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1. Significance Statement

Double integrals are used in a myriad of areas in science. These integrals are used
extensively in mathematics in the areas of calculus and statistics. Double integrals featuring
the logarithmic function and a polynomial raised to a power as their kernel are not widely
used but we were able to find at least one application namely the logarithmic integral
transformation [1].

In this manuscript we aim to expand upon the usage of the definite integral of a
polynomial function by providing a new double integral expressed in terms of the Lerch
function. The Lerch function being a special function has the property of analytic continua-
tion which allows for a wider range of computation of the parameters involved. Another
property of the Lerch function is almost all Lerch zeta-functions have an asymmetrical
zero-distribution [2].

2. Introduction

In this paper we derive the double integral given by

∫ ∞

0

∫ 1

0

y2mxn(x−n−1 − 1
)m logk(ay2(x−n−1 − 1

))
y2 + 1

dxdy (1)

where the parameters k, a, m are general complex numbers and −1 < Re(m) < 1. The
double integral will be used to derive special cases in terms of special functions and
fundamental constants. The derivations follow the method used by us in [3]. This method
involves using a form of the generalized Cauchy’s integral formula given by

yk

Γ(k + 1)
=

1
2πi

∫
C

ewy

wk+1 dw. (2)

We multiply both sides by a function of x and y, then take a definite double integral of
both sides. This yields a definite integral in terms of a contour integral. Then we multiply
both sides of Equation (2) by another function of x and y and take the infinite sums of both
sides such that the contour integral of both equations are the same.
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3. Definite Integral of the Contour Integral

We use the method in [3]. The variable of integration in the contour integral is
α = m + w. The cut and contour are in the second quadrant of the complex α-plane. The
cut approaches the origin from the interior of the second quadrant and the contour goes
round the origin with zero radius and is on opposite sides of the cut. Using a generalization
of Cauchy’s integral formula we form two equations by replacing y by log

(
ay2(x−n−1 − 1

))
and multiplying by

y2mxn(x−n−1−1)
m

y2+1 then taking the definite integral with respect x ∈ [0, 1]
and y ∈ [0, ∞) to get

1
k!

∫ ∞
0

∫ 1
0

y2mxn(x−n−1−1)
m

logk(ay2(x−n−1−1))
y2+1 dxdy

= 1
2πi
∫ ∞

0

∫ 1
0

∫
C

aww−k−1xny2(m+w)(x−n−1−1)
m+w

y2+1 dwdxdy

= 1
2πi
∫

C

∫ ∞
0

∫ 1
0

aww−k−1xny2(m+w)(x−n−1−1)
m+w

y2+1 dxdydw

= 1
2πi
∫

C
π2aww−k−1(m+w) csc(2π(m+w))

n+1 dw

(3)

from equations (3.249.7), (3.2511), and (3.241.2) in [4] where Re(w+m) > 0. The logarithmic
function is given for example in Section (4.1) in [5]. We are able to switch the order of
integration over w + m, x and y using Fubini’s theorem since the integrand is of bounded
measure over the space C× [0, 1]× [0, ∞).

4. The Lerch Function Contour Integral Representations
4.1. The Lerch Function

The Lerch function section (1.11) in [6] has a series representation given by

Φ(z, s, v) =
∞

∑
n=0

(v + n)−szn (4)

where |z| < 1, v 6= 0,−1, . . . and is continued analytically by its integral representation
given by

Φ(z, s, v) =
1

Γ(s)

∫ ∞

0

ts−1e−vt

1− ze−t dt =
1

Γ(s)

∫ ∞

0

ts−1e−(v−1)t

et − z
dt (5)

where Re(v) > 0, and either |z| ≤ 1, z 6= 1, Re(s) > 0, or z = 1, Re(s) > 1.

