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Abstract: Modular localization and the theory of string-localized fields have revolutionized several key
aspects of quantum field theory. They reinforce the contention that local symmetry emerges directly
from quantum theory, but global gauge invariance remains in general an unwarranted assumption to
be examined case by case. Armed with those modern tools, we reconsider here the classical Okubo–
Marshak argument on the non-existence of a “strong CP problem” in quantum chromodynamics.
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To the memory of Bob Marshak and Daniel Testard

1. Introduction: String-Localized Fields

In this paper, the case by Okubo and Marshak [1] against the existence of the “strong
CP problem” in quantum chromodynamics, which was based on the covariant approach
to Yang–Mills theory by Kugo and Ojima [2], is reassessed from a different theoretical
standpoint. For this purpose, we bring to bear the theory of string-localized quantum
fields (SLFs).

SLFs are not a recent invention. The paper by Dirac [3] should be regarded as a
precedent. Charged SLFs, recognizably similar to the modern version, were a brainchild of
Mandelstam [4]. In a different vein, they were treated by Buchholz and Fredenhagen [5]. In
the 1980s, they were further developed by Steinmann [6–8]. They resurfaced over 15 years
ago in important papers by one of us with Schroer and Yngvason [9,10]. Interest in SLFs
had meanwhile been sustained and renewed by their obvious connection to modular
structures [11], with roots in deep mathematical results of Hilbert algebra theory [12] and a
geometrical interpretation through the Bisognano–Wichmann relations [13,14]. Among the
harbingers of their revival we count papers [15–17], bearing upon the proper concept of
locality in modern quantum field theory.

The gist of [9] was to show that within the SLF dispensation, Wigner particles of
mass zero and unbounded helicity possess associated quantum fields; those had long
before been excluded from the standard framework by Yngvason himself [18]. The detailed
treatment in [10], apart from reviewing this fact, directly and comprehensively relates SLF
to point-localized fields of the ordinary sort.

At the price of an extra variable, SL fields offer important advantages. Two of these are:
(a) string-localized fields slip past the theorem in Section 5.9 of [19]—that it is impossible to
construct on Hilbert space tensor fields of rank r for massless particles with helicity r, such
as photons and gluons; (b) their short-distance behaviour, both for massive and massless
particles, is the same for all bosons as for scalars and for all fermions as for spin- 1

2 particles.
(Free scalar and spin- 1

2 particles are non-stringy).
The primary upshot is that large no-go territories for QFT are now being trespassed.

The separation of helicities in the massless limit of higher spin fields is clarified in [20]. The
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van Dam-Veltman–Zakharov discontinuity [21,22] at the m ↓ 0 limit of massive gravitons is
resolved [23]. Unimpeachable stress–energy-momentum (SEM) tensors for massless fields
of any helicity are constructed [20,23], allowing for gravitational interaction, and flouting
the Weinberg–Witten theorems in particular. A good candidate SEM for unbounded
helicity particles now also exists in SL field theory [24]. The Velo–Zwanziger instability [25]
is exorcised [26]. The prohibition for covariant spinorial field types (A, B) to represent
massless Wigner particles of helicity r, unless r = B− A, argued in Section 5.9 of [19], has
been made void. SL field theory is also helping to deal with profound, age-old problems of
QED [27].

In summary, SL fields sit comfortably midway between “ordinary” and algebraic QFT.
Furthermore, the renormalization of QFT models is to take place without calling upon
ghost fields, BRS invariance and the like; since, for SL fields, one need not surrender the
positivity of the energy nor of the state spaces for the physical particles.

Regarding the Standard Model, rigorous perturbative field theory [28] together with
the principle of string independence of the S-matrix allowed us to show some time ago that
the chirality of the electroweak interactions does not have to be put by hand, as in the
GWS model; rather, it follows ineluctably from the massive character of their interaction
carriers—a conclusion irrespective of “mechanisms” conjuring the mass [29]. The proof
built on outstanding work by Aste, Dütsch and Scharf at the turn of the century on a
quantum formulation for gauge invariance [30,31] (see [32] as well). Following Marshak,
henceforth we refer to electroweak theory as quantum flavourdynamics (QFD).

SLFs have their own drawbacks, to be sure. Practical calculations of loop graphs with
SL fields in internal lines are rather challenging, and a proof of normalizability at all orders
is still pending. The applications of SLF so far mostly deal with issues of principle that are
badly dealt with within conventional QFT. Of which there are plenty. This paper addresses
one of them.

