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Abstract: In this paper, we studied some properties of the neutrosophic multi topological group. For
this, we introduced the definition of semi-open neutrosophic multiset, semi-closed neutrosophic
multiset, neutrosophic multi regularly open set, neutrosophic multi regularly closed set, neutrosophic
multi continuous mapping, and then studied the definition of a neutrosophic multi topological group
and some of their properties. Moreover, since the concept of the almost topological group is very
new, we introduced the definition of neutrosophic multi almost topological group. Finally, for the
purpose of symmetry, we used the definition of neutrosophic multi almost continuous mapping to
define neutrosophic multi almost topological group and study some of its properties.

Keywords: neutrosophic multi continuous mapping; neutrosophic multi topological group;
neutrosophic multi almost continuous mapping; neutrosophic multi almost topological group

1. Introduction

Following the introduction of the fuzzy set (FS) [1], a variety of studies on generali-
sations of FS concepts were performed. In the sense that the theory of sets should have
been a particular case of the theory of FSs, the theory of FSs is a generalisation of the
classical theory of sets. Following the generalisation of FSs, many scholars used the theory
of generalised FSs in a variety of fields in science and technology. Fuzzy topology (FT) was
first introduced by Chang [2], and Intuitionistic fuzzy topological space (FITS) was defined
by Coker [3]. Many researchers studied topology based on neutrosophic sets (NS), such as
Lupianez [4–7] and Salama et al. [8]. Kelly [9] defined the concept of bitopological space
(BTS) in 1963. Kandil et al. [10] studied the topic of fuzzy bitopological space (FBTS). Some
characteristics of Intuitionistic Fuzzy Bitopological Space (IFBTS) were addressed by Lee
et al. [11]. Garg [12] investigated how to rank interval-valued Pythagorean FSs using a
modified score function. A Pythagorean fuzzy method for order of preference by similarity
to ideal solution (TOPSIS) method based on Pythagorean FSs was discussed, which took
the experts’ preferences in the form of interval-valued Pythagorean fuzzy decision matrices.
Moreover, different explorations of the theory of Pythagorean FSs can be seen in [13–19].
Yager [20] proposed the q-rung orthopair FSs, in which the sum of the qth powers of the
membership (MS) and non-MS degrees is restricted to one [21]. Peng and Liu [22] studied
the systematic transformation for information measures for q-rung orthopair FSs. Pinar
and Boran [23] applied a q-rung orthopair fuzzy multi-criteria group decision-making
method for supplier selection based on a novel distance measure.

Cuong et al. [24] proposed a picture FS as an extension of FS and Intuitionistic fuzzy
set (IFS) that contains the concept of an element’s positive, negative, and neutral MS de-
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gree. Cuong [25] investigated several picture FS characteristics and proposed distance
measurements between picture FS. Phong et al. [26] investigated some picture fuzzy rela-
tion compositions. Cuong et al. [27] examined the basic fuzzy logic operators: negations,
conjunctions, and disjunctions, as well as their implications on picture FSs, and also devel-
oped main operations for fuzzy inference processes in picture fuzzy systems. For picture
FSs, Cuong et al. [28] demonstrated properties of an involutive picture negator and some
related De Morgan fuzzy triples. Viet et al. [29] presented a picture fuzzy inference system
based on MS graph, and Singh [30] studied correlation coefficients of picture FS. Garg [31]
studied some picture fuzzy aggregation operations and their applications to multi-criteria
decision-making. Quek et al. [32] used T-spherical fuzzy weighted aggregation operators
to investigate the MADM problem. Garg [33] suggested interactive aggregation operators
for T-spherical FSs and used the proposed operators to solve the MADM problem. Zeng
et al. [34] studied on multi-attribute decision-making process with immediate probabilistic
interactive averaging aggregation operators of T-spherical FSs and its application in the
selection of solar cells. Munir et al. [35] investigated T-spherical fuzzy Einstein hybrid
aggregation operators and how they could be applied in multi-attribute decision-making
issues. Mahmood et al. [36] proposed the idea of a spherical FS and consequently a
T-spherical FS.

Many researchers also studied FT and then generalised it in the IFS and then to the
neutrosophic topology. Warren [37] studied the boundary of an FS in FT. Warren [37]
studied some properties of the boundary of an FS and found that some properties are not
the same as the properties of the crisp boundary of a set. Later, many authors studied
the properties of the boundary of an FS. Tang [38] made heavy use of the notion of fuzzy
boundary. Kharal [39] studied Frontier and Semifrontier in IFTSs. Salama et al. [40]
studied generalised neutrosophic topological space (NTS), where they have discussed
on properties of generalised closed sets. Azad [41] introduced the concepts of fuzzy
semi-continuity (FSC), fuzzy almost continuity (FAC), and fuzzy weakly continuity (FWC)
(FWC). Smarandache [42,43] suggested neutrosophic set (NS) theory, which generalised
FST and IFST and incorporated a degree of indeterminacy as an independent component.
Mwchahary et al. [44] studied on properties of the boundary of neutrosophic bitopological
space (NBTS). Many authors studied the properties of the boundary of an FS by several
methods (FS, IFS, and NS), but some of its properties are not the same as the properties of
the crisp boundary of a set.

Blizard [45] traced multisets back to the very origin of numbers, arguing that in
ancient times, the number was often represented by a collection of n strokes, tally marks,
or units. The idea of fuzzy multiset (FMS) was introduced by Yager [46] as fuzzy bags.
In the interest of brevity, we consider our attention to the basic concepts such as an open
FMS, closed FMS, interior, closure, and continuity of FMSs. Yager, in [46], generalised
the FS by introducing the concept of FMS (fuzzy bag), and he discussed a calculus for
them in [47]. An element of an FMS can occur more than once with possibly the same
or different MS values. If every element of an FMS can occur at most once, we go back
to FSs [48]. In [49], Onasanya et al. defined the multi-fuzzy group (FMG), and in [50,51],
the authors defined fuzzy multi-polygroups and fuzzy multi-Hv-ideals and studied their
properties. In [52], Neutrosophic Multigroup (NMG) and their applications are observed.
A new type of FS (FMS) was studied by Sebastian et al. [53]. This set makes use of ordered
sequences of MS functions to express problems that are not covered by other extensions
of FS theory, such as pixel colour. Dey et al. [54] were the first to establish the concept of
multi-fuzzy complex numbers and multi-fuzzy complex sets. Over a distributive lattice,
the authors [54] proposed multi fuzzy complex nilpotent matrices. Yong et al. [55] recently
proposed the notion of the multi-fuzzy soft set, which is a more general fuzzy soft set, for
its application to decision making.
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Motivation

There is a lot of ambiguity information in the real world that crisp values cannot
manage. The FS theory [1], proposed by Zadeh, is an age-old and excellent tool for dealing
with uncertain information; however, it can only be used on random processes. As a
result, Sebastian et al. [56] introduced FMSs, Atanassov [57] suggested the IFS theory,
and Shinoj et al. [58] launched intuitionistic FMSs, all based on FS theory. The theories
mentioned above have expanded in a variety of ways and have applications in a variety of
fields, including algebraic structures. Some of the selected papers are those on FSs [59–61],
FMSs [62–64], IFSs [65–72], and intuitionistic FMSs [73]. However, these theories are
incapable of dealing with all forms of uncertainty, such as indeterminate and inconsistent
data in various decision-making situations. To address this shortfall, Smarandache [74]
proposed the NS theory, which makes Atanassov’s [57] theory very practical and easy to
apply. In this current decade, neutrosophic environments are mainly interested by different
fields of researchers. In Mathematics, much theoretical research has also been observed
in the sense of neutrosophic environment. A more theoretical study will be required to
build a broad framework for decision-making and to define patterns for the conception
and implementation of complex networks. Deli et al. [75] and Ye [76,77] proposed the
notion of neutrosophic multiset (NMS) for modelling vagueness and uncertainty in order
to improve the NS theory further. From the literature survey, it was noticed that precisely
the properties of the neutrosophic multi topological group (NMTG) are not performed.
Now, as an update for the research in NMS, we introduced the definition of a neutrosophic
semi-open set, neutrosophic semi-closed set, neutrosophic regularly open set, neutrosophic
regularly closed set, neutrosophic continuous mapping, neutrosophic open mapping,
neutrosophic closed mapping, neutrosophic semi-continuous mapping, neutrosophic semi-
open mapping, neutrosophic semi-closed mapping. Moreover, we tried to prove some
of their properties and also cited some examples. We defined the neutrosophic multi
almost topological group by using the definition of neutrosophic multi almost continuous
mapping and investigate some properties and theorems of a neutrosophic multi almost
topological group.

