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Abstract: Detecting objects hidden in a medium is an inverse problem. Given data recorded at
detectors when sources emit waves that interact with the medium, we aim to find objects that
would generate similar data in the presence of the same waves. In opposition, the associated
forward problem describes the evolution of the waves in the presence of known objects. This gives a
symmetry relation: if the true objects (the desired solution of the inverse problem) were considered
for solving the forward problem, then the recorded data should be returned. In this paper, we
develop a topological derivative-based multifrequency iterative algorithm to reconstruct objects
buried in attenuating media with limited aperture data. We demonstrate the method on half-space
configurations, which can be related to problems set in the whole space by symmetry. One-step
implementations of the algorithm provide initial approximations, which are improved in a few
iterations. We can locate object components of sizes smaller than the main components, or buried
deeper inside. However, attenuation effects hinder object detection depending on the size and depth
for fixed ranges of frequencies.

Keywords: topological derivative; multifrequency; shape reconstruction; attenuation; damped
wave equation

1. Introduction

Most inverse algorithms for shape reconstruction using acoustic data assume that the
attenuation coefficient is negligible. However, in some applications, attenuation effects
cannot be discarded. For example, in medical studies of biological tissues, the attenuation
coefficient provides important information for diagnosis. It often differs noticeably from
normal tissue to damaged tissue, while other acoustical parameters such as the density
or the wave speed might vary only slightly [1]. Similarly, sound attenuation in subbot-
tom tomography for the seabed plays an important role (see [2] and references therein).
Attenuation effects are also important in photoacoustic imaging [3] and in helioseismol-
ogy models [4], to mention a few. Seismic waves typically decrease in amplitude due
to spherical spreading as well as to loss mechanisms in the rocks, due to mechanical or
other causes.

Attenuation complicates the detection of buried scatterers to a great extent. Further-
more, in many applications, data can only be acquired in a limited part of the sounded
region, as in seismic tomography or marine acoustics, where taking measurements around
the sounded region is impossible. A graphical illustration of such situations is depicted in
Figure 1.
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Figure 1. Imaging setting. Emitters and receivers are located on the accessible part of the sample.

A wide variety of algorithms have been proposed to address inverse scattering prob-
lems, that is, inverse problems in which the goal is to detect localized objects: linear
approximations such as the Kirchhoff or physical optics approximation [5] and the Born
approximation [6], linear sampling techniques [7,8], factorization methods [9], backpropa-
gation principles [10], modified gradient methods [11], or single shot methods [12] to quote
a few. General shape optimization strategies [13] have inspired many approaches, based,
in particular, on level-set methods [14,15] or topological derivative techniques [16,17]
(see [18,19] for reviews of recent applications). Here, we show that multifrequency topolog-
ical derivative-based methods [20–23] have the potential of providing reconstructions of
buried objects in attenuation regimes, within some size and depth limits. We propose a tool
based on heuristic ideas, as most of the methods that are based on topological derivatives.
For rigorous mathematical justifications of this kind of approach in some specific situations,
we refer to [24–26].

The paper is organized as follows. Section 2 formulates the forward and inverse
scattering problems for penetrable scatterers when both the exterior medium and the
objects have nonzero attenuation coefficients. The problem is set in a half-plane (space), but
with a symmetry argument, it can be reformulated as a problem in the whole plane (space).
Section 3 explains the one-step topological derivative-based method with fixed frequencies,
while Section 4 introduces the multifrequency approach. Results are further improved in
Section 5, implementing an iterative topological derivative-based multifrequency scheme.
Section 6 explains how to extend our method for the detection of sound-soft and sound-
hard objects immersed in an attenuating medium. Finally, Section 7 summarizes our
conclusions.

2. Forward and Inverse Problems
2.1. Forward Problem

When the incident wave is time harmonic, the resulting attenuated wave field is a
time-harmonic solution U(x, t) = Re[e−ıωtu(x)] (where ω > 0 is the excitation frequency),
of the damped wave equation

∆U − 1
c2 Utt − aUt = F.

Therefore, the amplitude u is a solution to

∆u +

(
ω2

c2 + ıa ω

)
u = f ,

where c > 0 is the wave speed and a ≥ 0 is the attenuation coefficient. Here the function
F (and its time-harmonic amplitude f in the case of time-harmonic excitations) depends
on the selected type of incident wave. In the case of time-harmonic planar excitations,
f = 0, while a point source located at a point x0 is modeled by the Dirac delta function at
x0, f = δx0 .
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In the setup depicted in Figure 1, we assume that the components of Ω are penetrable
obstacles defined by the wave speed ci > 0, the attenuation coefficient ai ≥ 0, and the
density ρi > 0. The exterior medium is identified with the half-plane (space) Rd

− =
{(x1, . . . , xd) ∈ Rd, xd < 0}, where d = 2 or d = 3, and described by the exterior
parameters ce, ae, ρe. The upper half-plane (space) is assumed to be filled by air, which
will be modeled at the upper boundary Π := {(x1, . . . , xd), xd = 0} by the homogeneous
Neumann condition

∂xd u = 0, on Π. (1)

To simplify notations, we introduce the positive ratio

γ =
ρic2

i
ρec2

e
, (2)

and the complex wave numbers

ke(ω) =

√
ω2

c2
e
+ ıae ω, ki(ω) =

√
ω2

c2
i
+ ıai ω, (3)

where the square roots are selected with non-negative imaginary parts.
Incident fields will be generated at points x0 ∈ Π and mathematically described by

the fundamental solution of the Helmholtz equation with wave number ke(ω):

uinc
x0,ω(x) = G(ke(ω), x− x0) (4)

where

G(k, z) =


i
4

H(1)
0 (k|z|), if d = 2,

eık|z|

4π|z| , if d = 3,
(5)