Massless Bosonic SLF: General Theory

The term “string” (not to be confused with the strings of string theory) in the present
context precisely denotes a ray starting at a point x in Minkowski space M4 that extends to
infinity in a spacelike or lightlike direction. This is the natural limit of the spacelike cones
in the intrinsic localization procedure of [17]. The set of such strings can be parametrized
by the one-sheet hyperboloid H3 ( M4 (“de Sitter space”) with neck radius equal to 1
(the use of the limiting case of lightlike strings, parametrized by the celestial spheres
S2 ∪ S2 ( M4, simplifies some formulae; they are a little troublesome from the functional-
analytic viewpoint, however).

By way of example, let us look first at the “Abelian” case of helicity r = 1. Let
dµ(p) = (2π)−3/2 d3 p/2|p|. The quantum electromagnetic field strength, built on Wigner’s
helicity ±1 unirreps of the Poincaré group, is written as follows:

Fµν(x) = ∑
σ=±

∫
dµ(p)

[
ei(px)uσ

µν(p)a†(p, σ) + e−i(px)ūσ
µν(p)a(p, σ)

]
, (1)

where (px) ≡ gµν pµxν with mostly negative metric (gµν); the intertwiners are of the form
uσ

µν(p) = ieσ
ν (p)pµ − ieσ

µ(p)pν, for e± a polarization zweibein, with ū denoting the complex
conjugate of u.

The corresponding string-localized vector field for photons is given by

Aµ(x, e) = ∑
σ=±

∫
dµ(p)

[
ei(px)uσ

µ(p, e)a†(p, σ) + e−i(px)ūσ
µ(p, e)a(p, σ)

]
, (2)

its intertwiners uσ
µ(p, e) being of the form

(pe)e±µ (p)− (e±(p)e)pµ

(pe)
. (3)
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The denominator (pe) in uσ
µ(p, e) is shorthand for the distribution

(
(pe) + i0

)−1 to be
smeared in the string variable e. The following key relations—integral and differential,
respectively—are effortlessly derived:

Aµ(x, e) =
∫ ∞

0
dt F(x + te)µν eν; ∂µ Aν(x, e)− ∂ν Aµ(x, e) = Fµν(x); (4)

so that Aµ(x, e) is a bona fide potential for Fµν(x). For the first identity,

i
(

pµe±λ (p)− pλe±µ (p)
)
eλ lim

ε↓0

∫ ∞

0
dt eit((pe)+iε) = e±µ (p)− pµ (e±(p) e)

(pe)
. (5)

It should be clear that the vector potential Aµ(x, e) fulfills the equations eµ Aµ(x, e) =
∂µ Aµ(x, e) = 0. These “transversality” properties are necessary for the free field Aµ(x, e)
acting on the physical Hilbert space: see Section 5 of [10]. Their role is to reduce the number
of degrees of freedom, as required for on-shell photons, in much the same way that the
six components of the electromagnetic field reduced by the Maxwell equations propagate
two degrees of freedom. (Only the second could perhaps be taken as a Lorenz “gauge
condition”).

The reader should fully appreciate the deep differences between Aµ(x, e) and the
Aµ(x) potentials of standard QFT. In particular, there are no “pure gauge” configurations
in QED or QCD (understood in this paper in the narrow sense of gluodynamics, the theory
of pure Yang–Mills fields), when working in SL field theory. The field Aµ(x, e) lives on the
same Fock space as Fµν. Thus, the second equation in (4) is an operator relation, which is
not the case for the similar one in the usual framework. All this makes easier the physical
interpretation of the present case.

In contrast with the standard formalism, Aµ(x, e) is perfectly covariant: for Λ a Lorentz
transformation, c a translation, and U the second quantization of the mentioned unirrep
pair of the Poincaré group:

U(c, Λ)Aµ(x, e)U†(c, Λ) = (Λ−1) λ
µ Aλ(Λx + c, Λe). (6)

It is important to realize that the string-differential of the photon field is a gradient:

de Aµ(x, e) := ∑
ρ

deρ ∂Aµ(x, e)
∂eρ = − ∑

σ=±

∫
dµ(p)

[
ei(px)

( pµeσ
ρ

(pe)
−

pρ pµ(eσe)
(pe)2

)
a†(p, σ)

+ e−i(px)
( pµeσ

ρ

(pe)
−

pρ pµ(eσe)
(pe)2

)−
a(p, σ)

]
deρ (7)

= i∂µ ∑
σ=±

∫
dµ(p)

[
ei(px)

( eσ
ρ

(pe)
−

pρ(eσe)
(pe)2

)
a†(p, σ)

− e−i(px)
( eσ

ρ

(pe)
−

pρ(eσe)
(pe)2

)−
a(p, σ)

]
deρ =: ∂µu(x, e).

Naturally, u satisfies the wave equation and (de)2 Aµ = ∂µdeu(x, e) = 0.
Last, but not least, locality

[Aµ(x, e), Aν(x′, e′)] = 0 (8)

holds whenever the strings x +R+ ẽ and x′ +R+e′ are spacelike separated for all ẽ in some
open neighbourhood of e: “causally disjoint”. A proof is found in Appendix C of [29].