2. Materials and Methods

Definition 1 ([42]). Let X be a non-empty fixed set. A neutrosophic set (NS) A is an object
with the form A = {< x, µA , σA, γA > : x ∈ X}, where T, I, F : X −→ [0, 1] and 0 ≤ µA +
σA + γA ≤ 3 and µA (x), σA(x), and γA(x) represents the degree of MS function, the degree
indeterminacy, and the degree of non-MS function, respectively, of each element x ∈ X to set A.

Definition 2 ([78]). A neutrosophic multiset (NMS) is a type of neutrosophic set (NS) in which
one or more elements are repeated with the same or different neutrosophic components.

Example 1. Let X = {a, b, c} then

A =


< a, 0.6, 0.1, 0.2 >,< a, 0.5, 0.1, 0.3 >,< a, 0.4, 0.2, 0.4 >,
< b, 0.3, 0.5, 0.4 >,< b, 0.2, 0.5, 0.6 >,< b, 0.1, 0.5, 0.7 >,
< c, 0.4, 0.5, 0.6 >,< c, 0.3, 0.5, 0.7 >,< c, 0.2, 0.6, 0.8 >


is an NMS, as the elementsa , b, care repeated.

However,B = {< a, 0.8, 0.3, 0.1 >, < b, 0.5, 0.3, 0.4 >,< c, 0.4, 0.4, 0.6 >}is an NS and
not an NMS.

Definition 3 ([52]). The Empty NMS is defined as 0NM =
{

m ∈ X;< m(0,1,1) >
}

, where m
can be repeated.
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Definition 4 ([52]). The Whole NMS is defined as 1NM =
{

m ∈ X;< m(1,0,0) >
}

, where m can
be repeated.

Definition 5 ([52]). Let X 6= φ, and a neutrosophic multiset (NMS) A on X can be expressed
as A =

{
m ∈ X;

(
m<TA(m),=A(m),FA(m)>

)}
, then the complement of A is defined as AC ={

m ∈ X;
(

m<FA(m),1−=A(m),TA(m)>

)}
. where m can be repeated depending on its multiplicity, and

the T,=,F values may or may not be equal.

Definition 6 ([52]). Let X 6= φ and A =
{

m ∈ X;
(

m<TA(m),=A(m),FA(m)>

)}
and B ={

m ∈ X;
(

m<TB(m),=B(m),FB(m)>

)}
are NMSs. Then

(i) Ae B =
{

m ∈ X; m<min(TA(m),TB(m)),max(=A(m),=B(m)),max(FA(m),FB(m))>

}
;

(ii) Ad B =
{

m ∈ X; m<max(TA(m),TB(m)),min(=A(m),=B(m)),min(FA(m),FB(m))>

}
.

Definition 7 ([78]). Let X 6= φ, and a neutrosophic multiset topology (NMT) on X is a family τX
of neutrosophic multi subsets of X if the following conditions hold:

(i) 0NM, 1NM ∈ τX ;
(ii) G1 e G2 ∈ τX for G1, G2 ∈ τX ;
(iii) dGi ∈ τX , ∀

{
GNi : i ∈ J

}
4 τX .

Then (X, τX) is known as a neutrosophic multi topological space (NMTS), and any NMS in
τX is called a neutrosophic multi-open set (NMOS). The element of τX are said to be NMOSs, an
NMS F is neutrosophic multi closed set (NMCoS) if Fc is NMOS.

Definition 8 ([52]). Let X be a classical group and A be a neutrosophic multiset (NMS) on X.
Then A is said to be neutrosophic multi groupoid over X if

(i) Ti
G(mn) ≥ Ti

G(m) −→ Ti
G(n) ;

(ii) Ii
G(mn) ≤ Ii

G(m) −→ Ii
G(n) ;

(iii) Fi
G(mn) ≤ Fi

G(m) −→ Fi
G(n), ∀ m, n ∈ X and i = 1, 2, . . . , P.

Moreover, A is said to be neutrosophic multi-group (NMG) over X if the neutrosophic multi
groupoid satisfies the following:

(i) Ti
G(m−1) ≥ Ti

G(m);
(ii) Ii

G(m−1) ≤ Ii
G(m);

(iii) Fi
G(m−1) ≤ Fi

G(m), ∀ m ∈ X and i = 1, 2, . . . , P.

Definition 9 ([52]). Let G be an NMG in a group X, and e be the identity of X. We define the
NMS Ge by

Ge = {m ∈ X : TG(m) = TG(e), =G(m) = =G(e), FG(m) = FG(e)}

We note for an NMG G in a group X, for every m ∈ X : TG
(
m−1) = TG(m), =G

(
m−1) =

=G(m) and FG
(
m−1) = FG(m). Moreover, for the identity e ∈ X : TG(e) < TG(m), =G(e) <

=G(m) and FG(e) 4 FG(m).

3. Results

Definition 10. Let (X, τX) be NMTS. Then for an NMS A =
{
< x, µNi , σNi , δNi > : x ∈ X

}
,

the neutrosophic interior of A can be defined as NM v Int (A) ={
< x,dµNi , eσNi ,eδNi > : x ∈ X

}
.

Definition 11. Let (X, τX) be NMTS. Then for an NMS A =
{
< x, µNi , σNi , δNi > : x ∈ X

}
,

the neutrosophic closure of A can be defined as NM v Cl (A) ={
< x,e µNi , dσNi , dδNi > : x ∈ X

}
.
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Definition 12. Let G be an NMG on a group X. Let τX be a NMT on G, then (G , τX) is known
as a neutrosophic multi topological group (NMTG) if it satisfies the given conditions:

(i) α : (G , τX)× (G , τX) −→ (G , τX) defined by α(m, n) = mn, ∀ m, n ∈ X, is relatively
neutrosophic multi continuous;

(ii) β : (G , τX) −→ (G , τX) defined by β(m) = m−1, ∀ m ∈ X, is relatively neutrosophic
multi continuous.

Definition 13. Let A be an NMS of an NMTS (X, τX), then A is called a neutrosophic multi
semi-open set (NMSOS) of X if ∃ a B ∈ τX , such that A 4 MN v Int(MN ∼ Cl(B)).

Example 2. Let X = {a, b}:

A =

{
< a, 0.8, 0.1, 0.2 >,< a, 0.7, 0.1, 0.3 >,< a, 0.6, 0.2, 0.4 >,
< b, 0.7, 0.2, 0.3 >,< b, 0.6, 0.3, 0.4 >,< b, 0.4, 0.2, 0.5 >

}
;

B =

{
< a, 0.9, 0.1, 0.1 >,< a, 0.8, 0.1, 0.2 >,< a, 0.7, 0.2, 0.3 >,
< b, 0.8, 0.2, 0.2 >,< b, 0.7, 0.2, 0.3 >,< b, 0.5, 0.2, 0.4 >

}
.

Then τ = {0X , 1X ,B} is neutrosophic multi topological space.
Then Cl(B) = 1X , Int(Cl(B)) = 1X .
Hence, B is NMSOS.

Definition 14. Let A be an NMS of an NMTS (X, τX), then A is called a neutrosophic multi
semi-closed set (NMSCoS) of X if ∃ a Bc ∈ τX , such that MN v Cl(MN ∼ Int(B)) 4 A.

Lemma 1. Let φ : X −→ Y be a mapping and {Aα} be a family of NMSs of Y, then (1)
φ−1(dAα) = d φ−1(Aα) and (ii) φ−1(eAα) = eφ−1(Aα).

Proof. Proof is straightforward. �

Lemma 2. Let A, B be NMSs of X and Y, then 1X −A×B = (Ac × 1X)d (1X ×Bc).