H(1)
0 being the Hankel function of the first kind and order zero [27]. Notice that since

x0 ∈ Π, it follows that uinc
x0,ω satisfies the condition (1). This incident field generates a

scattered wave uscat
x0,ω in Rd

− \Ω and a transmitted wave utr
x0,ω in Ω. The total field

ux0,ω :=

{
uinc

x0,ω + uscat
x0,ω, in Rd

− \Ω,

utr
x0,ω, in Ω,

is a solution of

∆ux0,ω + ke(ω)2ux0,ω = δx0 , in Rd
− \Ω,

∆ux0,ω + ki(ω)2ux0,ω = 0, in Ω,

u−x0,ω = u+
x0,ω, γ∂nu−x0,ω = ∂nu+

x0,ω, on ∂Ω,

∂xd ux0,ω = 0 on Π,

limr→∞ r(d−1)/2(∂r(ux0,ω − uinc
x0,ω)− ıke(ω)(ux0,ω − uinc

x0,ω)) = 0.

(6)

The superscripts + and − denote limit values from outside and inside the objects,
respectively. Here, ∂n stands for normal derivatives, n being the normal unit vector
pointing inside the objects, whereas ∂r denotes the radial derivative. For our particular
type of complex wave-numbers, problem (6) has a unique solution [28] and it can be solved
efficiently by means of boundary element techniques [29,30]. In Reference [31] several
direct, indirect, and mixed formulations are analyzed and compared for a thermal problem,
which has exactly the same structure as (6) but where wave numbers are related to the
time-harmonic heat equation and take the form k(ω) =

√
ı bω with b > 0 instead of those

in (3). However, for the wave numbers of the form (3), such formulations are also valid.



Symmetry 2021, 13, 1702 4 of 22

Results in [28,31] are established by using a symmetry argument, where the problem in the
half-plane (space) is transformed into an equivalent one in Rd: the condition ∂xd u = 0 on
Π disappears and the objects are Ω̃ = Ω ∪Ωsym, where Ω ⊂ Rd

− are the original objects
and Ωsym are their symmetrical (with respect to Π) ones, namely, Ωsym = {(x1, . . . , xd) ∈
Rd, (x1, . . . ,−xd) ∈ Ω}. Boundary element methods proposed in [28,31] are based on
potentials and operators defined on the symmetric boundary ∂Ω̃ = ∂Ω ∪ ∂Ωsym. In the
forthcoming examples for the two-dimensional case, we opt for a fully discrete version
based on trigonometric polynomials of the direct formulation described in Section 8 in [31]
(which indeed is a generalization of the original method proposed in [32]), where the
unknowns are the interior and the exterior Cauchy data of the solution of (6) at the
boundary of the objects. Alternatively, we could have used the symmetric formulation
proposed in [33].

For simplicity, in the initial simulations, we fix γ = 1, ce = 1 and ci = 4 in the
configuration sketched in Figure 2. We will comment on the case γ 6= 1 in the final
simulations. Figures 3 and 4 illustrate the effect of the attenuation coefficients ae and ai
on the incident and scattered fields for two different frequencies ω. For a fixed value of
the interior attenuation parameter ai, we observe that the intensity of the scattered waves
diminishes as the exterior parameter ae increases and its maxima are smoothed, while the
support of the incident wave becomes smaller. On the other hand, for a fixed value of ae,
the effect of increasing ai does not have a noticeable qualitative impact on the scattered
wave, and of course, the incident wave does not change since it is independent of this
parameter. As we increase the frequency ω, the scattered wave becomes more oscillatory.
Notice that the magnitude of the scattered wave depends on the frequency, which will have
to be taken into account when combining multifrequency data for shape reconstruction
algorithms.

Figure 2. Geometrical configuration for the numerical tests in Figures 3 and 4. The source point is
located at the point marked by a dot (‘•’) while the scattered and the incident waves are evaluated on
the segment [−2.5, 2.5]× {0}.

2.2. Inverse Problem

Given objects Ω and the incident wave uinc
x0,ω, the solution of (6) evaluated at the

receptors zr, r = 1, . . . , Nreceivers, is expected to agree with the measured data umeas,r
x0,ω

except for measurement errors and noise. When we have measurements of the total wave
field at a given frequency ω for different source point locations xs, s = 1, . . . , Nemitters, a
constrained optimization reformulation of the inverse problem seeks minimizers Ω of the
shape functional

Jω(Rd
− \Ω) =

1
2

Nemitters

∑
s=1

Nreceivers

∑
r=1

|uΩ
xs ,ω(zr)− umeas,r

xs ,ω |2, (7)

where uΩ
xs ,ω denotes the solution of (6) with objects Ω for known parameters ci, ce, ai, ae

and γ when the incident wave is uinc
xs ,ω (defined in (4)).
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(a) (b)

(c) (d)

Figure 3. Results for ω = 2. (a,b) Modulus of the incident and scattered waves when ai = 0.5 for
several exterior attenuation parameters ae. (c,d) Modulus of the incident and scattered waves when
ae = 0.5 for several interior attenuation parameters ai.

