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Abstract: The double phosphorylation/dephosphorylation cycle consists of a symmetric network of
biochemical reactions of paramount importance in many intracellular mechanisms. From a network
perspective, they consist of four enzymatic reactions interconnected in a specular way. The general
approach to model enzymatic reactions in a deterministic fashion is by means of stiff Ordinary
Differential Equations (ODEs) that are usually hard to integrate according to biologically meaningful
parameter settings. Indeed, the quest for model simplification started more than one century ago
with the seminal works by Michaelis and Menten, and their Quasi Steady-State Approximation
methods are still matter of investigation nowadays. This work proposes an effective algorithm based
on Taylor series methods that manages to overcome the problems arising in the integration of stiff
ODEs, without settling for model approximations. The double phosphorylation/dephosphorylation
cycle is exploited as a benchmark to validate the methodology from a numerical viewpoint.

Keywords: systems biology; enzymatic reactions; quadratization; ODE integration

1. Introduction

Protein phosphorylation is a ubiquitous regulatory mechanism for cells, generally
working to activate or inactivate molecules [1]. From a biochemical viewpoint, to phospho-
rylate a molecule consists in the binding of a phosphoryl group PO, [2]. The general model
to deal with phosphorylation is to exploit the framework of enzymatic reactions, where the
substrate M is supposed to be modified (phosphorylated, actually) into the product M, by
means of the preliminary formation of a complex C provided by the binding of an enzyme
(called kinase, K) in charge to catalyze the phosphorylation, see the scheme in (1).

kq
M+I<F> Ck -2 M, + K 1)
—1

Phosphorylations usually introduce conformational changes that activate/inactivate
the enzymatic activity of a protein, or simply prime degradation processes, like the ones
involved in the yeast cell cycle (see, e.g., in [3,4] dealing with the degradation of Sicl
and Whib, respectively) or those involving tyrosine kinase pathways, regulating diverse
cellular processes, and whose dysregulation is one of the leading causes of cancer progres-
sion [5]. In many important cases, multi-site phosphorylations are required to ensure the
correct timing of activation [6,7]. Besides, according to specific conditions and biological
frameworks, phosphoryl groups can be removed, making phosphorylation a reversible
activation/inactivation mechanism. Moreover, in this case the dephosphorylation may be
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treated as a generic enzymatic reaction, with the enzymes that catalyze the reaction called
phosphatases P:

hy
M, +P = Cp 2 M+ P 2)
h_y

Combinations of multiple phosphorylations/dephosphorylations have been selected
by nature as devices, providing specific useful biological functions. Within this framework,
the Double Phosphorylation/Dephosphorylation Cycle (DPDC) is a symmetric network
motif consisting of a double reversible phosphorylation step required to activate a given
substrate M:

k1 k1
— k — k
M+K<k—c1£>M,,+K M,,+1<<k—c2£>M,,,,+K
—11 —21
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Myp +P ]F C3 =% Mp+P M, +P f—> Cy —5>M+P
=31 —41

where the final product is the doubly phosphorylated M;,. Ordinary Differential Equa-
tion (ODE) models of DPDC use to combine in a symmetric fashion the four enzymatic
reactions [8], providing a bistability regime where the non-phosphorylated or the double-
phosphorylated versions of the substrate is predominant [9]. A primary motivation in
investigating the computation of the system solutions is that, in a recent paper [10], it has
been proven that symmetry breaking in the dynamical solutions of such a network may
lead to modify its emergent properties, including concentration robustness of different
stationary solutions.

In this context, numerical integration of enzymatic reactions in ODE form has been
a matter of investigation for more than a century [11,12], since the seminal works of
Michaelis and Menten [13] providing an approximation (the celebrated Quasi Steady-
State Approximation (QSSA) [14]) to cope with the double time scale arising whenever
biologically meaningful parameters are assigned. Multi-timescale phenomena are very
common in biology, see, e.g., the very recent cardiac cell model in [15].