Proof. Let (p, q) be any element of X×Y, (1X −A×B)(p, q)= max(1X −A(p), 1X −B(q)) =
max{(Ac × 1X)(p, q), (Bc × 1X)(p, q)} = {(Ac × 1X) d (1X ×Bc)}(p, q), for each
(p, q) ∈ X×Y. �

Lemma 3. Let φi : Xi −→ Yi andAi be NMSs of Yi, i = 1, 2; we have (φ1 × φ2)
−1(A1 ×A2) =

φ1
−1(A1)× φ2

−1(A2).

Proof. For each (p1, p2) ∈ X1 × X2, we have

(φ1 × φ2)
−1(A1 ×A2)(p1, p2) = (A1 ×A2)((φ1(p1), φ2(p2))

= min{A1φ1(p1),A2φ2(p2)}
= min

{
φ1
−1(A1)(p1), φ2

−1(A2)(p2)
}

=
(
φ1
−1(A1)× φ2

−1(A2)
)
(p1, p2).

�

Lemma 4. Let ψ : X −→ X×Y be the graph of a mapping φ : X −→ Y . Then, if A,B is NMSs
of X and Y, ψ−1(A×B) = Ae φ−1(B).

Proof. For each p ∈ X, we have

ψ−1(A×B)(p) = (A×B)ψ(p) = (A×B)(p, φ(p))
= min{A(p),B(φ(p))}
=
(
Ae φ−1(B)

)
(p).
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Lemma 5. For a family {A}α of NMSs of NMTS (X, τX), d NM v Cl(Aα) 4 NM v
Cl(d(Aα)). In the case that B is a finite set, dNM v Cl(Aα) 4 NM v Cl(d(Aα)). Moreover,
dNM v Int(Aα) 4 NM v Int(d(Aα)), where a subfamily B of (X, τX) is said to be subbase
for (X, τX) if the collection of all intersections of members of B forms a base for (X, τX).

Lemma 6. For an NMS A of an NMTS (X, τX), (a) 1NM − NM v Int(A) = NM v
Cl(1NM −A), and (b) 1NM − NM v Cl(A) = NM v Int(1NM −A).

Proof. Proof is straightforward. �

Theorem 1. The statements below are equivalent:

(i) A is an NMCoS;
(ii) Ac is an NMOS;
(iii) NM v Int(NM v Cl(A)) 4 A;
(iv) NM v Cl(NM v Int(Ac)) < Ac.

Proof. (i) and (ii) are equivalent follows from Lemma 6, since for an NMS A of an
NMTS (X, τX) such that 1NM − NM v Int(A) = NM v Cl(1NM −A) and 1NM − NM v
Cl(A) = NM v Int(1NM −A).

(i)⇒(iii). By definition, ∃ an NMCoS B such that NM v Int(B) 4 A 4 B; hence,
NM v Int(B) 4 A 4 NM v Cl(A) 4 B. Since NM v Int(B) is the largest NMOS
contained in B, we have NM v Int(NM v Cl(B)) 4 NM v Int(B) 4 A;

(iii)⇒(i) follows by taking B = NM v Cl(A);
(ii)⇔(iv) can similarly be proved. �

Theorem 2. (i) Arbitrary union of NMSOSs is an NMSOS;
(ii) Arbitrary intersection of NMSCoSs is an NMSCoS.

Proof. (i) Let {Aα} be a collection of NMSOSs of an NMTS (X, τX). Then ∃ a Bα ∈ τX such
that Bα 4 Aα 4 NM v Cl(Bα) for each α. Thus, e Bα 4 dAα 4 d NM v Cl(Bα) 4
NM v Cl(d(Bα)) (Lemma 5), and dBα ∈ τX, this shows that dBα is an NMSOS;

(ii) Let {Aα} be a collection of NMSCoSs of an NMTS (X, τX). Then ∃ a Bα ∈ τX
such that NM v Int(Bα) 4 Aα 4 Bα for each α. Thus, NM v Int(e(Bα)) 4 eNM v
Int(Bα) 4 eAα 4 eBα (Lemma 5), and dBα ∈ τX, this shows that eBα is an NMSCoS. �

Remark 1. It is clear that every NMOS (NMCoS) is an NMSOS (NMSCoS). The converse is not true.

Example 3. From Example 2, it is clear that B is a neutrosophic multi semi-open set, but B is
not NMOS.

Theorem 3. If (X, τX) and (Y, τY) are NMTSs, and X is a product related to Y. Then the
product A×B of an NMSOS A of X and an NMSOS B of Y is an NMSOS of the neutrosophic
multi-product space X×Y.

Proof. Let P 4 A 4 NM v Cl(P) and Q 4 B 4 NM v Cl(Q), where P ∈ τX and
Q ∈ τY. Then P ×Q 4 A×B 4 NM v Cl(P)× NM v Cl(Q). For NMSs P ’s of X and
Q’s of Y, we have:

(a) inf{P ,Q} = min{inf P , inf Q};
(b) inf {P × 1NM} = (inf P)× 1NM;
(c) inf {1NM ×Q} = 1NM × (inf Q).
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It is sufficient to prove Nm v Cl(A×B) < NM v Cl(A)× NM v Cl(B). Let P ∈ τX and
Q ∈ τY. Then

NM v Cl(A×B) = inf {(P ×Q)c∣∣(P ×Q)c < A×B
= inf {(P c × 1NM)d (1NM ×Qc)|(P c × 1NM)d (1NM ×Qc)
< A×B}
= inf{(P c × 1NM)d (1NM ×Qc)| P c < A or Qc < B}

= min
[

in f {(P c × 1NM)d (1NM ×Qc)|P c < A },
in f {(P c × 1NM)d (1NM ×Qc)| Qc < B }

]
Since, inf{(P c × 1NM)d (1NM ×Qc) |P c < A } < inf{(P c × 1NM) |P c < A }

= inf{P c| P c < A }× 1NM= NM v Cl(A)× 1NM

and inf{(P c × 1NM)d (1NM ×Qc) | Qc < B } < inf{(1NM ×Qc) | Qc < B }

= 1NM × inf{Qc|Qc < B }= 1NM × NM v Cl(B)

we have, NM v Cl(A×B) < min{NM v Cl(A)× 1NM, 1NM × NM v Cl(B)} =
NM v Cl(A)× NM v Cl(B), hence the result. �

Definition 15. An NMS A of an NMTS (X, τX) is called a neutrosophic multi regularly open set
(NMROS) of (X, τX) if NM v Int(NM v Cl(A)) = A.

Example 4. Let X = {a, b} and

A =

{
< a, 0.4, 0.5, 0.5 >,< a, 0.3, 0.5, 0.6 >,< a, 0.2, 0.6, 0.7 >,
< b, 0.5, 0.7, 0.6 >,< b, 0.4, 0.5, 0.7 >,< b, 0.3, 0.5, 0.8 >

.
}

Then τ = {0X , 1X ,A} is neutrosophic multi topological space.
Clearly, Cl(A) = AC, Int(Cl(A)) = A.
Hence, A is NMROS.

Definition 16. An NMS A of an NMTS (X, τX) is called a neutrosophic multi regularly closed
set (NMRCoS) of (X, τX) if NM v Cl(NM v Int(A)) = A.

Theorem 4. An NMS A of NMTS (X, τX) is an NMRO if Ac is NMRCo.

Proof. It follows from Lemma 3. �

Remark 2. It is obvious that every NMROS (NMRCoS) is an NMOS (NMCoS). The converse
need not be true.

Example 5. Let X = {a, b} and

A =

{
< a, 0.8, 0.1, 0.2 >,< a, 0.7, 0.1, 0.3 >,< a, 0.6, 0.2, 0.4 >,
< b, 0.7, 0.2, 0.3 >,< b, 0.6, 0.3, 0.4 >,< b, 0.4, 0.2, 0.5 >

}
;

B =

{
< a, 0.9, 0.1, 0.1 >,< a, 0.8, 0.1, 0.2 >,< a, 0.7, 0.2, 0.3 >,
< b, 0.8, 0.2, 0.2 >,< b, 0.7, 0.2, 0.3 >,< b, 0.5, 0.2, 0.4 >

}
.

Then τ = {0X , 1X ,B} is a neutrosophic multi topological space.
Then Cl(B) = 1X , Int(Cl(B)) = 1X , which is not NMROS.