(a) (b)

(c) (d)

Figure 4. Results for ω = 8. (a,b) Modulus of the incident and scattered waves when ai = 0.5 for
several exterior attenuation parameters ae. (c,d) Modulus of the incident and scattered waves when
ae = 0.5 for several interior attenuation parameters ai.
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For our two-dimensional experiments, data will be generated synthetically by solving
problem (6) for the true defects Ω via the direct formulation described in Section 8 in [31]
to obtain the solution at the receivers, uΩ

xs ,ω(zr), r = 1, . . . , Nreceivers. Then, the associated
scattered wave uscat,r

xs ,ω = uΩ
xs ,ω(zr)− uinc

xs ,ω(zr) is corrupted by adding a random number of
size δ to generate corrupted scattered values ũscat,r

xs ,ω satisfying√
∑Nreceivers

r=1 |ũscat,r
xs ,ω − uscat,r

xs ,ω |2√
∑Nreceivers

r=1 |uscat,r
xs ,ω |2

≤ δ. (8)

Finally, the synthetic measured data are defined by

umeas,r
xs ,ω = uinc

xs ,ω(zr) + ũscat,r
xs ,ω . (9)

In the forthcoming experiments, we set a one percent relative noise, namely, δ = 0.01.
However, we have already checked by numerical tests that results are rather insensitive to
δ and results are almost the same if we consider a ten percent relative noise (i.e., for δ = 0.1).
To further avoid inverse crimes, we use a different boundary integral method to solve the
direct problems of the form (6) that will appear during the iterative algorithm. Being more
precise, we use the indirect formulation described in Section 3 in [31] (see also [28]).

In the next section, we explain how to generate first guesses of the objects by topologi-
cal derivative methods.

3. Topological Derivative-Based Approach

The concept of the topological derivative was first introduced in the 1990s in [13,34,35]
as a tool for optimal shape design. The topological derivative of a shape functional
J(R) = J(uR), whereR ⊂ Rd and uR is the solution of a given boundary value problem
defined inR, is a scalar field that measures the sensitivity of such functional to infinitesimal
perturbations at each point x ∈ R. It provides expansions of the form

J(R \ Bε(x)) = J(R) + f (ε)DT(R, x) + o( f (ε)), (10)

where Bε(x) are balls of radius ε centered at x and the positive function f satisfies f (ε)→ 0
as ε→ 0. The field DT(R, x) is the topological derivative of the shape functional at the point
x ∈ R. The function f depends on the boundary conditions enforced in the boundary value
problem. In our case, R = Rd

− and f will be the measure of the ball, that is, f (ε) = πε2

when d = 2 and f (ε) = 4
3 πε3 when d = 3. Whenever DT(R, x) takes large negative values,

the expansion (10) implies that the shape functional decreases by placing an infinitesimal
scatterer at x. This idea will be exploited in the definition of our reconstruction algorithm.

The general definition of the topological derivative allows for any kind of infinites-
imal shape, not necessarily a ball. However, to obtain the associated function f and the
derivation of closed-form formulas in this case is more involved, while it is not clear that
it would produce improvements in practice, as observed in [36], where a comparison
between results for infinitesimal balls and ellipsoids at different orientations is presented
for sound-soft and sound-hard objects immersed in a non-attenuating media.

A closed-form expression of the topological derivative of a shape functional similar
to (7), involving complex wave numbers, but related to time-harmonic thermal waves in
a half-plane is established in [37]. In an acoustic setup in R3 without attenuation, it was
established in [36]. In a similar way, we obtain the following result:
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Theorem 1. For any x ∈ Rd
−, the topological derivative of the shape functional (7) is

Dω
T (Rd

−, x) =
Nemitters

∑
s=1

Re
[ d(1− γ)

d− 1 + γ
∇u∅

xs ,ω(x)∇w∅
xs ,ω(x)

+
(

γki(ω)2 − ke(ω)2
)

u∅
xs ,ω(x)w∅

xs ,ω(x)
]

(11)

where u∅
xs ,ω and w∅

xs ,ω solve the forward and adjoint problems with Ω = ∅:
∆u∅

xs ,ω + ke(ω)2u∅
xs ,ω = δxs , in Rd

−,

∂xd u∅
xs ,ω = 0 on Π,

limr→∞ r(d−1)/2(∂r(u∅
xs ,ω − uinc

xs ,ω)− ıke(ω)(u∅
xs ,ω − uinc

xs ,ω)) = 0,

(12)

and 
∆w∅

xs ,ω + ke(ω)2w∅
xs ,ω = ∑Nreceivers

r=1 (umeas,r
xs ,ω − u∅

xs ,ω)δzr , in Rd
−,

∂xd w∅
xs ,ω = 0 on Π,

limr→∞ r(d−1)/2(∂rw∅
xs ,ω − ıke(ω)w∅

xs ,ω) = 0.

(13)

Both the forward and the adjoint problems can be solved in closed-form (recall that
since both emitters and receivers are located on the upper boundary Π, the fundamental
solution G(ke(ω), x− x∗) satisfies the boundary condition (1) at x ∈ Π when x∗ is either a
receiver or an emitter):

u∅
xs ,ω(x) = uinc

xs ,ω(x) = G(ke(ω), x− xs), (14)

w∅
xs ,ω(x) =

Nreceivers

∑
r=1

G(ke(ω), x− xr)(u∅
xs ,ω(xr)− umeas,r

xs ,ω ). (15)

Formula (11) can be directly evaluated in an observation region Robs when the
recorded data umeas,r

xs ,ω , the incident waves uinc
xs ,ω and the material properties are known.

In case the properties of the objects ci, ρi, ai are not known, we can implement iterative
procedures to calculate both shapes and material properties following [38]. We will explain
how to iterate with respect to the objects using several frequencies in Section 5.

A simpler situation whereR = Rd in the absence of attenuation effects was studied
in [36,39]. The formula for the topological derivative is analogous to that in Theorem 1,
but the wave numbers ke(ω) and ki(ω) are real. The forward and adjoint problems
are similar, but there is no boundary condition on Π and the forward solution satisfies
∆u∅

xs ,ω + ke(ω)2u∅
xs ,ω = δxs in Rd, while the adjoint solution solves ∆w∅

xs ,ω + ke(ω)2w∅
xs ,ω =

∑Nreceivers
r=1 (umeas,r

xs ,ω − u∅
xs ,ω)δzr , in Rd. In this case, when emitters and receivers are distributed

around the observation region, the largest negative values of the topological derivative
clearly locate the objects for different frequencies, as it happens in Figure 5. The physical
parameters selected for this simulation are ce = 1, ci = 4 and γ = 1. Notice that the shape
and orientation of the two objects are better described when we increase the frequency, in
spite of oscillations.
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Topological derivative at the observation region Robs = [−2.5, 2.5] × [−2.5, 0] when
R = R2, there is no attenuation in the medium (ae = ai = 0), and ce = 1, ci = 4, γ = 1, for different
values of the frequency ω when emitters (dots) and receivers (crosses) are located around the defects.
The boundaries of the true elliptical objects are represented by the solid red lines.