Indeed, in enzymatic networks, the binding/unbinding reactions use to occur at a
faster rate, thus leading to stiff ODEs, thus characterized by numerical instability when
ordinary numerical schemes are employed for their integration. In particular, in the case
of stiff equations, ad hoc integration methods, like the one illustrated in [16] for linear
multistep methods, can be employed to approximate the solution efficiently. Like any
approximations, there are limitations that may render unfeasible its concrete applicability.
Indeed, in [17] we showed how the numerical integration of a basic enzymatic reaction
model may create serious problems even to well established procedures like the ones
implemented by Matlab in ode45 and odel5s functions. Besides, things become even
more crucial in the DPDC, as it has been shown in [18] how the QSSA may miss the
bistability property.

In order to deal with stiff ODEs, Taylor Series Methods (TSMs) can be used. These
methods build up a polynomial approximation (up to some fixed order k) of the ODE
solution around the initial point through Taylor series expansion, which amounts to the
recursive calculation of the partial derivatives of the ODE function at the initial point, up
to the order k. With respect to standard Runge-Kutta methods, TSMs do not exhibit worse
performance in terms of numerical stability, and guarantee a better accuracy in the solution
calculation for higher degrees of the approximating polynomial. We refer the interested
readers to the works in [19-23] for an in-depth description of TSMs and their numerical
properties.

The main issue with TSMs is that, as the approximation order k increases, the cal-
culation of all the required derivatives becomes too cumbersome, and some preliminary
transformations need to be applied to the original problem in order to simplify the deriva-
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tives calculation. To this end, in the present work, we employ some recent technical results
published in [24,25], according to which ODE systems can be embedded into higher-order
quadratic equations which, in spite of their dimensionality, allow for more efficient dif-
ferentiation, which in turn can be exploited for numerical integration via TSM. These
results have been already exploited in [17] for the class of simple enzymatic reactions (two
differential equations), and are here extended to the more challenging DPDC case (seven
differential equations). Simulations are promising as the numerical results show a higher
qualitative accuracy of the method with respect to standard off-the-shelf solvers for an
appropriate choice of the reaction parameters which make the equations stiff.

The paper is organized as follows. Section 2 reviews the methods involving quadrati-
zation and approximate integration of a class of differential equations. Section 3 adapts the
framework to the context of Double Phosphorylation/Dephosphorylation Cycle. Section 4
provides some numerical simulations of the DPDC system. Finally, Section 5 offers con-
cluding remarks and ideas for further developments.

2. Exact Quadratization and Approximate Integration of o7t Differential Equations

This section recollects and adapts some results mainly developed in [24,25] for more
general classes of dynamical systems than those developed in this work. Except where
differently specified, we adopt the following vector and indices convention: a vector v is
always a column vector, and v’ is its transpose. With respect to indices, given a vector
v, the scalar v; denotes its j-th entry; instead, in case of double subscripts, like in Zi,j,
when dealing with a vector we mean a nested notation, where Zi,j is the j-th scalar/vector
component of vector Z;, and vector Z; is the j-th vector component of vector Z; on the
other hand, when dealing with a matrix, Z; ; refers to the usual scalar entry in row i and
column j.

2.1. Exact Quadratization of o t-ODEs into Driver-Type Differential Equations

We consider a first-order ODE system
X = f(x), x e R", 4)

where the function f is a formal polynomial of x, i.e., a polynomial writing where the
exponents are allowed to be any real number. More formally, the components of f are in
the form

filx) = Y oX () Xiy(x) = [ 2", 5)
1=1

r=1

where pi-,r are real exponents, the v; quantities X;; in (5) are named monomials and 7, are
real coefficients. We refer to this kind of functions as o7-functions, and to the associated
system of differential equations as o7t-ODE.

For o7t-ODEs, the following theorem holds, by virtue of which the system (4) and (5)
can be densely embedded in a higher-dimensional quadratic system.