2. Dealing with String Independence

Perturbation theory for the SLF is attacked here in the spirit of “renormalization with-
out regularization” of rigorous S-matrix theory [28]. The method engages the construction
of a Bogoliubov-type functional scattering operator S[g; h] dependent on a multiplet g
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of external fields and a test function h ∈ D(H3) with integral 1 that averages over the
string directions. S[g; h] is submitted to the customary conditions of causality, unitarity
and covariance. One looks for it as a formal power series in g,

S[g; h] := 1 +
∞

∑
n=1

in

n!

n

∏
k=1

m

∏
l=1

∫
d4xk

∫
dσ(ek,l) g(xk)h(ek,l)Sn(x1, e1; . . . ; xn, en), (9)

where σ is the measure on H3. Only the first-order vertex coupling S1 = S1(x, e), a Wick
polynomial in the free fields, is postulated, already under severe restrictions. It depends
on an array e = (e1, . . . , em) of string coordinates, with m the maximum number of SLFs
appearing in a sub-monomial of S1. For n ≥ 2, the Sn are time-ordered products that need
to be constructed. Two sets of strings cannot be ordered, after chopping them into segments
if necessary [33], if and only if they touch each other (see the Appendix A for details). The
resulting exceptional set

D2 := { (x, e; x′, e′) : (x +R+ek) ∩ (x′ +R+e′l) 6= ∅ for some k, l } (10)

is a set of measure zero that includes the diagonal x = x′. A similar statement holds for
n > 2. Only that part of Sn contributes to S[g; h] that is symmetric under permuting the
string coordinates, which are smeared with the same test function h (this symmetry is
heavily exploited in the following derivations). The extension of the Sn-products across Dn
is the renormalization problem in a nutshell [34].

The natural and essential hypothesis of interacting SLF theory is simple enough: phys-
ical observables and quantities closely related to them, particularly the S-matrix, cannot
depend on the string coordinates. This is the intrinsically quantum string independence
principle: colloquially, the strings “ought not to be seen”. In this paper, it will replace the
“gauge principle” with advantage.

For the physics of the model described by S1 to be string-independent, one must
require that a vector field Qµ(x, e) exist such that, after appropriate symmetrization in the
string variables

de1 Ssym
1 = (∂Q) ≡ ∂µQµ; (11)

thus, on applying integration by parts in the “adiabatic limit”, as g goes to a set of constants,
the contribution from the divergence vanishes. As the covariant S[g; h] approaches the
invariant physical scattering matrix S, U(a, Λ)SU†(a, Λ) = S, all dependence on the strings
disappears.

On the face of it, existence of the adiabatic limit is the property that Sk be integrable
distributions. Due to severe infrared problems, the latter does not hold in QCD, which
involves us here. However, a recent breakthrough [35] rigorously establishes the existence
of a suitable weaker adiabatic limit (WAL) in QCD, and so the above reasoning can proceed.
(The cited work is concerned with point-local fields. It can be generalized to the string-local
setting in low orders. A proof of WAL at all orders in the SLF context is still awaiting.)

2.1. The Aste–Scharf Argument Recast in SLF Theory

Proposition 1. Suppose that we are given n massless fields Aµa, (a = 1, . . . , n). For their mutual
cubic coupling modulo divergences, string independence at the first order enables the Wick product
combination:

S1(x, e1, e2) =
g
2

fabc Aµa(x, e1)Aνb(x, e2)Fµν
c (x), (12)

where fabc are completely skew-symmetric coefficients (subindices that appear twice are summed
over).

Before proceeding, we note that this vertex promulgates a renormalizable theory by
power counting. Note also that S1 is intrinsically symmetric in the string coordinates,
and that

de1 S1 =
g
2

∂µ

[
fabc ua(x, e1)Aνb(x, e2)Fµν

c (x)
]
=: ∂µQµ(x, e1, e2). (13)
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Proof of Proposition 1. We abbreviate Ai ≡ A(x, ei) for the SLF and make the Ansatz

S′1(x, e1, e2, e3) = g f 1
abc A1

µa A2
νb ∂µ A3ν

c (14)

for the cubic coupling of the fields, with the coefficients f 1
abc being unknown a priori. We

shall show that string independence forces this to be of the form S1 as in (12), where thos e
numerical coefficients fabc are completely skew-symmetric. We first split f 1

abc =: dabc + f 2
abc

into a symmetric (dabc = dacb) and a skew-symmetric part ( f 2
abc = − f 2

acb) under exchange
of the second and third indices. After symmetrizing (14) in e2 ↔ e3, the contribution of dabc
yields a divergence:

dabc A1
µa(A2

νb∂µ A3ν
c + A3

νb∂µ A2ν
c ) = ∂µ(dabc A1

µa A2
νb A3ν

c ). (15)