Let us turn now to the original problem set in Rd
− for the limited aperture configura-

tions under study, see Figure 1. Locating buried scatterers with limited-aperture data is
an issue of practical interest that has been the object of intensive research [36,40]. Placing
emitters and receivers on the upper boundary, and keeping the same physical parameters
ae = ai = 0, ce = 1, ci = 4 and γ = 1, the information provided by topological derivatives
is less clear, as illustrated in Figure 6. Now, we observe stripes alternating positive and
negative values of the topological derivative. Nevertheless, the largest negative values
are attained around the two true objects, though resolution for the object placed farthest
from the emitters worsens, especially as the frequency increases. In comparison with the
experiments presented in Figure 5, we observe that while frequencies ω ≥ 8 are the best
for shape identification when emitters and receivers are located around the objects, in our
setting with emitters and receivers on Π, the use of frequencies higher than ω = 4 promotes
the appearance of spurious regions. Only frequencies below ω = 8 will be considered in
the forthcoming experiments. If we increase the number of emitters and/or receivers but
we keep their location on Π, reconstructions do not improve.
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Topological derivative at the observation region Robs = [−2.5, 2.5] × [−2.5, 0] when
R = R2

−, there is no attenuation in the medium (ae = ai = 0), and ce = 1, ci = 4, γ = 1, for different
values of the frequency ω when emitters (dots) and receivers (crosses) are aligned and located on the
upper boundary Π. The contours of the true elliptical objects are represented by the solid red lines.

In the presence of attenuation, we lose even more information, see Figure 7 where ae =
ai = 0.5. The topological derivative still detects the closest object, though its orientation is
uncertain. We fail to detect the distant object, while a number of spurious minima appear.
Depending on the frequency, we may end up with completely wrong reconstructions. For
instance, for ω = 4, we conjecture the presence of a close object at about y = −0.5, whereas
for ω = 6, we seem to have three defects. If we increase the interior attenuation coefficient
to ai = 1.5 and keep ae = 0.5, the topological derivatives are qualitatively equal to those
presented in Figure 7 and therefore plots are omitted for brevity.

Further increasing the exterior attenuation coefficient to ae = 1.5 while keeping the
interior one unchanged ai = 0.5 (or increasing it to ai = 1.5), reconstructions worsen.
As shown in Figure 8, only the lowest frequency can track the closest object. The true
objects are usually placed in regions where the topological derivative takes negative values,
but the largest negative values are attained in variable regions as the frequency changes.
Furthermore, there are regions where large negative values for one frequency become
large positive values for another (compare panels (c) and (f), for instance). These remarks
suggest the possibility of combining information from different frequencies to enhance the
correct contributions provided by all of them and to cancel the variable, spurious details,
which we analyze in the next section.
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Topological derivative at the observation region Robs = [−2.5, 2.5] × [−2.5, 0] when
R = R2

−, ae = ai = 0.5, and ce = 1, ci = 4, γ = 1, for different values of the frequency ω when
emitters (dots) and receivers (crosses) are aligned and located on the upper boundary Π. The contours
of the true elliptical objects are represented by the solid red lines.

(a) (b)

(c) (d)

Figure 8. Cont.



Symmetry 2021, 13, 1702 11 of 22

(e) (f)

Figure 8. Topological derivative at the observation region Robs = [−2.5, 2.5] × [−2.5, 0] when
R = R2

−, ae = 1.5, ai = 0.5, and ce = 1, ci = 4, γ = 1, for different values of the frequency ω

when emitters (dots) and receivers (crosses) are aligned and located on the upper boundary Π. The
contours of the true elliptical objects are represented by the solid red lines.

4. Multifrequency Method

To incorporate the contributions from several frequencies ω1, . . . , ωN f req , we consider
a new shape functional defined as a linear combination of monochromatic functionals (7),
namely, a function of the form [22]:

J(Rd
− \Ω) =

1
2

N f req

∑
`=1

Pω`
Jω`

(Rd
− \Ω) =

1
2

N f rec

∑
`=1

Nemitters

∑
s=1

Nreceivers

∑
r=1

Pω`
|uΩ

xs ,ω`
(zr)− umeas,r

xs ,ω`
|2, (16)

where uΩ
xs ,ω`

is the solution of (6) with frequency ω = ω` and incident wave uinc
xs ,ω`

of
the form (4). Here, Pω`

> 0 are weights to be selected. By linearity, it follows that the
topological derivative is a linear combination of the monochromatic topological derivatives
with ω = ω` given in (11), i.e.,

DT(Rd
−, x) =

N f rec

∑
`=1

Pω`
Dω`

T (Rd
−, x), x ∈ Rd

−. (17)

As in [22], we select the weights Pω`
after computing each individual derivative,

selecting
Pω`

= − min
y∈Robs

Dω`
T (Rd

−, y), (18)

whereRobs is the observation region, that is, the region where topological derivatives are
evaluated. This choice balances the contribution of all frequencies since it guarantees that
each term in the sum (17) satisfies minx∈Robs Pω`

Dω`
T (Rd

−, x) = −1. Notice that depending
on the selected frequency, Pω`

has a different order of magnitude (compare panels (a) and
(f) in Figures 6–8).