Theorem 1 (Exact Quadratization Theorem, adapted from the work in [24]). Any or-ODE in the
form (4) and (5), with domain V' C R", is quadratizable on the non empty, open and dense subset
U’ = V’'\ S (with S denoting the set of all coordinate hyperplanes in R"), and the quadratization
is given by the following homogeneous Riccati equation in the indeterminates x; and Z; ;:

X = (0,Z;)x (6)
n

Ziy= Y 7 (6,Z:)Z; )
r=1

where 7rll. , = pﬁ . — 0ir, and 6; , being the Kronecker symbol: é;, = 1 (resp: 6;, = 0) if i = r (resp:
i#7).
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It clearly appears that the specific Riccati equation constituting the quadratization (6)
and (7) includes the original state variables, so it is possible to define an augmented state
such that the original ODE system (4) is now embedded in the following extended system
evolving in R", with m > n:

m
X =Y vijxix; = (0jx)x;, 8)
i=1

where, with a little abuse, we keep the notation of x for a vector now living in R, with the
first n components provided by the n components of vector x in (4), and the other m —n
components provided by vector Z in (7). The coefficients v; ; are suitable linear functions
of the coefficients 7;; in (5). Equation (8) is called ‘Driver-type” ODE form, while the matrix
V € R™*™ collecting the entries Vi js i,j=1,...,m,is called ‘frame’.

The interested reader is referred to the works in [24,25] for further notation (including
multi-indices), technical details and full proofs.

2.2. Approximate Taylor Series Integration Method

With a slight abuse of notation, let t — x(f) be the solution of (4) with initial condition
x(to), and consider the Taylor expansion of a generic scalar component x;(-) with respect
to the initial time instant f:

zck (- t°> (i) = 29 (). )

Numerical integration techniques based on the application of the truncated series
in (9) to compute a solution of (4) are called Taylor Series Methods (TSMs). Unfortunately,
such a series expansion cannot be straightforwardly applied to compute the solution for
general systems as it requires the explicit computation of the derivatives of the solution
at the initial point, which usually reveals to be too cumbersome. Below is reported a
Theorem that allows to compute the coefficients of the Taylor expansion for a system in the

‘Driver-type” ODE form (8).

Theorem 2 (from [25]). Comnsider a ‘Driver-type’ ODE in the form (8). Then, the coefficients
cx(i), k > 0, in the Taylor expansion (9) are given by

ali) =Y, O xi(te)xi (to) - - xi (fo), (10)

| = k
i1,k ES

where iy € S = {1,...,n}, fors = 0,1,...,k (we set iy = i), and the (constant) coefficients

oM are given by the following recursive equation

1,010k

k 1
ol =k <ZUW> ol =1, (11)

where the coefficients Vi, i,j=1,...,m,aredefined in (8).

Approximate numerical integration based on Theorem 2 can be readily performed
by truncating the series (9) at a finite order k, provided that the integration formula is
reinitialized frequently enough to prevent numerical instability. This readily leads to the
following iteration. Let £;(jA),i =1,...,n,for j =0,1,..., be the approximate value of x;
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at time jA provided by the algorithm, where ty = 0 and a fixed sampling time A > 0 are
assumed for simplicity. Then, the approximate solution at all times ¢ > 0 is given by

£i(t) Eck] t_k]'A) , te [jia, (j+1)A),

(i) = 2 ot Ri(A) R (A) - £, (A).

il,...,ikES

(12)

Note that, for k = 1, the proposed integration scheme coincides with the forward
Euler method.