We can therefore replace S′1(x, e1, e2, e3) by

S′′1 (x, e1, e2, e3) := g f 2
abc A1

µa A2
νb∂µ A3ν

c . (16)

Its symmetrized version satisfies

de1 ∑π∈S3
S′′1 (x, eπ(1), eπ(2), eπ(3)) = 2g f 2

abc
(
∂ν A2

µa ∂µ A3ν
b + ∂ν A2

µb ∂µ A3ν
a
)
u1

c + div. (17)

We next split the coefficients f 2
abc = f+abc + f−abc into symmetric and skew-symmetric

parts under exchange of the first two indices, f±abc = ± f±bac. The skew-symmetric part f−abc
enters into (17), whereas the symmetric part f+abc contributes

de1 ∑
π∈S3

S′′1 (x, eπ(1), eπ(2), eπ(3)) = 4g f+abc∂ν A2
µa ∂µ A3ν

b u1
c + div. (18)

By our basic postulate, this must be a divergence. Since the operators ∂ν A2
µa ∂µ A3ν

b u1
c

are linearly independent, that can happen if and only if the symmetric part f+abc is identically
zero. This leads to complete skew-symmetry of the f 2

abc ≡ f−abc =: fabc; that is, the string
independence principle constrains S′′1 in (16) to the form

S′′′1 = g fabc A1
µa A2

νb∂µ A3ν
c =

g
2

fabc A1
µa A2

νbFµν
c =: S1, (19)

so that the dependence on e3 is trivial and Formula (12) with the stated skew-symmetry
condition is established.

It is worth pointing out that the above reasoning for the form of S1 becomes simpler
in our SLF context than in the quantum gauge invariance approach; see Section 3.1 of [30],
the inference there being in terms of the customary fields and their ungainly retinue of
unphysical fields.

2.2. Dealing with String Independence at Second Order: Preliminaries

Perturbative string independence should hold at every order in the couplings, surviv-
ing renormalization. Now, the fabc do not yet a Lie algebra make; for that, one needs to
prove a Jacobi identity. This will be obtained from string independence in constructing the
functional S-matrix at second order in the couplings.

Outside the exceptional set D2 from (10), time-ordered products of string-localized
fields reduce to ordinary products where the order of terms is determined by the geometric
time-ordering of the string segments. There, string variation and derivatives commute
with time ordering, and we have

de1 S2(x, e1, e2; x′, e′1, e′2) = de1 T
(
S1(x, e1, e2)S1(x′, e′1, e′2)

)
= ∂µ T

(
Qµ(x, e1, e2)S1(x′, e′1, e′2)

)
. (20)
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Above, T denotes a generic time-ordering recipe, that is, an extension of the time ordering
across D2. It does not automatically follow that (20) holds over the whole (x, e1, e2; x′, e′1, e′2)
set. The challenge is to manufacture a time-ordered product S2 so that this property holds
everywhere after appropriate symmetrization in the string variables. The construction of S2
by solving the obstructions to such an identity will impose the couplings of “non-Abelian
gauge theory”. The vector quantity Qµ plays a central role in our development.

Candidate extensions across D2 are restricted by the requirement that the Wick ex-
pansion hold everywhere. We are concerned only with the tree graph for gluon–gluon
scattering. Its corresponding amplitude is of the general form

T(UV′)tree = ∑
ϕ,χ′

∂U
∂ϕ
〈〈T ϕ χ′〉〉 ∂V′

∂χ′
, (21)

where 〈〈−〉〉 denotes a vacuum expectation value, the sum in the brackets goes over all the
free fields entering the monomials U(x), V(x′), and we employ formal derivation within
the Wick polynomials.

For time-ordered products of the fields entering S2 in our model, we naturally consider,
in the first place,

〈〈T0 ϕ(x, e) χ(x′, e′)〉〉 :=
i

(2π)4

∫
d4 p

e−i(p(x−x′))

p2 + i0
Mϕχ(p, e, e′), (22)

where the Mϕχ(p, e, e′) are given by

Mϕχ
∗• := ∑

σ

uσ;ϕ
∗ (p, e) uσ;χ

• (p, e′), (23)

for the appropriate spacetime indices ∗, •, in terms of the respective intertwiners. We need

MFA
µν,λ(p, e′) = i

(
pµgνλ − pνgµλ + pλ

pνe′µ − pµe′ν
(pe′) + i0

)
, (24)

MFF
µν,κλ(p) = pν pκ gµλ + pµ pλ gνκ − pν pλ gµκ − pµ pκ gνλ, (25)

to be found for instance in our [29]. Note that in all generality,

de〈〈T0 ϕ(x, e) χ(x′, e′)〉〉 = 〈〈T0 de ϕ(x, e) χ(x′, e′)〉〉, (26)

and similarly for de′ .
The problem of resolving the obstructions to Equation (20) reduces to an extension

problem for numerical distributions by carefully constructing the contractions (21). At
present we have, with completely skew-symmetric coefficients fabc,