Figure 9 illustrates the results obtained combining the six single frequency topological
derivatives for the same ellipses (ci = 4, ai = 0.5, γ = 1) when the exterior velocity is
ce = 1 and ae = 0 (no exterior attenuation), ae = 0.5 (moderate attenuation) and ae = 1.5
(high attenuation). For the attenuation coefficients ae = 0.5 and ae = 1.5, we have combined
the six topological derivatives displayed in Figures 7 and 8, while for ae = 0 the individual
ones are qualitatively identical to those in Figure 6, which corresponds to ai = 0 instead
of ai = 0.5. When ae = 0, we clearly distinguish two elliptical defects, obtaining good
approximations for their size, shape and orientation. For ae = 0.5, the object closest to
emitters/receivers is reasonably reproduced, similarly to the case ae = 0, but the orientation
slightly worsens. We conjecture the presence of another object in the second region where
the multifrequency topological derivative becomes negative, and no spurious negative
regions where no true objects are located appear. Increasing the attenuation in the medium,
the information on the orientation of the closest object worsens and the other object cannot
really be guessed.
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(a) (b)

(c)

Figure 9. Multifrequency topological derivative for different values of the exterior attenuation
coefficient ae and ce = 1, ci = 4, γ = 1, ai = 0.5. The boundaries of the true objects are represented
by the solid red lines.

For a quantitative visualization, Figure 10 illustrates the initial approximations Ωα we
would obtain plotting the topological derivative (17) for the example in Figure 9c (which
corresponds to the most demanding case ae = 1.5) and selecting the points for which the
topological derivative falls below a threshold:

Ω ≈ Ωα = {x ∈ Robs, DT(Rd
−, x) ≤ (1− α) min

y∈Robs
DT(Rd

−, y)}, (19)

where 0 < α < 1 is the selected threshold coefficient andRobs = [−2.5, 2.5]× [−2.5,−0.2]
is the sounded region. Obviously, the larger α, the larger the area. However, notice that
reconstructions are robust in terms of this parameter and only a rough calibration is needed.
Notice also that Ωα not only depends on α but also on the selected mesh for Robs (both
for the definition of each weight Pω`

, and for the final evaluation of the multifrequency
topological derivative). In all our experiments, we have considered a grid of 120 points in
the x-coordinate and 60 points in the y-coordinate. We have also checked that the method
is very robust in connection with this issue. For a discussion about the selection of optimal
meshes for the evaluation of indicator functions, we refer to [41].

These results provide the initial stage to implement iterative corrections, as we explain
in Section 5.

(a) (b)

Figure 10. Cont.
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(c)

Figure 10. Initial approximations Ωα (solid region) calculated by (19) for different values of the
threshold α compared to true objects (solid lines).

5. Multifrequency Iterative Method

In this section, we adapt the iterative algorithm proposed by us in [37,39] for monochro-
matic measurements to the multifrequency case. It is based upon an expression of the
topological derivative when we already have a non-empty guess Ωapp for the scatterers.

Theorem 2. Assume that Ωapp is an approximation of the true defects Ω. Then, for any x ∈
Rd
− \Ωapp the topological derivative of the shape functional Jω defined in (7) is given by

Dω
T (Rd

− \Ωapp, x) =
Nemitters

∑
s=1

Re
[ d(1− γ)

d− 1 + γ
∇u

Ωapp
xs ,ω (x)∇w

Ωapp
xs ,ω (x)

+
(

γki(ω)2 − ke(ω)2
)

u
Ωapp
xs ,ω (x)w

Ωapp
xs ,ω (x)

]
(20)

where u
Ωapp
xs ,ω and w

Ωapp
xs ,ω are solutions of forward and adjoint problems with objects Ωapp:

∆u
Ωapp
xs ,ω + ke(ω)2u

Ωapp
xs ,ω = δxs , in Rd

− \Ωapp,

∆u
Ωapp
xs ,ω + ki(ω)2u

Ωapp
xs ,ω = 0, in Ωapp,

(u
Ωapp
xs ,ω )− = (u

Ωapp
xs ,ω )+, γ(∂nu

Ωapp
xs ,ω )− = (∂nu

Ωapp
xs ,ω )+, on ∂Ωapp,

∂xd u
Ωapp
xs ,ω = 0 on Π,

limr→∞ r(d−1)/2(∂r(u
Ωapp
xs ,ω − uinc

xs ,ω)− ıke(ω)(u
Ωapp
xs ,ω − uinc

xs ,ω)) = 0,

(21)

and 

∆w
Ωapp
xs ,ω + ke(ω)2w

Ωapp
xs ,ω = ∑Nreceivers

r=1 (umeas,r
xs ,ω − u

Ωapp
xs ,ω )δzr , in Rd

− \Ωapp,

∆w
Ωapp
xs ,ω + ki(ω)2w

Ωapp
xs ,ω = 0, in Ωapp,

(w
Ωapp
xs ,ω )− = (w

Ωapp
xs ,ω )+, γ(∂nw

Ωapp
xs ,ω )− = (∂nw

Ωapp
xs ,ω )+, on ∂Ωapp,

∂xd w
Ωapp
xs ,ω = 0 on Π,

limr→∞ r(d−1)/2(∂rw
Ωapp
xs ,ω − ıke(ω)w

Ωapp
xs ,ω ) = 0.

(22)

Notice that Formulas (11) and (20) are exactly the same, but now u
Ωapp
xs ,ω and w

Ωapp
xs ,ω play

the role of their counterparts u∅
xs ,ω and w∅

xs ,ω in Theorem 1. In contrast to the former case,
problems (21) and (22) cannot be solved in closed form except for very simple geometries
(i.e., when Ωapp is a ball or a square), and they must be solved numerically. This will be the
general situation for the initial guesses defined by (19). As already mentioned, we will use
the indirect boundary integral formulation proposed in [28].