4.2. Derivation of the First Contour Integral

In this section we will again use Cauchy’s integral formula (2) and take the infinite
sum to derive equivalent sum representations for the contour integrals. We proceed
using Equation (2) and replace y by log(a) + 2iπ(2y + 1) and multiply both sides by
− 2iπ2me2iπm(2y+1)

n+1 and take the infinite sum over y ∈ [0, ∞) simplifying in terms of the Lerch
function to get

ik−122k+1πk+2e2iπmmΦ
(

e4imπ ,−k, 1
2−

i log(a)
4π

)
(n+1)Γ(k+1)

= − 1
2πi ∑∞

y=0
∫

C
2iπ2maww−k−1e2iπ(2y+1)(m+w)

n+1 dw

= − 1
2πi
∫

C ∑∞
y=0

2iπ2maww−k−1e2iπ(2y+1)(m+w)

n+1 dw

= 1
2πi
∫

C
π2maww−k−1 csc(2π(m+w))

n+1 dw

(6)

from Equation (1.232.3) in [4] where csch(ix) = −icsc(x) from Equation (4.5.10) in [5] and
Im(w + m) > 0 for the sum to converge.
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4.3. Derivation of the Second Contour Integral

Use Equation (6) and multiply by 1/m and replace k→ k− 1 and simplify to get

−
ik22k−1πk+1e2iπmΦ

(
e4imπ ,1−k, 1

2−
i log(a)

4π

)
(n+1)Γ(k)

= 1
2πi
∫

C
π2aww−k csc(2π(m+w))

n+1 dw

(7)

Main results

In the proceeding section, we will derive integral formula in terms of Catalan’s con-
stant G, Polygamma function ψn(z), and Hurwitz zeta function ζ(n, u) For k, a,
n ∈ C,−1 < Re(m) < 1,

∫ ∞
0

∫ 1
0

y2mxn(x−n−1−1)
m

logk(ay2(x−n−1−1))
y2+1 dxdy

= 1
n+1 22k−1(iπ)k+1e2iπm

(
ikΦ

(
e4imπ , 1− k, 1

2 −
i log(a)

4π

)
− 4πmΦ

(
e4imπ ,−k, 1

2 −
i log(a)

4π

)) (8)

Proof. Observe that the right-hand side of Equation (8) is equal the addition of the right-
hand sides of Equations (6) and (29), so we can equate the left-hand sides to yield the stated
result.

For k, a, n ∈ C,−1 < Re(m) < 1,−1 < Re(p) < 1,

∫ ∞
0

∫ 1
0

xn
(

y2p(x−n−1−1)
p−y2m(x−n−1−1)

m)
logk(ay2(x−n−1−1))

y2+1 dxdy

= 1
n+1 ik22k−1πk+1

(
e2iπm

(
kΦ
(

e4imπ , 1− k, 1
2 −

i log(a)
4π

)))
+ 4iπmΦ

(
e4imπ ,−k, 1

2 −
i log(a)

4π

)
− e2iπp(kΦ(e4ipπ , 1− k, 1

2 −
i log(a)

4π

)
+ 4iπpΦ

(
e4ipπ ,−k, 1

2 −
i log(a)

4π

))
(9)

Proof. Use Equation (8) and form a second equation by replacing m → p and take their
difference and simplify.

∫ ∞

0

∫ 1

0

y2mxn(x−n−1 − 1
)m

y2 + 1
dxdy =

π2m csc(2πm)

n + 1
(10)

Proof. Use Equation (8) and set k = 0 and simplify using entry (2) in Table below (64:12:7)
in [7].

∫ ∞
0

∫ 1
0

y2mxn(x−n−1−1)
m

log(y2(x−n−1−1))
y2+1 dxdy

= π2(1−2πm cot(2πm)) csc(2πm)
n+1

(11)

Proof. Use Equation (8) and set k = 1 and simplify using entry (1) in Table below (64:12:7)
in [7].
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∫ ∞
0

∫ 1
0

xn
(

y2p(x−n−1−1)
p−y2m(x−n−1−1)

m)
(y2+1) log(y2(x−n−1−1))

dxdy

= 1
8n+8

(
ie2iπmΦ

(
e4imπ , 2, 1

2

)
− ie2iπpΦ

(
e4ipπ , 2, 1

2

)
+ 8πm tanh−1(e2iπm))
− 8πp tanh−1(e2iπp))

(12)

Proof. Use Equation (8) and form a second equation by m→ p and take their difference
and set k = −1, a = 1 and simplify using entry (1) in Table below (64:12:7) in [7].

∫ ∞

0

∫ 1

0

xn
(

y
√

x−n−1 − 1− 1
)

√
y(y2 + 1) 4

√
x−n−1 − 1 log(y2(x−n−1 − 1))

dxdy =
G

n + 1
(13)

Proof. Use Equation (12) and set m = 1/4, p = −1/4 and simplify in terms of Catalan’s
constant G, using entry (4) in Table below (64:12:7) in [7] and Equation (2.3) in [8].