S1 =
g
2

fabc A1
µa A2

νbFµν
c and Qµ(x, e1, e2) =

g
2

fabc u1
a A2

νbFµν
c . (27)

Clearly S1 is symmetric under exchange of the string variables. We want the expression
S2(x, e1, e2; x′, e′1, e′2) to be symmetric under the exchange (x, e1, e2)↔ (x′, e′1, e′2). Therefore,
resolving all obstructions to Equation (20) is equivalent to inspecting the obstruction

O1 := de1

(
T0(S1(x, e1, e2)S1(x′, e′1, e′2))

)
tree − ∂µ T0

(
Qµ(x, e1, e2)S1(x′, e′1, e′2)

)
tree

= T0
(
∂µQµ(x, e1, e2)S1(x′, e′1, e′2)

)
tree − ∂µ T0

(
Qµ(x, e1, e2)S1(x′, e′1, e′2)

)
tree, (28)

to investigate how it can be made to vanish after appropriate symmetrization. To this end,
with the delta-function δe along the string e defined as

δe(x− x′) :=
∫ ∞

0
dt δ(x + te− x′), (29)
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one obtains, for similarly coloured gluons,

∂µ〈〈T0(Fµν(x)Aλ(x′, e))〉〉 = i
[
gνλδ(x− x′)− eν∂λδ−e(x− x′)

]
; (30)

∂µ〈〈T0(Fµν(x)Fκλ(x′))〉〉 = i(gνκ∂λ − gνλ∂κ) δ(x− x′). (31)

These formulae are easily derived by use of Equations (22), (24) and (25), respectively.

2.3. The Jacobi Identity Emerges

We compute, with an eye on (21) and (28),

O1 = − g
2

fabc ∑
χ′

u1
a A2

νb∂µ〈〈T0 Fµν
c χ′〉〉

∂S1(x′, e′1, e′2)
∂χ′

= − g2

4
fabc fd f cu1

a A2
νb
[
∂µ〈〈T0 FµνF′κλ〉〉A′1′κd A′2

′
λ f (32)

+ ∂µ〈〈T0 Fµν A′1
′

κ 〉〉A′2
′

λdF′κλ
f − ∂µ〈〈T0 Fµν A′2

′
λ 〉〉A′1

′
κd F′κλ

f
]
,

where A′1
′

κd ≡ Aκd(x′, e′1), A′2
′

λ f ≡ Aλ f (x′, e′2), and similarly. Employing (30) and (31), this
obstruction equals

−i
g2

4
fabc fd f cu1

a A2
νb
[
A1′

κd A2′
λ f (gνκ∂λ − gνλ∂κ) δ(x− x′)

+ A′2
′

λdF′κλ
f
(

gν
κ δ(x− x′)− eν

1∂κδ−e′1
(x− x′)

)
− A′1

′
κd F′κλ

f
(

gν
λ δ(x− x′)− eν

2∂λδ−e′2
(x− x′)

)]
. (33)

Exploiting ∂κδ−e′i
(x − x′) = −∂κ

x′δ−e′i
(x − x′) as well as the skew-symmetry of fd f c

and Maxwell’s equations for F′κλ
f , we see that terms of the type

A′2
′

λdF′κλ
f ∂κ δ−e′1

(x− x′) = −∂′κ
[
A′2

′
λdF′κλ

f δ−e′1
(x− x′)

]
(34)

form a divergence of an expression supported at the exceptional set D2. Integrating by
parts in the first line (33), the obstruction reads, up to a divergence supported at D2,

− i
g2

4
fabc fd f c

[
−∂λu1

a A2
νb A1′ν

d A2′
λ f − u1

a∂λ A2
νb A1′ν

d A2′
λ f + ∂κu1

a A2
νb A1′

κd A2′ν
f

+ u1
a∂κ A2

νb A1′
κd A2′ν

f + u1
a A2

νb A2′
λdFνλ

f − u1
a A2

νb A1′
κdFκν

f
]

δ(x− x′)

= −i
g2

4
fabc fd f cu1

a
[
Fµν

b A1′
µd A2′

ν f + A2
µb A2′

νdFµν
f + A2

µb A1′
νdFµν

f
]

δ(x− x′) (35)

− i
g2

4
fabc fd f cde1

[
A1µ

a A2
νb A1′

µd A2′ν
f − A1µ

a A2
νb A1′ν

d A2′
µ f
]

δ(x− x′). (36)

We have used that ∂µu1
a = de1 A1µ

a . On symmetrizing in the variables e2, e′1, e′2, the line
(35) becomes proportional to

