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Abstract: This article deals with symmetrical data that can be modelled based on Gaussian distri-
bution. We consider a class of partially linear additive spatial autoregressive (PLASAR) models for
spatial data. We develop a Bayesian free-knot splines approach to approximate the nonparametric
functions. It can be performed to facilitate efficient Markov chain Monte Carlo (MCMC) tools to de-
sign a Gibbs sampler to explore the full conditional posterior distributions and analyze the PLASAR
models. In order to acquire a rapidly-convergent algorithm, a modified Bayesian free-knot splines
approach incorporated with powerful MCMC techniques is employed. The Bayesian estimator
(BE) method is more computationally efficient than the generalized method of moments estimator
(GMME) and thus capable of handling large scales of spatial data. The performance of the PLASAR
model and methodology is illustrated by a simulation, and the model is used to analyze a Sydney
real estate dataset.

Keywords: spatial data; partially linear additive model spatial autoregressive; free-knot splines;
MCMC tools; Gibbs sampler

1. Introduction

Spatial econometrics models are frequently proposed to analyze spatial data that
arise in many disciplines such as urban, real estate, public, agricultural, environmental
economics and industrial organizations. These models address relationships across geo-
graphic observations caused by spatial autocorrelation in cross-sectional or longitudinal
data. Spatial econometrics models have a long history in both econometrics and statistics.
Early developments and relevant surveys can be found in Cliff and Ord [1], Anselin [2],
Case [3], Cressie [4], LeSage [5,6], Anselin and Bera [7].

Among spatial econometrics models, spatial autoregressive (SAR) models [1] have
gained much attention by theoretical econometricians and applied researchers. Many
approaches have been used to estimate the SAR models, which include the maximum
likelihood estimator (MLE) [8], the generalized method of moment estimator (GMME) [9],
and the quasi-maximum likelihood estimator (QMLE) [10]. However, these methods
mainly focused on parametric SAR models, which are frequently assumed to be linear, few
researchers have explicitly examined non-/semi-parametric SAR models. Indeed, it has
been confirmed that a lot of economic variables exhibit highly nonlinear relationships on
the dependent variables [11–13]. Neglecting the latent nonlinear functional forms often
results in an inconsistent estimation of the parameters and misleading conclusions [14].

Although many empirical studies and econometric analyses applying the paramet-
ric SAR models ignore latent nonlinear relationships, several nonlinear forms [15–18]
have been considered. Nevertheless, the nonlinear parametric SAR models can at most
supply certain protection against some specific nonlinear functional forms. Since the
nonlinear function is unknown, it is unavoidable to assume the risk of misspecifying the
nonlinear function. As nonparametric techniques advance, the advantage of nonpara-
metric SAR models are often used to model nonlinear economic relationships. However,
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nonparametric components are only suitable for low dimensional covariates, otherwise
the “curse of dimensionality” [19] problem is often encountered. Some nonparametric
dimension-reduction tools have been considered to address this problem, for example,
single-index model [20], partially linear model [21], the additive model [22], varying-
coefficient model [23], among others. In recent years, many researchers have started using
the advantage of semiparametric modeling in spatial econometrics. For example, Su and
Jin [14] proposed the QMLE for semiparametric partially linear SAR models; Su [24]
discussed GMME of semiparametric SAR models; Chen et al. [25] studied a Bayesian
method for the semiparametric SAR models; Wei and Sun [26] considered GMME for the
space-varying coefficients of a spatial model; Krisztin [27] investigated a novel Bayesian
semiparametric estimation for the penalized spline SAR models; Krisztin [28] presented
a genetic-algorithms for a nonlinear SAR model; Du et al. [29] established GMME of
PLASAR models; Chen and Cheng [30] developed a GMME of a partially linear additive
spatial error model.

Semiparametric models have received much attention from both econometrics and
statistics owing to the explanatory of the parameters and the flexibility of nonparameters.
The partially linear additive (PLA) model is probably one of the most popular among the
various semiparametric models. As they can not only avoid the “curse of dimensionality”
phenomenon encountered in nonparametric regression but also provide a more flexible
structure than the generalized linear models. As a result, the PLA models provide good
equilibrium between flexibility of the additive model and interpretation of the partially
linear model. Many researchers have considered many approaches to analyze such models:
local linear method [31], spline estimation [32–34], quantile regression [35–38], variable
selection [39–42], etc. Characterizing the flexibility of nonparametric forms and attempting
to explain the potential nonlinearity of PLASAR models are unique challenges faced by
analysts of spatial data.

