction performance
of the obtained BP model. Figure 7 compares the performance of the BP and the NARX
with the validation dataset. According to the three performance indicators adopted in this
work, the NARX had a significantly better voltage prediction ability than the BP, indicating
that the NARX model better simulated the electrochemical characteristics of the battery and
had a stronger ability of nonlinear system modeling of the battery than the BP. Therefore,
the proposed NARX model could predict the battery voltage more accurately and thus
obtain a better fault diagnosis performance.
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4. Battery Fault Diagnosis

As mentioned in Sections 2 and 3, the dataset collected from the experiments in this
work included the characteristic data of normal and faulty batteries and the proposed
NARX voltage prediction model had a strong robustness and all-climate applicability,
which could effectively predict the battery voltage and ensure the accuracy of the battery
fault diagnosis. It is well-known that the voltage will show different fluctuations from
normal when the battery is faulty and thus voltage abnormalities are an important indicator
for fault diagnosis. The boxplot, also known as a box-whisker plot, was invented by John
Tukey, a famous American statistician, in 1977. It can accurately and reliably describe
the discrete distribution of data and can quickly identify outliers [48]. The structure of
a boxplot is shown in Figure 8. It is composed of five numerical points: the smallest
observation (minimum), the first quartile (Q1), the second quartile/median (Q2), the third
quartile (Q3) and the largest observation (maximum) where the distance between the first
quartile and the third quartile is the interquartile range (IQR), which is defined as:

IQR = Q3 − Q1. (7)
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It should be noted that the whiskers only extend to the most extreme observations
within 1.5 IQR of the third and first quartiles. According to the basic criteria followed by
statistics, values located at least 1.5 IQR above the third quartile or below the first quartile
are outliers. The outlier cut-off point is defined as:

Outlier cut-off point =
{

Q3 + β × IQR
Q1 − β × IQR

}
(8)

where β = 1.5 is the inner limit and β = 3 is the outer limit. All the data outside the inner
limit are outliers; the outliers between the inner limit and the outer limit are mild outliers
and the outliers outside the outer limit are extreme outliers.

In order to effectively implement the battery fault diagnosis, the voltage abnormality
alarm or warning thresholds were set according to the boxplot, as shown in Table 4. In
addition, a more intuitive view of the threshold settings is shown in Figure 9. It is worth
mentioning that the proposed fault diagnosis method is applicable for other battery systems
based on the appropriate setting of the voltage abnormality alarm or warning thresholds.
As can be seen from Table 4, the alarm or warning level of the voltage anomaly could
be divided into three levels. If the battery voltage is above the third quartile 1.5 IQR or
under the first quartile 1.5 IQR, the third-level alarm will be triggered. The battery may
have potential minor faults and it is necessary to take a few measurements to intervene
in time to prevent the further deterioration of the battery. For drivers, they should pay
attention to inspection and maintenance in daily use. If the battery voltage exceeds 3 IQR
of the third quartile or below 3 IQR of the first quartile, the second-level alarm will be
triggered, indicating that the battery is in a dangerous state and that it is necessary to
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check the alarm location and repair the faulty battery. When the battery voltage exceeds
the charge or discharge cut-off voltage, the first-level alarm will be triggered and it is
required for the driver to stop and get out of the car immediately to avoid accidents and
then call a professional to check the faulty battery and replace the battery if necessary. It
should be emphasized that the first-level alarm is triggered directly when the maximum
and minimum exceed the charge or discharge cut-off voltage.

Table 4. Alarm or warning thresholds and levels for voltage abnormities to perform fault diagnosis.

Alarm or Warning Thresholds Fault Types Alarm or Warning Levels

Ût > Charge cut-off voltage Overvoltage fault 1
Q3 + 3IQR ≤ Ût ≤

Charge cut-off voltage
Open-circuit fault 2

Q3 + 1.5IQR ≤ Ût ≤ Q3 + 3IQR Potential open-circuit fault 3
Q1 − 1.5IQR < Ût < Q3 + 1.5IQR Normal Safe
Q1 − 3IQR ≤ Ût ≤ Q1 − 1.5IQR Potential short-circuit fault 3
Discharge cut-off voltage ≤ Ût ≤

Q1 − 3IQR
Short-circuit fault 2

Ût < Discharge cut-off voltage Undervoltage fault 1
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An effective fault diagnosis model should be robust and reliable. As shown in
Figure 10, among the five validation cells, we intuitively knew from the boxplot that
Cell 13 and Cell 14 had an abnormal voltage whereas the other cells were normal and
the existing abnormal voltages of the cells did not trigger the first-level alarm. Figure 11
depicts the real and predicted voltages of these five cells and it can be seen that the pre-
dicted voltages were very close to the real voltages. According to the proposed fault
diagnosis method, Cell 1, Cell 12 and Cell 22 did not trigger any alarm and the battery
operated normally. Cell 14 and Cell 13 showed abnormal voltage fluctuations at around
310 s and 875 s, respectively, and triggered the second-level alarm. Therefore, the fault
diagnosis method proposed in this paper could effectively detect abnormal cells without
giving false alarms to the normal cells, which verified the robustness and reliability of the
proposed method.
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5. Conclusions

In this paper, a method of fault diagnosis and prognosis for lithium-ion batteries
based on a NARX neural network was proposed, which took full advantage of the NARX
neural network’s competitive prediction ability as well as the ability to cope with the
nonlinear behavior of batteries. To consider the effect of ambient temperature, charge
and discharge experiments were performed on twenty-three cells at eight temperatures
to obtain battery dataset of which eighteen cells were used for training the NARX model
and five cells were used for validation so that the proposed NARX model could perform
effective battery voltage predictions in all climates. The five selected validation cells were
untrained and the results showed that the NARX model had excellent prediction and
generalization capabilities, validating the effectiveness and robustness of the proposed
NARX model. In addition, a comparative study was conducted to verify the superiority of
the proposed NARX model by comparing it with a BP neural network. The results showed
that the NARX model was superior to the BP model in all performance metrics, indicating
that it had a better prediction performance than the BP neural network. Moreover, the
developed NARX model can be trained offline and implemented online so the proposed
NARX model could realize the online prediction of the battery voltage, which is helpful for
the rapid diagnosis of battery faults. Finally, a fault prognosis strategy based on boxplot
was proposed to classify the voltage abnormality levels and types. The abnormal voltage
could be quickly identified through the accurate voltage prediction and then the battery
fault could be accurately diagnosed and the faulty cell precisely located. The results showed
that the method could effectively achieve fault prognosis without non-alarm or false alarm.
It is worth mentioning that the proposed method had strong robustness, accuracy and
simplicity and has the potential for online fault diagnosis and prognosis in electric vehicles.
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