− i g2u1
aFµν

b
[
A1′

µd A2′
ν f + A2

µd A2′
ν f + A2

µd A1′
ν f
][

fabc fcd f + fa f c fcbd + fadc fc f b
]

δ(x− x′). (37)

It follows that the Jacobi identity

fabc fcd f + fa f c fcbd + fadc fc f b = 0 (38)

is a necessary condition for the obstruction to string independence to vanish.
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2.4. The Quartic Term

We still have to deal with the term of the type ∂uAAA ∼ de1 AAAA in (36). Using the
skew-symmetry of the fabc, symmetrization of (36) in the variables e′1, e′2 yields the identical
symmetrization of

de1

[
−i

g2

2
fabc fd f c Aµ

a (x, e1)Aν
b(x, e2)Aµd(x, e′1)Aν f (x, e′2)

]
δ(x− x′). (39)

Thus, to keep string independence, a summand

i
g2

2
fabc fd f c Aµ

a (x, e1)Aν
b(x, e2)Aµd(x, e′1)Aν f (x, e′2) δ(x− x′), (40)

whose string-derivative de1 cancels the expression (39), must be added to S2. This is
the four-gluon coupling, usually attributed to the “covariant derivative” present in the
“kinetic” QCD Lagrangian. Now, since in the present dispensation a g2 AAAA term is
also renormalizable to begin with, we could have introduced it from the outset. Then,
a discussion parallel to the above leads again to Equation (40), with precisely the same
second-order coefficient in the coupling constant.

In summary, string independence of the S-matrix at second order holds if and only if
the Jacobi identity with completely skew-symmetric fabc for the cubic coupling (12) holds
and the above quartic term (40) is present at that order in the S-matrix.

3. Discussion

The outcome of the previous arguments, together with the lessons on QFD in [29],
is that Lie algebra structures of the compact type of necessity govern interactions in QFT.
Compactness is related to complete skew-symmetry: a finite-dimensional Lie algebra
structure with generators Xa defined by [Xa, Xb] = ∑c fabcXc does require fabc = − fbac
and the Jacobi identity, but not fabc = − facb in general. The extra requirement imposed
by string independence leads to a negative definite Killing form and thus semisimple
compactness (see for instance Section 3.6 of [36]).

The authors currently know of five different arguments within perturbative QFT
for the reductive Lie algebra structure of the interactions: the already classical one by
Cornwall, Levin and Tiktopoulos from unitarity bounds at high energy [37]; the Aste–
Scharf analysis referred to in Section 2.1; the argument in this paper; and two more found
in the book [38]: in its Chapter 27, one is made by elaborating on the spinor-helicity
formalism for gluon scattering calculations, and another—most charming of them all—in
its Chapter 9 by a variant of Weinberg’s “soft limit” reasoning, long ago applied to link
helicity 1 particles with charge conservation and helicity 2 particles with universality of
gravity. The irrelevance of the gauge condition in the old direct construction of scattering
amplitudes by Zwanziger [39] also comes to mind.

This is a good place to take stock of the lessons from [29]. Our argument there was
also motivated, in a somewhat contrarian way, by Marshak’s thoughts on the “neutrino
paradigm” in his posthumous book Conceptual Foundations of Modern Particle Physics [40],
Chapters 1 and 6 (see also [41]). The sole inputs of our treatment of flavourdynamics in it are
the physical particle types, masses and charges: “spontaneous symmetry breaking”, which
comes in succour of the conventional gauge models, is not required, since the SLF models
are renormalizable to begin with, irrespectively of mass. String independence at first and
second order rules the bosonic couplings, just as in gluodynamics; the non-vanishing
masses bring only minor complications. Couplings between bosons and fermions a priori
are just asked to respect electric charge conservation and Lorentz invariance. Chirality
of the couplings is the outcome of general string independence. The proof requires the
presence of the scalar particle and is done with Dirac fermions: from the standpoint of
SLFs, it does not make sense to say that lepton or quark currents are “chiral” in QFD: their
couplings are. (In the current parlance, fermions in the Standard Model are schizophrenic:
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non-chiral in QCD, chiral in QFD. Certainly, from the SLF treatment, one can reengineer the
GWS model and its warts, hypercharges and all, in reverse. This was done in Appendix D
of [29]).

The cited book by Marshak is still a very good guide for the discussion that follows,
witness perhaps to the lack of progress and “deeply disturbing features” [42] affecting the
present theoretical apparatus, in contrast with tremendous progress in the experimental
realm during recent years.

3.1. Story of Two Principles

The “gauge principle”, a top-down, classical-geometrical principle which has ruled parti-
cle theory for over 60 years, is foreign to QFT. Looking back, a defect—the unavailability
in conventional QFT of a Hilbert space framework for massless particles—was elevated
into a doctrine. By now, bottom-up, inherently quantum principles for the construction of
interactions deserve their place in the sun.