Combining PLA models with SAR models, we consider a class of PLASAR models
for spatial data to capture the linear and nonlinear effects between the related variables in
addition to spatial dependence between the neighbors in this article. We specify the prior
of all unknown parameters, which led to a proper posterior distribution. The posterior
summaries are obtained via MCMC tools. We develop an improved Bayesian method with
free-knot splines [43–51], along with MCMC techniques to estimate unknown parameters,
use a spline approach to approximate the nonparametric functions, and design a Gibbs
sampler to explore the joint posterior distributions. Treating the number and the positions of
knots as random variables can make the model spatially adaptive is an attractive feature of
Bayesian free-knot splines [45,46]. In order to improve the rapidly-convergent performance
of our algorithm, we further modify the movement step of Bayesian free-knots splines such
that all knots can be repositioned in each iteration instead of only one knot moving. Finally,
the performance of the PLASAR model and methodology is illustrated by a simulation,
and they are used to analyze real data.

The rest of this paper is organized as follows. In Section 2, we propose the PLASAR
model to analyze spatial data and discuss the proposed model’s identifiability condition,
then acquire the likelihood function by fitting the nonparametric functions with a Bayesian
free-knots splines approach. To provide a Bayesian framework, we specify the priors for the
unknown parameters, derive the full conditional posterior distributions of the unknown
parameters, modify the movement step of the Bayesian free-knots splines approach to
accelerate the convergent performance of our algorithm, and describe the detailed sam-
pling algorithm in Section 3. The applicability and practicality of the PLASA model and
methodology for spatial data are evaluated by a simulation study, and the model is used to
analyze a real dataset in Section 4. Section 5 concludes the paper with a summary.
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2. Methodology
2.1. Model

We begin with the PLASAR model that is defined as

yi = ρ
n

∑
l=1

wilyl + xT
i α +

p

∑
j=1

gj(zij) + εi, i = 1, . . . , n, (1)

where xi = (xi1, . . . , xiq)
T and zi = (zi1, . . . , zip)

T are covariate vectors, yi is a response vari-
able, wil is a specified constant spatial weight, gj(·) is unknown univariate nonparametric
function for j = 1, . . . , p, α = (α1, . . . , αq)T is q× 1 vector of the unknown parameters, the
unknown spatial parameter ρ reflects the spatial autocorrelation between the neighbors
with stability condition |ρ| < 1, and εi’s are mutually independent and identically dis-
tributed normal with zero mean and variance σ2. In order to ensure model identifiability
of the nonparametric function, it is often assumed that the condition E[gj(zj)] = 0 for
j = 1, . . . , p.

2.2. Likelihood

We plan on approximating unknown functions gj(·) in (1) by free-knot splines for
j = 1, . . . , p. Assuming that gj(·) has a polynomial spline of degree mj with k j order interior
knots ξ j = (ξ j1, . . . , ξ jk)

T with aj < ξ j1 < · · · < ξ jk < bj, i.e.,

gj(uj) =

Kj

∑
l=1

Bjl(uj)β jl = BT
j (uj)β j uj ∈ [aj, bj], (2)

where Kj = 1 + mj + k j, the vector of spline basis Bj(uj) = (Bj1(uj), . . . , BjKj(uj))
T is

determined by the knot vector ξ j, the spline coefficients β j = (β j1, . . . , β jKj)
T is a Kj × 1

vector, and
aj = min

1≤i≤n
{zij} and bj = max

1≤i≤n
{zij} (3)

are boundary knots for j = 1, . . . , p. Let Bj = (B1(z1j), . . . , Bn(znj))
T and 1 = (1, . . . , 1)T .

To achieve identification, we set ∑n
i=1 ∑

Kj
l=1 Bjl(zij)β jl = 0, which is written as 1TBjβ j = 0.

Denote Qj = 1TBj, then the constraint becomes Qjβ j = 0.
It follows that the model (1) can be equivalent to

yi = ρ
n

∑
l=1

wilyj + xT
i α +

p

∑
j=1

BT
j (uj)β j + εi = ρ

n

∑
l=1

wilyj + xT
i α + BT

i (u)β + εi, i = 1, . . . , n,

where β = (βT
1 , . . . , βT

p )
T and BT

i (u) = (BT
1 (u1), . . . , BT

p (up))T . Then the matrix form of the
model (1) can be represented as

y = ρWy + xTα + BT(u)β + ε,

where x = (x1, . . . , xn)T , y = (y1, . . . , yn)T , ε = (ε1, . . . , εn)T , W = (wil) is an n × n
specified constant spatial wight matrix, K = ∑

p
j=1 Kj, and BT(u) is an n× K matrix with

BT
i (u) as its ith row.