3. The Double Phosphosphorylation-Dephosphorylation Cycle

According to the mass action law, the system of equations governing the dynamics of
substrates and complexes in the DPDC scheme in (3) is

%/I = —kj1MK+k_11Cy + kgpCy

% = —kaMpK+k 21Co +k_41Cs = kyaMpP + k32C3 + k12Cy

d]\i”” = —ksiMppP +k_31C3 + ko Co

% = kMK — (k_11 + k12)Cq (13)
% = knMpK — (k-1 +k2)Ca

% = k31MppP — (k_31 + k32)C3

% = kuMpP — (k_g +kgp)Cs

where the following conservation laws hold:

M+Mp+Mpp+C1+C2+C3+C4:MT, (14)
K+Ci+C =Ky, P+C3+Cyqy=Pr. (15)

Enzymes K and P can be replaced in (13) according to (15), so that the overall dynamics
is not redundant and the system reduces to the following 7-dimensional ODE with the
constraint (14):

dM
—r = —kiM(Kr —Cy —C) +k_11C1 + kgpCy
dM
—ky1Mp(Pr — C3 — Cy) + k32C3 + k12Cy
dM
dtpp = _k?)lMPP(PT — C3 - C4) + k73]C3 + k22C2

dc (16
c,

dt
acs

dt
ac,

dt

= knMp(Kr —Cy — Cp) — (k_p1 +k22)C2
= ks1Mpp(Pr — C3 — C4) — (k_31 + k32)C3

= kyMpy(Pr — C3 —Cy) — (k_gg +ka2)Cy
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Summing up all left hand sides of the system (16) yields zero, which, on the other
hand, is entailed by (14), accounting that Mr (the total mass) is constant over time. The
algebraic equation (14) defines a six-dimensional manifold in IR, invariant with respect to
system (16), which means that, if one takes the initial value on this manifold, the evolution
of system (16) remains on the same manifold at all times.

Remark 1. Indeed, it can be readily proved the stronger result that the DPDC system is posi-
tive [26], as each non-positive term on the right-hand side of any equation in (16) multiplies the
variable differentiated on the left-hand side of the same equation; in short, removal terms are linear
in the variable of interest. This prevents the crossing of the coordinate hyperplane S already defined
in Theorem 1, on which the aforementioned terms are zeroed; this will make the DPDC ODEs
quadratizable (see the remainder of this section) on the same domain V' C RZ of the original

variables, where the latter symbol denotes the non-negative orthant in R,
By setting
(xl/ x2/ x3/ x4/ x5/ x6/ x7) = (M/ Mp/ Mpp/ Cl/ CZ/ C3/ C4)/

it is readily seen that Equation (16) defines a c71-ODE (see Section 2.1), with state dimension
n = 7, where the exponents in (5) are integer. As a consequence, Theorem 1 can be applied
so that the system is exactly quadratized, with the quadratization that can be expressed in
the 'Driver-type’ ODE form (8), with augmented state dimension m = 24, by extending the
system with the following adjoint variables, whose dynamics is defined in (7):

-1, . S B R B R DY o1
Xg = X1 X4, X9 =X{ X7, X1]0 = Xp X5, X11 = Xp X7, X12 = Xy Xg,
—1., . S BV _ -1 _ 1 |
X13 = Xy "X4; X14 = X3 " Xg;, X15 = X3 X5, X6 = Xy X1 X17 = Xy X1X5
—1,. . _ -1 S B _ 1
X18 = X5 "X2; X719 = X5 X2X4 X200 = Xg X3; X21 = Xg X3X7

Xop = X;lJCz,' Xo3 = x;lJCzﬁ% X4 = 1. (17)
Therefore, system (16) rewrites as follows:

%1 = (k1124 + k11%5 + k_11%8 + ka2x9 — k11Krx24) %1
%o = (ko1xg + ko1xs5 + kg1 X6 + kgrx7 + k_21x10 + k41311 + k32x12 + k1213
— (k21K + kg1 Pr)x24) %2

X3 = (k31x6 + ka1x7 +k_31%14 + kapXx15 — k31 Prxo4)x3
4 = (—kux1 + ki Krxie — kiixry — (k11 + kiz)xo4) x4

X5 = (—ka1xa + ko1 Krx18 — ko1x19 — (k—21 + k22)x24) x5
6 = (—ka1x3 + k31 Prxoo — ka1 xo1 — (k_31 + k32)x24) X6
7=( (k41 +kg2)x24)