Remark 3. The union (intersection) of any two NMROSs (NMRCoS) need not be an
NMROS (NMRCoS).
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Example 6. Let X = {a, b} and
τ = {0X , 1X ,A,B,A −→ B} is a neutrosophic multi topological space, where

A =

{
< a, 0.4, 0.5, 0.6 >,< a, 0.3, 0.5, 0.7 >,< a, 0.2, 0.6, 0.8 >,
< b, 0.7, 0.5, 0.3 >,< b, 0.6, 0.5, 0.4 >,< b, 0.4, 0.5, 0.6 >

}
;

B =

{
< a, 0.6, 0.5, 0.4 >,< a, 0.7, 0.5, 0.3 >,< a, 0.8, 0.4, 0.2 >,
< b, 0.3, 0.5, 0.7 >,< b, 0.4, 0.5, 0.6 >,< b, 0.6, 0.5, 0.4 >

}
;

A
⋃
B =

{
< a, 0.6, 0.5, 0.4 >,< a, 0.7, 0.5, 0.3 >,< a, 0.8, 0.4, 0.2 >,
< b, 0.7, 0.5, 0.3 >,< b, 0.6, 0.5, 0.4 >,< b, 0.4, 0.5, 0.6 >

}
.

Here, Cl(A) = BC, Int(Cl(A)) = A, and Cl(B) = AC, Int(Cl(B)) = B.
Then Cl(A⋃B) = 1X .
Thus, Int(Cl(A⋃B)) = 1X .
Hence, A and B is NROS, but A⋃B is not NROS.

Theorem 5. (i) The intersection of any two NMROSs is an NMROS;
(ii) The union of any two NMRCoSs is an NMRCoS.

Proof. (i) Let A1 and A2 be any two NMROSs of an NMTS (X, τX). Since A1 e A2
is NMOS (from Remark 3), we have A1 e A2 4 NM v Int(NM v Cl(A1 eA2)).
Now, NM v Int(NM v Cl(A1 eA2)) 4 NM v Int(NM v Cl(A1)) = A1 and
NM v Int(NM v Cl(A1 eA2)) 4 NM v Int(NM v Cl(A2)) = A2 implies that
NM v Int(NM v Cl(A1 eA2)) 4 A1 eA2, hence the theorem;

(ii) Let A1 and A2 be any two NMROSs of an NMTS (X, τX). Since A1 d A2 is
NMOS (from Remark 3), we have A1 dA2 < NM v Cl(NM v Int(A1 dA2)). Now,
NM v Cl(NM v Int(A1 dA2)) < NM v Cl(NM v Int(A1)) = A1 and NM v
Cl(NM v Int(A1 dA2)) < NM v Cl(NM v Int(A2)) = A2 implies that A1 dA2 4
NM v Cl(NM v Int(A1 dA2)), hence the theorem. �

Theorem 6. (i) The closure of an NMOS is an NMRCoS;
(ii) The interior of an NMCoS is an NMROS.

Proof. (i) Let A be an NMOS of an NMTS (X, τX), clearly, NM v Int(NM v Cl(A))4
NM v Cl(A) ⇒ NM v Cl(NM v Int(NM v Cl(A))) 4 NM v Cl(A) . Now, A is
NMOS implies that A 4 NM v Int(NM v Cl(A)), and hence, NM v Cl(A) 4 NM v
Cl(NM v Int(NM v Cl(A))). Thus, NM v Cl(A) is NMRCoS;

(ii) Let A be an NMCoS of an NMTS (X, τX), clearly, NM v Cl(NM v Int(A))<
NM v Int(A) ⇒ NM v Int(NM v Cl(NM v Int(A))) < NM v Int(A). Now, A is
NMCoS implies that A < NM v Cl(NM v Int(A)), and hence, NM v Int(A) < NM v
Int(NM v Cl(NM v Int(A))). Thus, NM v Int(A) is NMROS. �

Definition 17. Let φ : (X, τX) −→ (Y, τY) be a mapping from an NMTS (X, τX) to another
NMTS (Y, τY), then φ is known as a neutrosophic multi continuous mapping (NMCM), if
φ−1(A) ∈ τX for each A ∈ τY, or equivalently φ−1(B) is an NMCoS of X for each CoNMS B
of Y.

Example 7. Let X = Y = {a, b, c} and

A =


< a, 0.4, 0.5, 0.6 >,< a, 0.3, 0.5, 0.7 >,< a, 0.2, 0.6, 0.8 >,
< b, 0.3, 0.5, 0.4 >,< b, 0.2, 0.5, 0.6 >,< b, 0.1, 0.5, 0.7 >,
< c, 0.4, 0.5, 0.6 >,< c, 0.3, 0.5, 0.7 >,< c, 0.2, 0.6, 0.8 >

;



Symmetry 2021, 13, 1689 9 of 19

B =


< a, 0.6, 0.1, 0.2 >,< a, 0.5, 0.1, 0.3 >,< a, 0.4, 0.2, 0.4 >,
< b, 0.3, 0.5, 0.4 >,< b, 0.2, 0.5, 0.6 >,< b, 0.1, 0.5, 0.7 >,
< c, 0.4, 0.5, 0.6 >,< c, 0.3, 0.5, 0.7 >,< c, 0.2, 0.6, 0.8 >

.

Then τX = {0X , 1X ,A} and τY = {0Y, 1Y,B} are neutrosophic multi topological spaces.
Now, define a mapping f : (X, τX) −→ (Y, τY) by f (a) = f (c) = c and f (b) = b.
Thus, f is NMCM.

Definition 18. Let φ : (X, τX) −→ (Y, τY) be a mapping from an NMTS (X, τX) to another
NMTS (Y, τY), then φ is called a neutrosophic multi open mapping (NMOM) if φ(A) ∈ τY for
each A ∈ τX .

Definition 19. Let φ : (X, τX) −→ (Y, τY) be a mapping from an NMTS (X, τX) to another
NMTS (Y, τY), then φ is said to be a neutrosophic multi-closed mapping (NMCoM) if φ(B) is an
NMCoS of Y for each NMCoS B of X.

Definition 20. Let φ : (X, τX) −→ (Y, τY) be a mapping from an NMTS (X, τX) to another
NMTS (Y, τY), then φ is called a neutrosophic multi semi-continuous mapping (NMSCM), if
φ−1(A) is the NMSOS of X, for each A ∈ τY.

Definition 21. Let φ : (X, τX) −→ (Y, τY) be a mapping from an NMTS (X, τX) to another
NMTS (Y, τY), then φ is called a neutrosophic multi semi-open mapping (NMSOM) if φ(A) is a
SONMS for each A ∈ τX .

Example 8. Let X = Y = {a, b, c} and

A =


< a, 0.6, 0.1, 0.2 >,< a, 0.5, 0.1, 0.3 >,< a, 0.4, 0.2, 0.4 >,
< b, 0.3, 0.5, 0.4 >,< b, 0.2, 0.5, 0.6 >,< b, 0.1, 0.5, 0.7 >,
< c, 0.4, 0.5, 0.6 >,< c, 0.3, 0.5, 0.7 >,< c, 0.2, 0.6, 0.8 >

;

B =


< a, 0.3, 0.5, 0.4 >,< a, 0.2, 0.5, 0.6 >,< a, 0.1, 0.5, 0.7 >,
< b, 0.6, 0.1, 0.2 >,< b, 0.5, 0.1, 0.3 >,< b, 0.4, 0.2, 0.4 >,
< c, 0.4, 0.5, 0.6 >,< c, 0.3, 0.5, 0.7 >,< c, 0.2, 0.6, 0.8 >

.

Then τX = {0X , 1X ,A} and τY = {0Y, 1Y,B} are neutrosophic multi topological spaces.
Clearly, A is a semi-open set.
Then a mapping f : (X, τX) −→ (Y, τY) defined by f (a) = b, f (b) = a and f (c) = c.
Hence, f is NMSOM.

Definition 22. Let φ : (X, τX) −→ (Y, τY) be a mapping from an NMTS (X, τX) to another
NMTS (Y, τY), then φ is called a neutrosophic multi semi-closed mapping (NMSCoM) if φ(B) is
an NMSCoS for each NMCoS B of X.