∫ ∞

0

∫ 1

0

y
(

1
x − 1

)1/2
− 1

√
y(y2 + 1) log

((
1
x − 1

)
y2
)

4
√

1
x − 1

dxdy = G (14)

Proof. Use Equation (13) and set n = 0 and simplify.

∫ ∞
0

∫ 1
0

√
yxn 4√x−n−1−1 logk(ay2(x−n−1−1))

y2+1 dxdy

= 1
n+1 ik23k−2πk+1

(
2π
(

ζ
(
−k, 1

4 −
i log(a)

8π

)
− ζ
(
−k, 3

4 −
i log(a)

8π

)))
− ik

(
ζ
(

1− k, 1
4 −

i log(a)
8π

)
− ζ
(

1− k, 3
4 −

i log(a)
8π

))) (15)

Proof. Use Equation (8) and set m = 1/4 and simplify in terms the Hurwitz zeta function
using entry (4) in Table below (64:12:7) in [7].

∫ ∞
0

∫ 1
0

√
yxn 4√x−n−1−1 logk(y2(x−n−1−1))

y2+1 dxdy

=
ik23k−2πk+1(2π(ζ(−k, 1

4 )−ζ(−k, 3
4 ))−ik(ζ(1−k, 1

4 )−ζ(1−k, 3
4 )))

n+1

(16)

Proof. Use Equation (15) and set a = 1 and simplify.

∫ ∞
0

∫ 1
0

√
yxn 4√x−n−1−1

(y2+1) log(y2(1−x−n−1))
dxdy

=
2iπ(ψ(0)( 3

8 )−ψ(0)( 7
8 ))+ψ(1)( 3

8 )−ψ(1)( 7
8 )

32(n+1)

(17)

Proof. Use Equation (15) and set a = −1 then apply L’Hopital’s rule to the right-hand side
as k→ −1 and simplify using Equation (64:4:1) in [7].

∫ ∞
0

∫ 1
0

√
y 4
√

1
x−1

(y2+1) log
(

(x−1)y2
x

)dxdy = 1
32

(
2iπ
(

ψ(0)( 3
8
)
− ψ(0)( 7

8
)))

+ ψ(1)( 3
8
)
− ψ(1)( 7

8
)) (18)
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Proof. Use Equation (17) and set n = 0 and simplify.

∫ ∞
0

∫ 1
0

x
√

y log
(

log
((

1− 1
x2

)
y2
))

4
√

1
x2−1

y2+1 dxdy

= 1
16 π

(
2i
(

ψ(0)( 3
8
)
− ψ(0)( 7

8
))

+ π

(
log
(

64π2Γ(− 1
8 )

4

625Γ(− 5
8 )

4

)
+ iπ

)) (19)

Proof. Use Equation (15) and take the first partial derivative with respect to k and set
k = 0, a = 1, n = 1 and simplify using Equations (64:4:1) and (64:10:2) in [7].

∫ ∞
0

∫ 1
0

x
√

y log
((

1
x2−1

)
y2
)

log
(

log
((

1
x2−1

)
y2
))

4
√

1
x2−1

y2+1 dxdy

= 1
4 π2

(
−4iG + 2 + iπ + log

(
64π2Γ(− 1

4 )
4

81Γ(− 3
4 )

4

)) (20)

Proof. Use Equation (15) and take the first partial derivative with respect to k and set
k = 1, a = 1, n = 1 and simplify using Equations (64:4:1) and (64:10:2) in [7].

∫ ∞
0

∫ 1
0

4
√

1
x−1
√

y

(y2+1) log
(

(x−1)y2
x

)dxdy = 1
32

(
ψ(1)( 3

8
)
− ψ(1)( 7

8
))

− 2i
√

2π
(
π + 2 log

(
tan
(

π
8
))) (21)

Proof. Use Equation (8) set k = −1, a = −1, m = 1/4, n = 0 and simplify using entry (4)
in Table below (64:12:7) and Equation (64:4:1) in [7].