= (—ka1x2 + ka1 Prxo0 — ka1x23 — X24)X7

while we can use the chain rule to compute the dynamics of the adjoint variables, resulting,
after some substitutions, into the following additional quadratic differential equations:
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xXg = (—k11x1 — k11xg — k11x5 — k_11x8 — kgoX9 + k11K7X16 — K11X17
+ (k11K — k11 — k12)x04) X8
X9 = (—kg1x2 — k11xg — k115 — k118 — kapX9 + kg1 Prxon — kg1 x23

+ (k11K — k41 — kgp)x24) X9

%10 = (—ka1xo — ka1x4 — ko1x5 — kg1xX6 — ka1x7 — k_21%10 — k—_q1%11 — kapx12 — k1213
+ ko1Krx18 — ko1x19 + (ka1 Pr + ko1 K1 — k21 — k22) X24) X10

%11 = (—ka1xa — ko1xg4 — ko1x5 — kg1xX6 — ka1x7 — k_21%10 — k—g1x11 — k32x12 — k1213
+ ka1 Prxos — kg1x23 + (ka1 Pr + ko1 Kt — kg1 — ko) x24) x11

X12 = (—ka1x3 — ka1x4 — ko1x5 — kg1xX6 — ka1x7 — k_21%10 — k_q1%11 — kapx12 — k1213
+ k31 Prxgo — k31x21 + (ka1 K1 + ka1 Pr — k31 — k32)x24) x12

X13 = (—k11x1 — ka1xg4 — ko1x5 — kg1xX6 — ka1x7 — k_21x10 — k—g1x11 — k32x12 — k1213
+k11Krx16 — k11x17 + (k21 K1 + ka1 Pr — k11 — k12) x24) x13

X14 = (—ka1x3 — k31x6 — ka1x7 — k_31%14 — kopXx15 + k31 Prxao — ka1 x21
+ (k31 Pr — k31 — k32)x24)X14

%15 = (—ko1xa — k316 — ka1 x7 — k_31%14 — kaox15 + ko1 K718 — k21X19
+ (k31Pr — k1 — ka2)x24)X15

X16 = (k1121 + k11xg + k11xs + k_11x8 + kao X9 — k11 K16 + k11217
+ (k—11 + k12 — k1K) x04) X16

X17 = (k111 — ka1x2 + k1124 + k11x5 + k_11x8 + kaox9 — k11Krx16 + k11317
+ko1Krx1g — ko1x19 + (k—11 + k12 — ko1 — koo — k11K1)x04) 17

X18 = (ka1xo + ko1 xg + ko1xs + ka1 X6 + ka1 X7 + k2110 + k_g1%11 + kapx12 + k12x13
— k1 Krx1g + ka1x19 + (k21 + koo — ko1 K — kg1 Pr)x24) x18

X19 = (—k11%1 + ko1x2 + ko1x4 + k21x5 + ka1 X6 + ka1x7 + k_21x10 + k41211 + k32x12
+ kiox13 + k11K7X16 — k11%17 — k21K72X18 + k21%19
+ (k_21 + koo — k11 — k12 — ko1 K7 — kg1 Pr)x24) X19

X0 = (k31x3 + k31 X6 + k317 + k31214 + koox15 — k31 Prxao + ka1 xo1
+ (k31 + k32 — k31 Pr)x24)x20

X1 = (—kgrxo + ka1 x3 + ka1 xe + karx7 + k_31x14 + kapx15 — ka1 Prago + ka1 x21
+ ka1 Prxoo — karxoz + (k31 + k3o — k41 — kap — k31 Pr)x24) %21

X0 = (kg1x2 + ko1 xg + ko1xs + kg1 X6 + ka1x7 + k2110 + k_g1%11 + k3px12 + k12x13
— ka1 Prxon + ka1xo3 + (k-1 + kag — ko1 K1 — ka1 Pr)x24) x22