Remark 4. From Remark 1, an NMCM (NMOM, NMCoM) is also an NMSCM (NMSOM,
NMSCoM).

Example 9. Let X = Y = {a, b, c} and

A =


< a, 0.4, 0.5, 0.6 >,< a, 0.3, 0.5, 0.7 >,< a, 0.2, 0.6, 0.8 >,
< b, 0.3, 0.5, 0.4 >,< b, 0.2, 0.5, 0.6 >,< b, 0.1, 0.5, 0.7 >,
< c, 0.4, 0.5, 0.6 >,< c, 0.3, 0.5, 0.7 >,< c, 0.2, 0.6, 0.8 >

;

B =


< a, 0.4, 0.5, 0.6 >,< a, 0.3, 0.5, 0.7 >,< a, 0.2, 0.6, 0.8 >,
< b, 0.4, 0.6, 0.4 >,< b, 0.3, 0.5, 0.5 >,< b, 0.2, 0.5, 0.6 >,
< c, 0.6, 0.5, 0.5 >,< c, 0.4, 0.5, 0.6 >,< c, 0.2, 0.6, 0.9 >

.
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Then τX = {0X , 1X ,A} and τY = {0Y, 1Y,B} are neutrosophic multi topological spaces.
Let us define a mapping f : (X, τX) −→ (Y, τY) by f (a) = f (c) = c and f (b) = b.
Thus, f is NMSCM, which is not an NMCM.

Theorem 7. Let X1, X2, Y1 and Y2 be NMTSs such that X1 is product related to X2. Then,
the product φ1 × φ2 : X1 × X2 −→ Y1 ×Y2 of NMSCMs φ1 : X1 −→ Y1 and φ2 : X2 −→ Y2
is NMSCM.

Proof. Let A ≡ d
(
Aα ×Bβ

)
, where Aα’s and Bβ’s are NMOSs of Y1 and Y2, respectively,

be an NMOS of Y1 ×Y2. By using Lemma 1(i) and Lemma 3, we have

(φ1 × φ2)
−1(A) = d

[
φ1
−1(Aα)× φ2

−1(Aβ

)]
where (φ1 × φ2)

−1(A) is an NMSOS follows from Theorem 3 and Theorem 2 (i). �

Theorem 8. Let X, X1 and X2 be NMTSs and pi : X1 × X2 −→ Xi (i = 1, 2) be the projection
of X1 × X2 onto Xi. Then, if φ : X −→ X1 × X2 is an NMSCM, piφ is also NMSCM.

Proof. For an NMOS A of Xi, we have (piφ)
−1(A) = φ−1(pi

−1(A)
)
. pi is an NMCM and

φ is an NMSCM, which implies that (piφ)
−1(A) is an NMSOS of X. �

Theorem 9. Let φ : X −→ Y be a mapping from an NMTS X to another NMTS Y. Then if the
graph ψ : X −→ X×Y of φ is NMSCM, φ is also NMSCM.

Proof. From Lemma 4, φ−1(A) = 1NM e φ−1(A) = ψ−1(1NM ×A), for each NMOS A of
Y. Since ψ is an NMSCM and 1NM ×A is an NMOS X×Y, φ−1(A) is an NMSOS of X and
hence φ is an NMSCM. �

Remark 5. The converse of Theorem 9 is not true.

Definition 23. A mapping φ : (X, τX) −→ (Y, τY) from an NMTS X to another NMTS Y is
known as a neutrosophic multi almost continuous mapping (NMACM), if φ−1(A) ∈ τX for each
NMROS A of Y.

Example 10. Let X = Y = {a, b} and

A =

{
< a, 0.4, 0.5, 0.5 >,< a, 0.3, 0.5, 0.6 >,< a, 0.2, 0.6, 0.7 >,
< b, 0.5, 0.7, 0.6 >,< b, 0.4, 0.5, 0.7 >,< b, 0.3, 0.5, 0.8 >

}
;

B =

{
< a, 0.5, 0.7, 0.6 >,< a, 0.4, 0.5, 0.7 >,< a, 0.3, 0.5, 0.8 >,
< b, 0.4, 0.5, 0.5 >,< b, 0.3, 0.5, 0.6 >,< b, 0.2, 0.6, 0.7 >

}
.

Then τX = {0X , 1X ,A} and τY = {0Y, 1Y,B} are neutrosophic multi topological spaces.
Clearly, Cl(B) = BC, Int(Cl(B)) = B.
Hence, B is NMROS.
Now, let us define a mapping f : (X, τX)→ (Y, τY) by f (a) = b, f (b) = a.
Thus, f is NMACM.

Theorem 10. Let φ : (X, τX)→ (Y, τY) be a mapping. Then the below statements are equivalent:

(a) φ is an NMACM;
(b) φ−1(F ) is an NMCoS, for each NMRCoS F of Y;
(c) φ−1(A) 4 NM v Int(φ−1(NM v Int(NM v Cl(A)))), for each NMOS A of Y;
(d) NM v Cl

(
φ−1(NM v Cl(NM v Int(F )))

)
4 φ−1(F ), for each NMCoS F of Y.
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Proof. Consider that φ−1(Ac) =
(
φ−1(A)

)c, for any NMS A of Y, (a)⇔ (b) follows from
Theorem 4.

(a) ⇒ (c). Since A is an NMOS of Y, A 4 NM v Int(Cl(A)), hence, φ−1(A) 4
φ−1(NM v Int(NM v Cl(A))). From Theorem 6 (ii), NM v Int(NM v Cl(A)) is an
NMROS of Y, hence φ−1(NM v Int(NM v Cl(A))) is an NMOS of X. Thus, φ−1(A) 4
φ−1(NM v Int(NM v Cl(A))) = NM v Int(φ−1(NM v Int(NM v Cl(A))).

(c) ⇒ (a). Let A be an NMROS of Y, then we have φ−1(A) 4 NM v
Int
(
φ−1(NM v Int(NM v Cl(A)))

)
= NM v Int

(
φ−1(A)

)
. Thus, φ−1(A) = NM v

Int
(
φ−1(A)

)
. This shows that φ−1(A) is an NMOS of X.

(b)⇔ (d) similarly can be proved. �

Remark 6. Clearly, an NMCM is an NMACM. The converse need not be true.

Example 11. Let X = Y = {a, b} and

A =

{
< a, 0.4, 0.5, 0.5 >,< a, 0.3, 0.5, 0.6 >,< a, 0.2, 0.6, 0.7 >,
< b, 0.5, 0.7, 0.6 >,< b, 0.4, 0.5, 0.7 >,< b, 0.3, 0.5, 0.8 >

}
;

B =

{
< a, 0.5, 0.5, 0.6 >,< a, 0.6, 0.5, 0.7 >,< a, 0.2, 0.6, 0.9 >,
< b, 0.4, 0.4, 0.7 >,< b, 0.3, 0.5, 0.5 >,< b, 0.4, 0.5, 0.6 >

}
.

Then, τX = {0X , 1X ,A} and τY = {0Y, 1Y,B} are neutrosophic multi topological spaces.
Clearly, Cl(B) = BC, Int(Cl(B)) = B.
Hence, B is NMROS in τY.
Now, a mapping f : (X, τX)→ (Y, τY) defined by f (a) = a, f (b) = b.
Then clearly, f is NMACM but not NMCM.

Theorem 11. Neutrosophic multi semi-continuity and neutrosophic multi almost continuity are
independent notions.

Definition 24. AN NMTS (X, τX) is called a neutrosophic multi semi-regularly space (NMSRS)
if and only if the collection of all NMROSs of X forms a base for NMT τX .

Theorem 12. Let φ : (X, τX)→ (Y, τY) be a mapping from an NMTS X to an NMSRS Y. Then
φ is NMACM iff φ is NMCM.

Proof. From Remark 6, it suffices to prove that if φ is NMACM, then it is NMCM. Let
A ∈ τY, then A = d Aα, where Aα’s are NMROSs of Y. Now, from Lemma 1(i), 5, and
Theorem 10 (c), we obtain

φ−1(A) = d φ−1(Aα) 4 d NM v Int
(

φ−1(NM v Cl(Aα))
)
= d NM v Int

(
φ−1(Aα)

)
.