If only for sound epistemological reasons, one should ascertain whither the bottom-
up approach leads, in present-day particle physics. A Lie algebra and a local Lie group
amount to the same thing. Now, the mathematical beauty and power of spin-offs such as
extended field configurations in classical Yang–Mills geometry is not to be denied—it is
enough to recall [43]. In turn, it is perfectly legitimate to look for global Lie group features
in modern, bottom-up QFT. However, we contend that those need to be constructed as
quantum field theory entities and—as anyone who has had to grapple with, e.g., the rigorous
definition of Wilson loops for interacting fields in SLF formulations well knows—this is
more intricate than presuming classical geometry entities to possess non-perturbative
quantum counterparts.

Consider, for instance, Dirac’s ad-hoc non-integrable phase and magnetic monopole
(and their progeny of ‘t Hooft–Polyakov monopoles). The basic idea was seductive, and
led directly and elegantly to electric charge discreteness. Nevertheless, humbler, essentially
perturbative arguments on cancellation of anomalies—up to and including the mixed
gravitational-gauge anomaly [44] recalled by Marshak (see Chapter 7 of [40] and [45],
among others [46])—are known to provide an explanation for that discreteness (Section 30.4
of [38]). Whereas magnetic monopoles of any kind have stubbornly refused to show up.

This is perhaps the place to comment on the Aharonov–Bohm and Aharonov–Casher
effects being held as “proofs” of the “fundamental” character of the standard electromag-
netic gauge potential, since the calculation via the electromagnetic field depends on a
region where the test particle is not allowed. This is merely a misunderstanding: these
effects can be computed by means of the SL A-field, which contains the same information
as the F-field. The deep reasons lie in the mind-boggling entanglement properties of QFT,
as compared to ordinary quantum mechanics; concretely, in the failure of Haag duality for
all quantum massless fields with helicity r ≥ 1. This was shown over 40 years ago [47].
Consult [48] in this respect as well.

3.2. Reassessing the Okubo–Marshak Argument

Marshak was very open to topological and differential-geometric constructions in QFT,
and actually Chapter 10 of his book [40], particularly Section 10.3 and Subsection 10.3.c, is
still a very good place to learn about instantons and “vacuum tunneling” into topologically
inequivalent vacua, apparently leading to the degenerate θ-vacuum—the “strong CP
problem”—since the neutron’s electric dipole moment is vanishingly small and, according
to some, to the “axion”.

The steps to the claim of existence of this problem are well known. In the Euclidean set-
ting, first, the finiteness of the classical action functional of course requires lim|x|↑∞ Fµν(x) = 0,
for which it is enough to demand that lim|x|↑∞ Aµ(x)→ U†(x) ∂µU(x). It is then said that
A is “pure gauge”. By using an A0 gauge, a winding number n is related directly to the
Euclidean action; in fact, one is dealing with the homotopy group of the three-dimensional
sphere, which is the group of integer numbers. The next step is to define the vacuum states
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in Minkowski space in such a way that instantons become “tunneling events” between two
different Minkowski vacua |m〉, |m′〉 with respective winding numbers m, m′ satisfying
m′ −m = n. Then, it is argued that the “true vacuum” is of the form |θ〉 = ∑m e−imθ |m〉
with 〈θ′ | θ〉 = 2πδ(θ − θ′), and the value of θ is anyone’s guess. This is aptly described by
Marshak in Subsection 10.3.c of [40].

Nevertheless, he came to regard the axion hypothesis as a bridge too far. In [2], it
was rigorously proved that the BRS charge “kills” the physical vacuum, which if cyclic
must be unique. However, that charge and the antiunitary operator for CPT invariance
commute, and this obviously demands a zero (or π) value for the θ-parameter of the
instanton makeup [1]. One could contend that the θ-vacua are non-normalizable (a sign of
trouble in itself) and that the physical vacuum is a superposition of them. However, by
means of a simple procedure, Okubo and Marshak showed how in that case CPT invariance
still guarantees the experimentally measurable value of θ to be zero.

The existence of the original “visible” axion had been already disallowed by exper-
iment and observation [49] by the time of the writing of [40], leading to a succession
of “invisible” axions, that must be “super-light”, but still face experimental limitations.
Marshak concludes: “It does seem that the odds of finding the ‘invisible’ axion are rapidly
diminishing and that the incentive to carry on the ingenious searches for the ‘invisible’
axions is fueled more by astrophysical and cosmological interest than by any hope of
salvaging the Peccei–Quinn-type solution of the ‘strong CP problem’ in QCD.” This rings
even truer 29 years later.