X3 = (kgrxa — ka1x3 + ko1xg + ko1 x5 + kgg X + ka1 x7 + k_21x10 + k_g1%11 + k3ax12
+ k12x13 + k31 Prxag — k31x21 — ka1 Prxoa + ka1 x23
+ (k—a1 +kap — k31 — k3o — ko1 K — kg1 Pr)x24) X23

Finally, we obviously have

initialized to x4 (0) = 1, implying x4 () = 1 for all > 0, which allows to turn linear into
quadratic terms in the right-hand side of any c7r-ODEs.
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4. Simulation Results

Numerical simulations of the system (16), quadratized in the form (8) as developed in
the previous section, have been performed in the Matlab® suite. Inspired by the parameter
choices in [14,17], we consider the following parameters:

kn =4-10°M7's™!,  k_3=25s"",  kp=15s"', j=1,234  (18)
with total amounts (14) and (15) equal to

k_11+k
My = % Ky = Pr =103 M. (19)
11

We start from the initial conditions (at time ¢y = 0)
x1(0) = 0.70M7, x4(0) = 0.25Mr, x;(0) =0.01Mr fori=2,3,5,6,7, (20)

where the initial states of the adjoint variables x;(0), for j = 8,...,24, are uniquely de-
termined from (17) and (20). The sampling interval has been set to A = 0.015 s and the
overall simulation time is 1 s. For the given choice of parameters and initial conditions,
simulations performed according to the standard ODE45 Matlab® solver, based on the
Dormand-Prince Runge-Kutta method [27] with default settings, are aborted by Matlab
for not being able to meet integration tolerances.

Figures 1-7 show the numerical solution obtained for variables x1, . .., x7 by means of
the ODE15s Matlab® variable-order solver for stiff differential equations [28] compared
with the method of quadratization and truncated TSM integration proposed in this paper.
It is clearly observed that the substrate trajectories provided by ode15s oscillate, while our
approach provides a smoother behavior. Regards to the complexes, ode15s trajectories
become negative, which is qualitatively inconsistent by virtue of Remark 1, as we know that
the system (16) is positive. The same occurs with C; for the TSM method with truncation
order k = 1 (Euler), see Figure 4, and with C, for the TSM method with k=2, see Figure 5.
Instead, the TSM method applied to the quadratized system with truncation order k = 3
exhibits non-negative solutions for all the variables.

x108 DPDC system - Species M

A
Y

9.5

8.5

8 .
7.5 Original system - odel5s - ]
Quadratized system - Approximate TSM (If =1)
Quadratized system - Approximate TSM (If =2)
Quadratized system - Approximate TSM (k = 3)
7 Il Il Il Il
0 0.2 0.4 0.6 0.8 1

Time (s)

Figure 1. Trajectory of species M via quadratization of Equation (16) and approximate TSM method
compared with the Matlab® ODE15s solution. The maximum truncation order has been set to k = 3.
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8 DPDC system - Species M
x10 P
1 4 T T T T I
Original system - odelbs
Quadratized system - Approximate TSM (k = 1
1.2+ Quadratized system - Approximate TSM (k = 2)
Quadratized system - Approximate TSM (k = 3

0.8 \/ 1
0.6 J
0.4 1
0.2 g

O 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Time (s)

Figure 2. Trajectory of species M, via quadratization of Equation (16) and approximate TSM method
compared with the Matlab® ODE15s solution. The maximum truncation order has been set to k = 3.