4 NM v Int d
(

φ−1(Aα)
)
= NM v Int

(
φ−1(Aα)

)
.

which shows that φ−1(Aα) ∈ τX . �

Theorem 13. Let X1, X2, Y1 and Y2 be the NMTSs, such that Y1 is product related to Y2. Then
the product φ1 × φ2 : X1 × X2 → Y1 ×Y2 of NMACMs φ1 : X1 → Y1 and φ2 : X2 → Y2 is
NMACM.

Proof. Let A = d
(
Aα ×Bβ

)
, where Aα’s and Bβ’s are NMOSs of Y1 and Y2, respectively,

be an NMOS of Y1 ×Y2. From Lemma 1(i), 3, 5, and Theorems 6, and 10 (c), we have

(φ1 × φ2)
−1(A) = d

{
φ1
−1(Aα)× φ2

−1(Bβ

)}
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4 d
[

NM v Int
(
φ1
−1(NM v Int(NM v Cl(Aα)))

)
×NM v Int

(
φ2
−1(NM v Int

(
NM v Cl

(
Bβ

)))) ]
4 d

[
NM v Int

{
φ1
−1(NM v Int(NM v Cl(Aα)))× φ2

−1(NM v Int
(

NM v Cl
(
Bβ

)))}]
4 NM v Int

[
d (φ1 × φ2)

−1{NM v Int(NM v Cl(Aα))× NM v Int
(

NM v Cl
(
Bβ

))}]
= NM v Int

[
d (φ1 × φ2)

−1{NM v Int
(

NM v Cl
(
Aα ×Bβ

))}]
4 NM v Int

[
(φ1 × φ2)

−1{NM v Int
(

NM v Cl
(
d
(
Aα ×Bβ

)))}]
= NM v Int

[
(φ1 × φ2)

−1(NM v Int(NM v Cl(A)))
]

Thus, by Theorem 10 (c), φ1 × φ2 is NMACM. �

Theorem 14. Let X, X1 and X2 be an NMTSs and pi : X1 × X2 → Xi(i = 1, 2) be the projection
of X1 × X2 onto Xi. Then if φ : X → X1 × X2 is an NMACM, piφ is also an NMACM.

Proof. Since pi is NMCM Definition 16, for any NMS A of Xi, we have (i) NM v
Cl
(

pi
−1(A)

)
4 pi

−1(NM v Cl(A)) and (ii) NM v Int
(

pi
−1(A)

)
< pi

−1(NM v Int(A)).
Again, since (i) each pi is an NMOS, and (ii) for any NMS A of Xi (a) A 4 pi

−1 pi(A)
and (b) pi

−1 pi(A) 4 A, we have pi
(

NM v Int
(

pi
−1(A)

))
4 pi pi

−1(A) 4 A, and hence,
pi
(

NM v Int
(

pi
−1(A)

))
4 NM v Int(A). �

Thus, NM v Int
(

pi
−1(A)

)
4 pi

−1 pi
(

NM v Int
(

pi
−1(A)

))
4(

pi
−1(NM v Int(A)

)
establishes that NM v Int

(
pi
−1(A)

)
4 pi

−1(NM v Int(A)).
Now, for any NMOS A of Xi,

(piφ)
−1(A) = φ−1(pi

−1(A)
)

4 NM v Int
{

φ−1(NM v Int
(

NM v Cl
(

pi
−1(A)

)))}
4 NM v Int

{
φ−1(NM v Int

(
pi
−1(NM v Cl(A))

))}
= NM v Int

{
φ−1(pi

−1(NM v Int(NM v Cl(A)))
)}

= NM v Int(piφ)
−1(NM v Int(NM v Cl(A)))

Theorem 15. Let X and Y be NMTSs such that X is product related to Y and let φ : X → Y be a
mapping. Then, the graph ψ : X → X×Y of φ is NMACM if φ is NMACM.

Proof. Consider that ψ is an NMACM and A is an NMOS of Y. Then, using Lemma 4 and
Theorems 10 (c), we have

φ−1(A) = 1NM e φ−1(A)
= ψ−1(1NM ×A) 4 NM v Int

(
ψ−1(NM v Int(NM v Cl(1NM ×A)))

)
= NM v Int

(
ψ−1(1NM × NM v Int(NM v Cl(A)))

)
= NM v Int

(
ψ−1(NM v Int(1NM × NM v Cl(A)))

)
= NM v Int

(
ψ−1(NM v Int(NM v Cl(A)))

)
Thus, by Theorem 10 (c), φ is NMACM.

Conversely, let φ be an NMACM and B = d
(
Bα ×Aβ

)
, where Bα’s and Aβ’s are

NMOSs of X and Y, respectively, be an NMOS of X×Y.
Since Bα e NM v Int

(
φ−1(NM v Int

(
NM v Cl

(
Aβ

))))
is an NMOSs of X con-

tained in

NM v Int(NM v Cl(Bα))e φ−1(NM v Int
(

NM v Cl
(
Aβ

)))
,

Bα e NM v Int
(

φ−1(NM v Int
(

NM v Cl
(
Aβ

))))
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4 NM v Int
[

NM v Int(NM v Cl(Bα))e φ−1(NM v Int
(

NM v Cl
(
Aβ

)))]
and hence, using Lemmas 1(i), 4 and 5, and Theorems 10 (c), we have

φ−1(B) = φ−1(d (Bα ×Aβ

))
= d

[
Bα e φ−1(Aβ

)]
4 d

[
Bα e NM v Int

(
φ−1(NM v Int

(
NM v Cl

(
Aβ

))))]
4 d

[
NM v Int(NM v Int(NM v Cl(Bα)))e φ−1(NM v Int

(
NM v Cl

(
Aβ

)))]
4 NM v Int

[
d ψ−1(NM v Int(NM v Cl(Bα)))× NM v Int

(
NM v Cl

(
Aβ

))]
= NM v Int

[
ψ−1(d (NM v Int

(
NM v Cl

(
Bα ×Aβ

))))]
4 NM v Int

[
ψ−1(NM v Int

(
NM v Cl

(
d
(
Bα ×Aβ

))))]
= NM v Int

[
ψ−1(NM v Int(NM v Cl(B)))

]
Thus, by Theorem 10(c), ψ is NMACM. �

Definition 25. Let G be an NMG on a group X. Now, if τX is an NMT on G, then (G , τX) is said
to be a neutrosophic multi almost topological group (NMATG) if the given conditions are satisfied:

(i) α : (G , τX)× (G, τX) → (G , τX) :α(m, n) = mn is NMACM;
(ii) β : (G , τX) → (G , τX) : β(m) = m−1 is NMACM.

Then (G , τX) is known as an NMATG.

Remark 7. (G , τX) is an NMATG if the below conditions hold good:

(i) For g1, g2 ∈ G and every NMROS P containing g1g2 in G , ∃ open neighborhoodsR and S
of g1 and g2 in G such thatR ∗ S 4 P ;

(ii) For g ∈ G and every N in G containing g−1, ∃ open neighborhood R of g in G so that
R−1 4 S .

Remark 8. For any P ,Q 4 G, we denote P ∗ Q by PQ and defined as PQ =
{gh : g ∈ P , h ∈ Q} and P−1 =

{
g−1 : g ∈ P

}
. If P = {a} for each a ∈ G, we denote

P ∗Q by aQ and Q ∗ P by Pa.

Example 12. Let, G = (Z3,+) be a classical group and

A =


< 0, 0.4, 0.5, 0.6 >,< 0, 0.3, 0.5, 0.7 >,< 0, 0.2, 0.6, 0.8 >,
< 1, 0.3, 0.5, 0.4 >,< 1, 0.2, 0.5, 0.6 >,< 1, 0.1, 0.5, 0.7 >,
< 2, 0.4, 0.5, 0.6 >,< 2, 0.3, 0.5, 0.7 >,< 2, 0.2, 0.6, 0.8 >


Then τG = {0G, 1G,A} is NTS and the mapping α : (G , τG)× (G, τG) → (G, τG) : α(m, n) =
mn and β : (G , τG) → (G , τG) : β(m) = m−1 are NMACM. Hence, (G , τG) is NMATG.