Making a contention to the same purpose in SLF theory is straightforward. The string-
localized vector potentials live on Hilbert space and act cyclically on the vacuum. In fact,
every local subalgebra of operators enjoys this property (this is part of the Reeh–Schlieder
property [50]). Therefore, θ-vacua are not allowed.

In plainer language: Fµν(x) ↓ 0 at spatial infinity implies Aµ(x, e) ↓ 0. Thus, only
the m = 0 vacuum (so to speak) occurs: there are no instantons, and no θ-vacua, and the
so-called strong CP problem is solved. The moral of this part of the story is that quantum
field theory should stand on its own two feet, rather than on classical crutches.

3.3. Coda

The “strong CP problem” and the axion ideas have undergone mutations from the
time of their inception to the present day. The relations of the present-day “invisible” axion
with the UA(1) anomaly remain murky; for a recent review of the latter, consult [51]. The
contemporary main selling point is still the “axiverse”; in other words, the search for the
axion is nowadays essentially model-free. Absence of evidence is not evidence of absence,
to be sure, and so the hunting for ALPs is bound to go on [52].

A weak point of most analyses on the present subject is that confinement is not taken
into account. However, it does appear to be inimical to the violation of CP invariance [53].
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Appendix A. Time Ordering Outside the String Diagonal

For a vertex coupling S1 of the form (12), we show S2 := T
(
S1(x, e1, e2)S1(x′, e′1, e′2)

)
is fixed outside the string diagonal D2 from (10) by the causal factorization property

T(S1S′1) = S1S′1 or S′1S1 , (A1)

depending on the time ordering of the respective localization regions.
In [33], the corresponding statement was shown for the case of first-degree string-

localized fields by “chopping” the strings, and it was indicated why the construction runs
into difficulties for higher-degree Wick polynomials. In the present case, we are fortunate
that the relevant Wick products are just ordinary products (see (A4)), and we are back to
the first-degree case. We present the argument in detail.

Let (x, e1, e2; x′, e′1, e′2) ∈ D2 with e1 6= e2, e′1 6= e′2. The localization region of S1(x, e1, e2)
consists of the two strings x +R+ek, each of which is chopped into a small compact “head”
Rk containing the vertex x and an infinite “tail” Sk:

x +R+ek = Rk ∪ Sk, where Rk := x + [0, sk] ek, Sk := x + [sk, ∞) ek . (A2)

Accordingly, the string-localized potential decomposes as Aµ(x, e1) = AH
µ (x, e1)+ AT

µ(x, e1),
where AH

µ is localized in the compact “head” R1 and AT
µ in the “tail” S1. The same is true

for Aµ(x, e2). Then, the vertex coupling S1 is a linear combination of four terms:

S1 = SHH
1 + SHT

1 + STH
1 + STT

1 , SKL
1 :=

g
2

fabc :AK
µa(e1)AL

νb(e2)Fµν
c : . (A3)

The terms STH
1 and STT

1 can be written as

STH
1 =

g
2

fabc AT
µa(e1) :AH

νb(e2)Fµν
c : , STT

1 =
g
2

fabc AT
µa(e1) AT

νb(e2)Fµν
c (A4)

and similarly for SHT
1 . We have taken AT

µa(e1) and AT
νb(e2) out of the Wick product; this

can be done because all contractions between Aµa, Aνb and Fµν
c are zero since the indices

a, b, c are distinct by the skew-symmetry of fabc.
The localization regions of these terms are as follows. The operator product in STT

1
is the ordinary product of three linear fields: one localized in the string S1, another in S2
and a third at x. STH

1 is the product of a linear field localized in the string S1 and a Wick
product localized in the compact interval R2 that can be made arbitrarily small around x.
Similarly for SHT

1 . The term SHH
1 is a Wick product localized in R1 ∪R2 which also can be

made arbitrarily small around x.
We decompose S1(x′, e′1, e′2) in like manner. Then, the second order S2 is a sum of terms

of the form T
[
SKL

1 (e1, e2) SK′L′
1 (e′1, e′2)

]
, where the operator in brackets is the product of

string-localized linear fields and (almost) point-localized Wick products. By our hypothesis
that e1 6= e2 and e′1 6= e′2, their localization regions are mutually disjoint. By Proposition 2.2
of [33], such regions can be chronologically ordered, eventually after chopping them into
segments, and the corresponding operators can be time-ordered according to (A1). As
in the proof of in Proposition 3.2 of [33], one sees that the result is Wick’s expansion,
where the time-ordering appears only within two-point functions (in contrast to the case
considered in [33], here there are products of time-ordered two-point functions, but these
are well-defined since they have disjoint arguments). Again by the skew-symmetry of
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fabc, only contractions between fields localized on e- and e′-strings occur. Therefore, the
restriction e1 6= e2 and e′1 6= e′2 can be removed. The proof is complete.
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