The iterative method we propose to approximate the true objects from knowledge of
the physical parameters ce, ae, ci, ai and γ from measured data umeas,r

xs ,ω`
for r = 1, . . . , Nreceivers,
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s = 1, . . . , Nemitters, ` = 1, . . . , N f req corresponding to the excitation of the medium via inci-
dent waves uinc

xs ,ω`
, is a multifrequency version of the one proposed by us in [37,39]. The

algorithm proceeds in the following steps:

• Initialization. We initialize the method by computing the multifrequency topological
derivative DT(Rd

−, x) defined in (17) from the individual ones (as described in The-
orem 1) with weights P0

ω`
defined by (18). Then, we select a value 0 < α0 < 1 and

define the set

Ω0 = {x ∈ Robs, DT(Rd
−, x) ≤ (1− α0) min

y∈Robs
DT(Rd

−, y)}. (23)

For our numerical experiments, we will set in principle α0 = 0.1. For numerical
purposes, the set Ω0 needs now to be decomposed in its connected components, which
is performed by using the Matlab function bwconncomp as explained in [42], and then
each connected component is approximated by a star-shaped parameterization as
detailed in [39].

• Iteration. For each step j = 1, . . . , Jmax we proceed as follows. Given the current
approximation Ωj−1,

– We compute the monocromatic topological derivatives Dω`
T (Rd

− \ Ωj−1, x) for
x ∈ Robs \Ωj−1 making use of Theorem 2 with Ωapp = Ωj−1, to define the new
multifrequency topological derivative:

DT(Rd
− \Ωj−1, x) =

N f rec

∑
`=1

Pj
ω`

Dω`
T (Rd

− \Ωj−1, x), x ∈ Robs \Ωj−1,

with weights Pj
ω`

= −miny∈Robs\Ωj−1
Dω`

T (Rd
− \Ωj−1, y). Notice that now the cor-

responding forward and adjoint problems involve the objects Ωj−1 and therefore
they have to be numerically solved.

– We update the current set Ωj−1 by adding to Ωj−1 the points where the new
topological derivative attains the largest negative values:

Ωj = Ωj−1 ∪ {x ∈ Robs\Ωj−1, DT(Rd
−\Ωj−1, x) ≤

(1−αj) min
y∈Robs\Ωj−1

DT(Rd
− \Ωj−1, y)}. (24)

In principle, αj = αj−1. We calculate the number of connected components of Ωj
and obtain star-shaped approximations of each of them, which form the final Ωj.

– We check if each monofrequency shape functional decreases. If Jω`
(Rd
− \Ωj) <

Jω`
(Rd
− \Ωj−1) for ` = 1, . . . , N f rec, then Ωj is accepted. Otherwise, we replace αj

by αj/
√

2 and compute again Ωj as in (24). The algorithm stops if either:

* A maximum number of iterations Jmax is reached.
* The measure of two consecutive approximations is negligible, namely if

|meas(Ωj)−meas(Ωj−1)| < 0.01 meas(Ωj−1).

* Updating objects produces almost no variation for all the monofrequency
functionals, i.e., if

Jω`
(Rd
− \Ωj−1)− Jω`

(Rd
− \Ωj) < 0.01 Jω`

(Rd
− \Ωj−1), ∀` = 1, . . . , N f req.
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* The discrepancy principle for at least one of the frequencies is reached, that
is, for any ` = 1, . . . , N f req√

∑Nemitters
s=1 ∑Nreceivers

r=1 |uΩj
xs ,ω`

(zr)− umeas,r
xs ,ω`

|2√
∑Nemitters

s=1 ∑Nreceivers
r=1 |uΩj

xs ,ω`
(zr)− uinc

xs ,ω`
(zr)|2

≤ 1.2δ,

where δ is the noise level (see the end of Section 2.2).

Notice that since Pj−1
ω`
6= Pj

ω`
, at each step we are considering a different shape func-

tional, which is a different linear combination of the same monochromatic functionals. In
our previous works, only monochromatic data were considered, and therefore, the same
shape functional was preserved during the iterations. As stated, this iterative procedure
only allows us to create objects and add points to existing objects. Modifying the itera-
tive scheme as indicated in [43], we can also remove points or destroy existing spurious
components.

Next, we will illustrate the performance of the iterative multifrequency algorithm
for the two-dimensional case. Figure 11 shows how the iterative method works for the
demanding situation considered in the previous section where ae = 1.5 and ai = 0.5.
Plot (a) represents the values of the topological derivative DT(R2

−, x) for x ∈ Robs =
[−2.5, 2.5]× [−2.5,−0.2] computed as in Theorem 1. Choosing α0 = 0.1, we find the initial
approximation Ω0 shown in panel (b) in white. In the same plot, we represent the values
of the topological derivative when Ωapp = Ω0 computed by applying Theorem 2. The
subsequent plots, indexed by the value of j in the title, represent the current approximation
Ωj−1 and the values of the topological derivative when Ωapp = Ωj−1 (which are used
to define Ωj by Formula (24)). We observe that although our initial guess contains only
one component, the second one is detected when j = 3 and Ω3 has the correct number of
components. In fact, the topological derivative for j = 2 already suggests it, but since the
value of αj is rather conservative, the approximate domain Ω2 has only one component.
The last approximation to the closest object is quite good (see panel (f)), including size,
shape and orientation. For the deepest one, the location is correct, though it appears smaller.
We only see the top illuminated part.

Figure 12 considers a more challenging situation: the deepest object is smaller and
deeper. However, our method is also able to detect it. As we move this object deeper, we
reach a depth at which we do not see it with our choice of frequencies, attenuation and
thresholds, as can be seen in Figure 13. Nevertheless, the other object is still reasonably
described. Attenuation effects hinder the detection of objects, when they are deep and
small enough.