§ 10°? | DPDC system - Specfles Mpp |

il ]
Al ]
ol ]
T v/

Original system - odel5s

Quadratized system - Approximate TSM (k

Quadratized system - Approximate TSM (k

Quadratized system - Approximate TSM (k
]
1

0 1 1 1 1
0 0.2 0.4 0.6 0.8

Time (s)

Figure 3. Trajectory of species M, via quadratization of Equation (16) and approximate TSM method
compared with the Matlab® ODE15s solution. The maximum truncation order has been set to k = 3.
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DPDC system - C1

2.5

T

T

Original system - odel5s
Quadratized system - Approximate TSM (k = 1
2 Quadratized system - Approximate TSM (l:c =2)
Quadratized system - Approximate TSM (k = 3

1.5 1

0r \/ \/

-0.5 I I I I
0 0.2 0.4 0.6 0.8 1

Time (s)

Figure 4. Trajectory of species C; via quadratization of Equation (16) and approximate TSM method
compared with the Matlab® ODE15s solution. The maximum truncation order has been set to k = 3.

©10° DPDC system - 02
3 T T T T
25 1
2 |- -
15 J
1 J
0.5 J
0
Y
05 1
Original system - odel5s
9+ Quadratized system - Approximate TSM (k = 1)
Quadratized system - Approximate TSM (k = 2)
15h Quadratized system - Approximate TSM (k = 3)
2 I I I I
0 0.2 0.4 0.6 0.8 1

Time (s)

Figure 5. Trajectory of species C, via quadratization of Equation (16) and approximate TSM method
compared with the Matlab® ODE15s solution. The maximum truncation order has been set to k = 3.
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%1071 DPDC system - C3
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Figure 6. Trajectory of species C3 via quadratization of Equation (16) and approximate TSM method
compared with the Matlab® ODE15s solution. The maximum truncation order has been set to k = 3.
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Figure 7. Trajectory of species C, via quadratization of Equation (16) and approximate TSM method
compared with the Matlab® ODE15s solution. The maximum truncation order has been set to k = 3.

Figure 8 shows the trajectories of complexes C; (top panel) and C, (bottom panel),
obtained with sampling time A = 0.015 s, compared with the same trajectories computed
with a doubled sample interval A = 0.03 s, and the same truncation order k = 3 of the TSM
method. It is apparent that the choice of a sufficiently small sampling interval, jointly with
a sufficiently high truncation order, is crucial for the numerical stability of the algorithm. In
particular, both C; and C; violate again the non-negativity constraint in the case A = 0.03 s,
as already observed for A = 0.015 s and low truncation orders in Figures 4 and 5, with
a notable oscillating behavior and an evident initial overshoot of species C,. Note that
the pattern of damped oscillations in Figures 4, 6, and 8 is not surprising in numerical
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simulation and identification in biochemical and biological contexts, for instance, a similar
behavior may indeed result from the optimization of the power of the error in multiple
linear regression under the assumption of generalized Gauss-Laplace distribution [29].

In summary, the method proposed in this paper seems to be able to return meaningful
solutions in the numerical simulation of particular biological conditions when standard
solvers may fail.

. %108 DPDC system - C,

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (s)
K DPDC system - C,
3 T T T T T

0 01 02 03 04 05 06 07 08 09 1
Time (s)
Figure 8. Trajectories of species C; (top panel) and C, (bottom panel) via quadratization of
Equation (16) and approximate TSM method, with truncation order set to k = 3, for two differ-
ent values of the sampling interval A.

5. Discussion

In this work, we proposed a novel approach to the problem of integrating the solution
of biological systems expressed by stiff differential equations (for example, those exhibiting
an apparent double time-scale separation). To overcome typical numerical issues related to
the numerical integration of this kind of system by means of existing solvers, we here rely
on recent work exploiting the so-called quadratization of ODEs, which allows embedding
the original dynamics in a higher-dimensional space where the system is quadratic and
differentiation formulae of any order are computable by means of simple recursions.
Such derivatives are exploited within a truncated Taylor Series expansion to build an
approximate simple integration scheme, which is proved to work accurately in the in silico
simulation of the Double Phoshphorylation/Dephoshphorylation Cycle (DPDC), which is
an important regulatory mechanism present in cells. Ongoing and future work is focusing
on the construction of a numerical scheme that might overcome the curse of dimensionality
due to the computation of coefficients of the high-order terms in the Taylor series expansion
for the augmented quadratized dynamics.
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