Theorem 16. Let (G , τX) be an NMATG and let a be any element of G. Then

(a) µa : (G , τX)→ (G , τX) : µa(x) = ax , ∀x ∈ G, is NMACM;
(b) λa : (G , τX)→ (G , τX) : λa(x) = xa, ∀x ∈ G, is NMACM.

Proof. (a) Let p ∈ G and letR be an NMROS containing ap in G. By Definition 25, ∃ open
neighborhoods P ,Q of a, p in G such that PQ 4 R. Especially, aQ 4 R, i.e., µa(Q) 4 R.
This proves that µa is NMACM at p, and hence, µa is NMACM.

(b) Suppose p ∈ G and R ∈ NMRO(G) contain pa. Then ∃ open sets p ∈ P and
a ∈ Q in G such that PQ 4 R. This proves Pa 4 R. This shows that λa is NMACM at p.
Since arbitrary element p is in G, hence, λa is NMACM. �

Theorem 17. Let U be NMROS in a NMATG (G , τX). The below conditions hold good:

(a) mU ∈ NMROS(G), ∀m ∈ G;
(b) Um ∈ NMROS(G), ∀m ∈ G;
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(c) U−1 ∈ NMROS(G).

Proof. (a) We first show that mU ∈ τX. Let p ∈ mU . Then by Definition 25 of NMATGs,
∃ NMOSs m−1 ∈ W1 and p ∈ W2 in G such that W1W2 4 U . Especially, m−1W2 4 U .
That is, equivalently, W2 4 mU . This indicates that p ∈ NM v Int(mU ) and thus, NM v
Int(mU ) = mU . That is mU ∈ τX . Consequently, mU 4 NM v Int(NM v Cl(mU )).

Now, we have to prove that NM v Int(NM v Cl(mU )) 4 mU . As U is NMOS,
NM v Cl(U ) ∈ NMRCS(G). By Theorem 16, µm−1 : (G , τX) → (G , τX) is NMACM,
and therefore, mNM v Cl(U ) is NMCoS. Thus, NM v Int(NM v Cl(mU )) 4 NM v
Cl(mU ) 4 mNM v Cl(U ), i.e., m−1NM v Int(NM v Cl(mU )) 4 NM v Cl(U ). Since
NM v Int(NM v Cl(mU )) is NMROS, it follows that m−1NM v Int(NM v Cl(mU )) 4
NM v Int(NM v Cl(U )) = U , i.e., NM v Int(NM v Cl(mU )) 4 mU . Thus mU =
NM v Int(NM v Cl(mU )). This proves that mU ∈ NMROS(G).

(b) Following the same steps as in part (1) above, we can prove that Um ∈
NMROS(G), ∀ m ∈ G.

(c) Let p ∈ U−1, then ∃ open set p ∈ W in G such that W−1 4 U ⇒ W 4 U−1 .
Thus, U−1 has interior point p. Thus, U−1 is NMOS. That is, U−1 4 NM v
Int
(

NM v Cl
(
U−1)). Now we have to prove that NM v Int

(
NM v Cl

(
U−1)) 4 U−1.

Since U is NMOS, NM v Cl(U ) is NMRCoS and thus NM v Cl(U )−1 is CoNMS
in G. Thus, NM v Int

(
NM v Cl

(
U−1)) 4 NM v Cl

(
U−1) 4 NMv Cl(U )−1 ⇒

NM v Int
(

NM v Cl
(
U−1)) 4 (NM v Cl(U ))−1 4 U−1. Thus, U−1 = NM v

Int
(

NM v Cl
(
U−1)). This proves that U−1 ∈ NMROS(G). �

Corollary 1. Let Q be any NMRCoS in an NMATG in G. Then

(a) mQ ∈ NMRCS(G), for each m ∈ G;
(b) Q−1 ∈ NMRCS(G).

Theorem 18. Let U be any NMROS in an NMATG G. Then

(a) NM v Cl(Um) = NM v Cl(U )m, for each m ∈ G;
(b) NM v Cl(mU ) = mNM v Cl(U ), f or each m ∈ G;
(c) NM v Cl

(
U−1) = NM v Cl(U )−1.

Proof. (a) Assume p ∈ NM v Cl(Um) and consider q = pm−1. Let q ∈ W be
NMOS in G. Then ∃ NMOSs m−1 ∈ V1 and p ∈ V2 in G, such that V1V2 4 NM v
Int(NM v Cl(W)). By hypothesis, there is g ∈ Um e V2 ⇒ gm−1 ∈ U e V1V2 4
U e NM v Int(NM v Cl(W)) ⇒ U e NM v Int(NM v Cl(W)) 6= 0NM ⇒ U e
(NM v Cl(W)) 6= 0NM. Since U is NMOS, U eW 6= 0NM. That is, m ∈ NM v Cl(U )m.

Conversely, let q ∈ NM v Cl(U )m. Then q = pg for some p ∈ NM v Cl(U ).
To prove NM v Cl(U )m 4 NM v Cl(Um).
Let pg ∈ W be an NMOS in G. Then ∃ NMOSs m ∈ V1 in G and

p ∈ V2 in G so that V1V2 4 NM v Int(NM v Cl(W)). Since p ∈
NM v Cl(U ), U e V2 6= 0NM. There is g ∈ U e V2. This implies
gm ∈ (Um)e NM v Int(NM v Cl(W))⇒ (Um)e (NM v Cl(W)) 6= 0NM . From Theo-
rem 17, Um is NMOS and thus (Um)eW 6= 0NM, therefore q ∈ NM v Cl(Um). Therefore
NM v Cl(Um) = NM v Cl(U )m.

(b) Following the same steps as in part (1) above, we can prove that NM v Cl(mU ) =
mNM v Cl(U ).

(c) Since NM v Cl(U ) is NMRCoS, NM v Cl(U )−1 is NMCoS in G. Therefore,
U−1 4 NM v Cl(U )−1 this gives NM v Cl

(
U−1) 4 NM v Cl(U )−1. Next, let q ∈ NM v

Cl(U )−1. Then q = p−1, for some p ∈ NM v Cl(U ). Let q ∈ V be any NMOS in G. Then ∃
open set U in G such that p ∈ U with U−1 4 NM v Int(NM v Cl(V)). Moreover, there is
m ∈ A e U which implies m−1 ∈ U−1 e NM v Int(NM v Cl(V)). That is, U−1 e NM v
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Int(NM v Cl(V)) 6= 0NM ⇒ U−1 e NM v Cl(V) 6= 0NM ⇒ U−1eV 6= 0NM, since U−1 is
NMOS. Therefore, q ∈ NM v Cl(U )−1. Hence, NM v Cl

(
U−1) 4 NM v Cl(U )−1. �

Theorem 19. Let Q be NMRCo subset in an NMATG G. Then the below assertions are true:

(a) NM v Int(mQ) = aNM v Int(Q), ∀m ∈ G;
(b) NM v Int(Qm) = NM v Int(Q)a, ∀m ∈ G;
(c) NM v Int

(
Q−1) = NM v Int(Q)−1.

Proof. (a) Since Q is NMRCoS, NM v Int(Q) is NMROS in G. Consequently, mNM v
Int(Q) 4 NM v Int(mQ). Conversely, let q ∈ NM v Int(mQ) be an arbitrary element.
Suppose q = mp, for some p ∈ Q. By hypothesis, this proves mQ is NMCoS, and that is
NM v Int(mQ) is NMROS in G. Assume that m ∈ U and p ∈ V be NMOSs in G, such
that UV 4 NM v Int(mQ). Then mV 4 mQ, which means that mV 4 mNM v Int(Q).
Thus, NM v Int(mQ) 4 mNM v Int(Q).

(b) Following the same steps as in part (1) above, we can prove that NM v Int(Qm) 4
NM v Int(Q)m.