∫ ∞
0

∫ 1
0

4
√

1
x−1
√

y

(y2+1) log(i( 1
x−1)y2)

dxdy

= 1
32

(
ψ(1)( 5

16
)
− ψ(1)

(
13
16

))
− 4iπ

(
sin
(

π
8
)(√

2π + 2 log
(
tan
(

π
16
)))

+ 2 cos
(

π
8
)

log
(
cot
( 3π

16
))))

(22)

Proof. Use Equation (8) set k = −1, a = i, m = 1/4, n = 0 and simplify using entry (4) in
Table below (64:12:7) and Equation (64:4:1) in [7].

∫ ∞
0

∫ 1
0

4
√

1
x−1
√

y

(y2+1)

√
log
(

(x−1)y2
x

)dxdy =
(

1
32 + i

32

)√
π
(
−4iπ

(
ζ
(

1
2 , 3

8

)))

− ζ
(

1
2 , 7

8

))
+ ζ
( 3

2 , 3
8
)
− ζ
( 3

2 , 7
8
)) (23)

Proof. Use Equation (8) set k = −1/2, a = −1, m = 1/4, n = 0 and simplify using entry
(4) in Table below (64:12:7) in [7].

∫ ∞
0

∫ 1
0

4
√

1
x−1
√

y logi
(

(x−1)y2
x

)
y2+1 dxdy = ii2−2+3iπ1+i(2π

(
ζ
(
−i, 3

8
)))

− ζ
(
−i, 7

8
))

+ ζ
(
1− i, 3

8
)

− ζ
(
1− i, 7

8
)

(24)
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Proof. Use Equation (8) set k = i, a = −1, m = 1/4, n = 0 and simplify using entry (4) in
Table below (64:12:7) and Equation (64:4:1) in [7].

∫ ∞
0

∫ 1
0

4
√

1
x−1
√

y(log( 1
x−1)+2 log(y))

(y2+1) log(i( 1
x−1)y2)

dxdy

= 1
64 π

(
4π
(

4− sin
(

π
8
)(√

2π + 2 log
(
tan
(

π
16
)))))

+ 2 cos
(

π
8
)

log
(

tan
( 3π

16
)))

− i
(

ψ(1)( 5
16
)
− ψ(1)

(
13
16

))) (25)

Proof. Use Equation (8) take the first partial derivative with respect to k and set k = −1,
a = i, m = 1/4, n = 0 and simplify using entry (4) in Table below (64:12:7) and Equation
(64:4:1) in [7].

∫ ∞

0

∫ 1

0

(
1−

√
1
x − 1y

)
log2

((
1
x − 1

)
y2
)

log
(

log
((

1
x − 1

)
y2
))

4
√

1
x − 1

√
y(y2 + 1)

dxdy = 32iπ2G (26)

Proof. Use Equation (8) take the first partial derivative with respect to k and set k = 2,
a = 1, m = 1/4, p = −1/4, n = 0 and simplify in terms of Catalan’s constant G, using
entries (3) and (4) in Table below (64:12:7) and Equations (1:7:4) and (64:12:4) in [7].

∫ ∞

0

∫ 1

0

logk
((

1
x − 1

)
y2
)

y2 + 1
dxdy = −ik22k−1

(
21−k − 1

)
kπk+1ζ(1− k) (27)

Proof. Use Equation (8) and set a = 1, m = 0, n = 0 and simplify using Equation (64:12:1)
in [7]. Note the integrand is highly oscillatory when Re(k) < π.

∫ ∞

0

∫ 1

0

i log3
((

1
x − 1

)
y2
)

log
(

log
((

1
x − 1

)
y2
))

18π2(y2 + 1)
dxdy = ζ(3) (28)

Proof. Use Equation (27) take the first partial derivative with respect to k and set k = 3
and simplify in terms of Aprey’s constant ζ(3).

∫ ∞
0

∫ 1
0

15 log4(( 1
x−1)y2) log(log(( 1

x−1)y2))
2π5(y2+1) dxdy =

− 3360ζ ′(−3) + 7 + 14iπ + 60 log(2) + 28 log(π)

(29)

Proof. Use Equation (27) take the first partial derivative with respect to k and set k = 4
and simplify.

5. Discussion

In this work, we derived and evaluated a definite double integral involving the
logarithmic function, a polynomial raised to a general power and a quotient rational
function and expressed it in terms of the Lerch functions. We will be using our contour
integral method for other integrals and derive other multiple integrals. We used Wolfram
Mathematica to numerically verify our results for complex values of the parameters.
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