In all previous examples, the physical parameters ce = 1, ci = 4 and γ = 1 were
fixed. Since in realistic situations that appear, for instance, in geophysics or in biological
problems [44], the simplification γ = 1 could be unrealistic, we have repeated the exper-
iments in Figures 11 and 12 when replacing γ = 1 by γ = 1/2 and γ = 2. Figure 14
shows the results for the configuration with two ellipses, and Figure 15 corresponds to the
configuration where the deepest object is a ball.

Results evidence that the effect of attenuation is similar in the cases γ = 1, γ = 1/2
and γ = 2, being the case γ = 2 the one that seems to be less favorable. In particular, in
Figure 15d, we observe that the small defect is not detected when γ = 2. Although not
illustrated here for brevity, when considering the configuration in Figure 13, in all of the
cases (γ = 1, γ = 1/2 and γ = 2) the deepest object is missed. We want to emphasize
that we have not performed a thorough parametric study and it might happen that for
other selections of speeds and frequencies, the case γ = 2 could lead to more accurate
reconstructions than γ = 1/2 or γ = 1.
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(a) (b)

(c) (d)

(e) (f)

Figure 11. (a) Multifrequency topological derivative DT(R2
−, x) for x ∈ Robs. Solid red lines mark

the boundaries of the true objects. (b–f) Approximated domain Ωj−1 (white regions) and values of
DT(R2

− \Ωj−1, x) for x ∈ Robs \Ωj−1 for the values of j indicated in the title.

(a) (b)

(c) (d)

Figure 12. (a) Multifrequency topological derivative DT(R2
−, x) for x ∈ Robs. Solid red lines mark

the contours of the true objects. The deepest object is now a small ball. (b–d) Approximated domain
Ωj−1 (white regions) and values of DT(R2

− \Ωj−1, x) for x ∈ Robs \Ωj−1 for the values of j indicated
in the title. The small object is detected.
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(a) (b)

(c) (d)

Figure 13. (a) Multifrequency topological derivative DT(R2
−, x) for x ∈ Robs. Solid red lines mark

the contours of the true objects. The smallest defect is located deeper than in Figure 12. (b–d) Ap-
proximated domain Ωj−1 (white regions) and values of DT(R2

− \Ωj−1, x) for x ∈ Robs \Ωj−1 for the
values of j indicated in the title. The small ball is now missed.

(a) (b)

(c) (d)

Figure 14. (a) Multifrequency topological derivative DT(R2
−, x) for x ∈ Robs. Solid red lines mark

the boundaries of the true objects. Here, γ = 1/2. (b) Approximated domain Ωj−1 (white regions)
and values of DT(R2

− \Ωj−1, x) for x ∈ Robs \Ωj−1 for the value of j indicated in the title when
γ = 1/2. (c) Counterpart of plot (a) for γ = 2. (d) Counterpart of plot (b) for γ = 2.
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(a) (b)

(c) (d)

Figure 15. (a) Multifrequency topological derivative DT(R2
−, x) for x ∈ Robs. Solid red lines mark

the boundaries of the true objects. Here γ = 1/2. (b) Approximated domain Ωj−1 (white regions)
and values of DT(R2

− \Ωj−1, x) for x ∈ Robs \Ωj−1 for the value of j indicated in the title when
γ = 1/2. (c) Counterpart of plot (a) for γ = 2. (d) Counterpart of plot (b) for γ = 2. Now the deepest
object is missed.

Finally, let us remark that topological derivative-based methods are very robust with
respect to noise. This has been extensively tested by many authors for different inverse
problems (see for instance [17,20]). Synthetically generated data are usually corrupted by
random noise in a similar way as we do in (8) and (9). When real experimental data are
processed, noise is inevitably present. The reconstructions obtained in [23,45] evidence the
robustness of the method when dealing with experimental data. For our inverse scattering
problem in an attenuating half space, we have checked that increasing the level of noise δ
defined in (8) from δ = 0.01 to δ = 0.1 results are almost identical. A detailed study of the
effect of noise on a topological derivative-based approximation is performed in [46] in a
Bayesian framework, though it is exemplified in different emitter/receiver configurations.

6. Other Boundary Conditions

The ideas developed in this paper do not depend on the conditions on the boundary
of the defects. The results can be extended straightforwardly to Dirichlet (sound-soft
defects) or Neumann (sound-hard defects) conditions. For sound-soft defects embedded
in an attenuating media occupying the half plane/space Rd

−, the counterpart forward
problem corresponding to (6) for an incident wave uinc

xs ,ω emitted from the source point xs
at a frequency ω is:

∆uxs ,ω + ke(ω)2uxs ,ω = δxs , in Rd
− \Ω,

uxs ,ω = 0, on ∂Ω,

∂xd uxs ,ω = 0 on Π,

limr→∞ r(d−1)/2(∂r(uxs ,ω − uinc
xs ,ω)− ıke(ω)(uxs ,ω − uinc

xs ,ω)) = 0,

(25)

where the complex wave number ke(ω) is defined in terms of the exterior wave velocity
ce and the attenuation coefficient ae as in (3). In this case, adapting the results in [47–49]
it can be proved that the formula for the topological derivative in Theorem 1 should be
replaced by:

Dω
T (Rd

−, x) =
Nemitters

∑
s=1

Re
[
u∅

xs ,ω(x)w∅
xs ,ω(x)

]
(26)
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where u∅
xs ,ω and w∅

xs ,ω solve (12) and (13). In case an initial guess Ωapp of Ω is available, we

obtain the counterpart formula to (26) with u∅
xs ,ω and w∅

xs ,ω replaced by u
Ωapp
xs ,ω and w

Ωapp
xs ,ω ,

and the solutions to the associated Dirichlet forward and adjoint problems with objects
Ωapp: 