(c) Since NM v Int(Q) is NMROS, NM v Int(Q)−1 is NMOS in G. Therefore,
Q−1 4 NM v Int(Q)−1 implies that NM v Int

(
Q−1) 4 NM v Int(Q)−1. Next, let q

be an arbitrary element of NM v Int(Q)−1. Then q = p−1, for some p ∈ NM v Int(Q).
Let q ∈ V be NMOS in G. Then ∃ NMOS U is in G, such that p ∈ U with U−1 4 NM v
Cl(NM v Int(V)). Moreover, there is g ∈ Q eU, which implies g−1 ∈ Q−1 e NM v
Cl(NM v Int(V)). That is Q−1 e NM v Cl(NM v Int(V)) 6= 0NM ⇒ Q−1 e NM v
Int(V) 6= 0NM ⇒ Q−1eV 6= 0NM, since Q−1 is NMCoS. Hence, NM v Int

(
Q−1) =

NM v Int(Q)−1. �

Theorem 20. Let U be any NMSOS in an NMATG G. Then

(a) NM v Cl(mU ) 4 mNM v Cl(U ), ∀ m ∈ G;
(b) NM v Cl(Um) 4 NM v Cl(U )m, ∀ m ∈ G;
(c) NM v Cl

(
U−1) 4 NM v Cl(U )−1.

Proof. (a) As U is NMSOS, NM v Cl(U ) is NMRCoS. From Theorem 16,
µm−1 : (G , τX) −→ (G , τX) is NMACM. Thus, mNM v Cl(U ) is NMCoS. Hence, NM v
Cl(mU ) 4 mNM v Cl(U ).

(b) As U is NMSOS, NM v Cl(U ) is NMRCoS. From Theorem 16,
λm−1 : (G , τX) −→ (G , τX) is NMACM. Thus, NM v Cl(U )m is NMCoS. Therefore,
NM v Cl(Um) 4 NM v Cl(U )m.

(c) Since U is NMSOS, NM v Cl(U ) is NMRCoS, and hence, NM v Cl(U )−1 is
NMCoS. Consequently, NM v Cl(U ) 4 NM v Cl(U )−1. �

Theorem 21. Let U be both NMSO and NMSCo subset of an NMATG G. Then the below
statements hold:

(a) NM v Cl(mU ) = mNM v Cl(U ), for each m ∈ G;
(b) NM v Cl(Um) = NM v Cl(U )m, f or each m ∈ G;
(c) NM v Cl

(
U−1) = NM v Cl(U )−1.

Proof. (a) Since U is NMSOS, NM v Cl(U ) is NMRCoS, from which it implies that
NM v Cl(mU ) 4 mNM v Cl(U ). Further, neutrosophic multi semi-openness of U gives
NM v Cl(U )= NM v Cl(NM v Int(U )) ⇒ mNM v Cl(U ) = mNM v Cl(NM v
Int(U ). As U is NMSCoS, NM v Int(U ) is NMROS in G. From Theorem 20, mNM v
Cl(U ) = mNM v Cl(NM v Int(U )) = NM v Cl(mNM v Int(U )) 4 NM v Cl(mU ).
Hence, NM v Cl(mU ) = mNM v Cl(U ).
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(b) Following the same steps as in part (1) above, we can prove that NM v Cl(Um) =
NM v Cl(U )m.

(c) By hypothesis, this proves NM v Cl(U ) is NMRCoS and therefore NM v Cl(U )−1

is NMCoS. Consequently, NM v Cl
(
U−1) 4 NM v Cl(U )−1. Next, since U is NMSOS,

NM v Cl(U ) = NM v Cl(NM v Int(U ))⇒ NM v Cl(U )−1 = NM v Cl(NM v Int(U ) .
Moreover, as U is NMSCoS, NM v Int(U ) is NMROS. From Theorem 18,
NM v Cl(U )−1 = NM v Cl

(
NM v Int(U )−1

)
4 NM v Cl

(
U−1). This shows

that NM v Cl
(
U−1) = NM v Cl(U )−1. �

Theorem 22. From Theorem 21, the following statements hold:

(a) NM v Int(mU ) = mNM v Int(U ), for each m ∈ G;
(b) NM v Int(Um) = NM v Int(U )m, f or each m ∈ G;
(c) NM v Int

(
U−1) = NM v Int(U )−1.

Proof. (a) As U is NMSCoS, NM v Int(U ) is NMROS. From Theorem 16,
µm−1 : (G , τX) −→ (G , τX) is NMACM. Therefore, µ−1

m−1(NM v Int(U )) = mNM v
Int(U ) is NMOS. Thus, mNM v Int(U ) 4 NM v Int(mU ). Next, by assumption,
it implies that NM v Int(U ) = NM v Int(NM v Cl(U )) ⇒ mNM v Int(U ) =
mNM v Int(NM v Cl(U )). As U is NMSOS, NM v Cl(U ) is NMRCoS. From Theo-
rem 19, mNM v Int(NM v Cl(U )) = NM v Int(mNM v Cl(U )) < NM v Int(mU ).
That is, NM v Int(mU ) 4 mNM v Int(U ). Therefore, we have, NM v Int(mU ) =
mNM v Int(U ). Hence, it was proved.

(b) As U is NMSCoS, NM v Int(U ) is NMROS. From Theorem 16,
µm−1 : (G , τX) −→ (G , τX) is NMACM. Thus, λ−1

m−1(NM v Int(U )) = mNM v
Int(U ) is NMOS. Therefore, NM v Int(U )m 4 NM v Int(Um). Next, by assump-
tion, this proves that NM v Int(U ) = NM v Int(NM v Cl(U )) ⇒ NM v Int(U )m =
NM v Int(NM v Cl(U ))m. As U is NMSOS, NM v Cl(U ) is NMRCoS. From Theorem
19, NM v Int(NM v Cl(U ))m = NM v Int(NM v Cl(U )m) < NM v Int(Um). That
is, NM v Int(Um) 4 NM v Int(U )m. Therefore, NM v Int(Um) = NM v Int(U )m.
Hence, it was proved.

(c) From assumption, this proves that NM v Int(U ) is NMROS and therefore
NM v Int(U )−1 is NMOS. Consequently, NM v Int

(
U−1) 4 NM v Int(U )−1. Next,

as U is NMSCoS, NM v Int(U ) = NM v Int(NM v Cl(U )) ⇒ NM v Int(U )−1 =

NM vInt(NM v Cl(U ))−1. Moreover, as U is NMSOS, NM v Cl(U ) is NMRCoS. From
Theorem 19, NM v Int(U )−1 = NM v Int(NM v Cl

(
U )−1) 4 NM v Int

(
U−1). This

proves that NM v Int
(
U−1) = NM v Int(U )−1. �

Theorem 23. Let A be NMOS in an NMATG G. Then aA 4 NM v
Int(aNM v Int(NM v Cl(A))) for a ∈ G.

Proof. Since A is NMOS, so A 4 NM v Int(NM v Cl(A)) ⇒ aA 4 aNM v
Int(NM v Cl(A)). From Theorem 17, aNM v Int(NM v Cl(A)) is NMOS (in fact, NM-
ROS). Hence, aA 4 NM v Int(aNM v Int(NM v Cl(A))). �

Theorem 24. Let Q be any neutrosophic multi-closed subset in an NMATG G. Then NM v
Cl(aNM v Cl(NM v Int(A))) 4 aQ for each a ∈ G.

Proof. Since Q is NMCoS, so Q < NM v Cl(NM v Int(Q)) ⇒ aQ < aNM v
Cl(NM v Int(Q)). From Theorem 17, aNM v Cl(NM v Int(Q)) is NMCoS (in fact,
NMRCoS). Therefore, aQ < NM v Cl(aNM v Cl(NM v Int(A))). Hence, NM v
Cl(aNM v Cl(NM v Int(A))) 4 aQ. �
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4. Conclusions

To deal with uncertainty, the NS uses the truth membership function, indeterminacy
membership function, and falsity membership function. By discovering this concept, we
were able to generalise the idea of an almost topological group to an NMATG. First, we
developed the definitions of NMSOS, NMSCoS, NMROS, NMRCoS, NMCM, NMOM,
NMCoM, NMSCM, NMSOM, NMSCoM to propose the definition of NMATG. Some
properties of NMACM were demonstrated. Finally, we defined NMATG and demonstrated
some of their properties using the definition of NMACM. In this study, an NMATG
is conceptualised for the environments of the NS along with some of their elementary
properties and theoretic operations. Novel numerical examples are given for definitions
and remarks to study NMATG. We expect that our study may spark some new ideas for
the construction of the NMATG. Future work may include the extension of this work for:

(1) The development of the NMATG of the neutrosophic multi-vector spaces, etc.;
(2) Dealing NMATG with multi-criteria decision-making techniques.
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