∆u
Ωapp
xs ,ω + ke(ω)2u

Ωapp
xs ,ω = δxs , in Rd

− \Ωapp,

u
Ωapp
xs ,ω = 0, on ∂Ωapp,

∂xd u
Ωapp
xs ,ω = 0 on Π,

limr→∞ r(d−1)/2(∂r(u
Ωapp
xs ,ω − uinc

xs ,ω)− ıke(ω)(u
Ωapp
xs ,ω − uinc

xs ,ω)) = 0,

(27)

and 

∆w
Ωapp
xs ,ω + ke(ω)2w

Ωapp
xs ,ω = ∑Nreceivers

r=1 (umeas,r
xs ,ω − u

Ωapp
xs ,ω )δzr , in Rd

− \Ωapp,

w
Ωapp
xs ,ω = 0, on ∂Ωapp,

∂xd w
Ωapp
xs ,ω = 0 on Π,

limr→∞ r(d−1)/2(∂rw
Ωapp
xs ,ω − ıke(ω)w

Ωapp
xs ,ω ) = 0.

(28)

These formulas can be derived by adapting the results in [49].
For sound-hard objects, modeled by the analogous problem to (25) obtained by re-

placing in this problem the boundary condition uxs ,ω = 0 on ∂Ω by ∂nuxs ,ω = 0 on ∂Ω, the
counterpart formula to that in Theorem 1 can be obtained either by adapting the results
in [17,39] or by formally taking the limit as k→ 0 in (11):

Dω
T (Rd

−, x) =
Nemitters

∑
s=1

Re
[ d

d− 1
∇u∅

xs ,ω(x)∇w∅
xs ,ω(x)− ke(ω)2 u∅

xs ,ω(x)w∅
xs ,ω(x)

]
, (29)

where again, u∅
xs ,ω and w∅

xs ,ω solve (12) and (13). The counterpart formula to that in

Theorem 2 looks exactly as (29), with u∅
xs ,ω and w∅

xs ,ω replaced by u
Ωapp
xs ,ω and w

Ωapp
xs ,ω , the

solutions to the associated Neumann forward and adjoint problems with objects Ωapp. The

forward problem is (27) with the condition u
Ωapp
xs ,ω = 0 on ∂Ωapp replaced by ∂nu

Ωapp
xs ,ω = 0 on

∂Ωapp, while the adjoint problem is given by (28) when replacing w
Ωapp
xs ,ω = 0 on ∂Ωapp by

the Neumann condition ∂nw
Ωapp
xs ,ω = 0 on ∂Ωapp.

Notice that for the three types of defects (penetrable, sound-soft and sound-hard), the same
forward and adjoint problems are involved in the topological derivative Formulas (11), (26)
and (29). However, depending on the type of defect, the formulas are different linear com-
binations of the terms u∅

xs ,ωw∅
xs ,ω and∇u∅

xs ,ω · ∇w∅
xs ,ω . In the case of not having information

about the nature of the scatterers (and even in the case when objects of different nature are
embedded in the same attenuating media), we could make use of a related mathematical
tool, the topological energy [50], which for our model problem would be defined by

Eω
T (x) =

Nemitters

∑
s=1

|u∅
xs ,ω |2|w∅

xs ,ω |2, (30)

where u∅
xs ,ω and w∅

xs ,ω solve (12) and (13). For the use of a multifrequency version of this
indicator function for a problem in R2 where objects of different nature are immersed
in a non-attenuating media, we refer to [51]. The extension of the iterative method to
cope with objects of different nature is not immediate, since the formula would be the

counterpart to (30), but the corresponding fields u
Ωapp
xs ,ω and w

Ωapp
xs ,ω depend on the boundary

conditions imposed on the components of Ωapp. Therefore, at its current state, we could



Symmetry 2021, 13, 1702 20 of 22

only generalize the use of iterated multifrequency topological energies to the situation
where all objects have the same nature. A monofrequency iterative method based on
topological energy computations was explored in [52] for a related problem in R3 with no
attenuation and penetrable objects.

7. Conclusions

We have proposed a topological derivative-based multifrequency iterative algorithm
to identify objects buried in attenuated media with limited aperture data. In principle, these
methods use no a priori information other than the knowledge of the measured data, the
incident waves, the employed frequencies and the properties of the background medium.
To simplify, here we have assumed that we know the material properties of the scatterers,
and we look for their location, size, orientation and shape. One-step implementations
of the algorithm provide initial approximations, which are improved in a few iterations.
Components of smaller size than the main components, or buried deeper inside, can be
detected. However, attenuation effects may prevent detecting objects depending on their
size and depth for fixed ranges of frequencies.

A key point in the new multifrequency method defined in this paper is the way to
combine monochromatic data. We have defined a strategy based on weighting individual
topological derivatives, obtaining therefore a method where the global shape functional
changes from one step to the next one, and consequently, the discrepancy principle must
be tested individually. It would be possible to define the weights in a different way to keep
the same functional or to define a different way to combine single-frequency data in a more
efficient way, exploring the alternatives proposed in [21,53–56]. Indeed, the weights could
be considered part of the inverse problem. Optimal selection of weights could extract more
information from the measured data, perhaps increasing resolution of small deep objects.

The formulas obtained in this paper could be combined with other strategies to define
iterative methods. For instance, the reconstructions obtained by the first computation
of the topological derivative in Rd

− could be used as initial guesses for other types of
iterative methods, such as Newton-type algorithms [57], level set methods [14,15] or
other topological derivative-based approaches [58–62]. Iterative methods that alternate
topological derivative computations with regularized Gauss-Newton iterations [63] could
also be explored.

When the material properties of the objects are unknown, we could generate initial
approximations to their geometry by related topological energy techniques [45,50–52] and
to their material parameters by hybrid gradient methods [38]. Uncertainty due to noise can
be addressed by combining topological priors with Bayesian techniques [46].
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