The likelihood function for the PLASAR model is proportional to
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L(α, β, k, ξ, σ2, ρ|y, x, z)

∝ σ−n|In − ρW| exp
{
− 1

2σ2 [y− ρWy− xTα− BT(u)β]T [y− ρWy− xα− BT(u)β]

}
= σ−n|A(ρ)| exp

{
− 1

2σ2 [A(ρ)y− xα− BT(u)β]T [A(ρ)y− xTα− BT(u)β]

}
(4)

.
= σ−n|A(ρ)| exp

{
− 1

2σ2 [A(ρ)y−B(x, u)θ]T [A(ρ)y−B(x, u)θ]
}

,

where x = (x1, . . . , xn)T , z = (z1, . . . , zn)T , θ = (αT , βT)T is (q + K)× 1 vector of regression
coefficient, B(x, u) = (x, BT(u)) is an n× (q + K) matrix, A(ρ) = In − ρW, and In is an
identity matrix of order n.

3. Bayesian Estimation

In this section, we consider a Bayesian free-knots splines approach with MCMC
techniques to analyze the PLASAR model. We begin with the specification of the prior
distributions of all unknown parameters, then the derivations of posterior distributions
and the narration of the detailed sampling scheme for all of the unknown parameters.
Meanwhile, we modify the movement step of Bayesian free-knots splines approach so that
all the knots can be repositioned in each iteration.

3.1. Priors

As we will consider a Bayesian approach with free-knots splines to analyze the
PLASAR models, all unknown parameters are assigned prior distributions. Note that
besides regression coefficient vectors θ, the spatial autocorrelation coefficient ρ and the
quantities σ2, the number of knots k = (kT

1 , . . . , kT
p )

T and location of knots ξ = (ξT
1 , . . . , ξT

p )
T

also need prior distributions in the sense that they are random variables in the Bayesian
approach with free-knot splines. We avoid the use of improper prior distributions to
prevent improper joint posterior distributions.

For j = 1, . . . , p, we followed Poon and Wang [49] by puting a Poisson prior with
mean λj for number k j of the knots

π(k j) =
λkj

k j!
e−λj

and a conditional flat prior for knot location ξ j

π(ξ j | k j) =
k j!

(bj − aj)
kj

∆j,

where ∆j = I
{

aj = ξ j0 < ξ j1 < · · · < ξ jkj
< ξ j,kj+1

= bj

}
, aj and bj are defined in (3).

We set a conjugate normal inverse-gamma prior for the unknown parameters (θ, σ2),
which is a composite of inverse-Gamma prior distributions for σ2

π(σ2) ∝ (σ2)−
r0
2 −1 exp

{
−

s2
0

2σ2

}

where r0 and s2
0 are hyperparameters; a conditional normal prior distribution with mean

vector 0 and covariance matrix τ0σ2 Iq for α

π(α|σ2, τ0) ∝ (2πτ0σ2)−
q
2 exp

{
− αTα

2τ0σ2

}
,
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and a conditional normal prior distribution with mean vector 0 and covariance matrix
τjσ

2 IKj for β j with the constraint Qjβ j = 0 as follows:

π(β j|k j, ξ j, τj, σ2) ∝ (2πτjσ
2)−

Kj
2 exp

{
−

βT
j β j

2τjσ2

}
I{Qjβ j = 0}

for j = 1, . . . , p. In order to improve the robustness of our method, we choose an inverse-
gamma prior

π(τ0) ∝ τ
− rτα0

2 −1
0 exp

{
−

s2
τα0

2τ0

}
and π(τj) ∝ τ

−
rτβj0

2 −1
j exp

− s2
τβj0

2τj


for j = 0, 1, . . . , p, where rτ0 and s2

τ0
are pre-specified hyper-parameters. Throughout this

article we set r0 = s2
0 = 1 to obtain a Cauchy distribution of σ2 and assign rτα0 = rτβj0

= 1

and s2
τα0

= s2
τβj0

= 0.005 to acquire a highly dispersed inverse gamma prior on τj for

j = 0, 1, . . . , p.
In addition, we follow LeSage and Pace [52] by eliciting a uniform prior U(λ−1

min, λ−1
max)

for the spatial autocorrelation coefficient ρ

π(ρ) ∝ 1,

where λmax and λmin are the maximum and minimum eigenvalues of the standardized
spatial weight matrix W, respectively.

Therefore, the joint priors of all of the quantities are defined as

π(ρ, α, β, k, ξ, σ2, τ) = π(ρ)π(σ2)π(τ0)π(α|σ2, τ0)
p

∏
i=1

π(β j|k j, ξ j, τj, σ2)π(k j)π(ξ j|k j)π(τj), (5)

where τ = (τ0, τ1, . . . , τp) is a hyperparameters vector. For computational convenience, we
have treated the hyperparameter vector τ as a unknown parameter vector.

3.2. The Full Conditional Posterior Distributions of Unknown Quantities

Since the joint posterior distribution of the quantities is very complicated, it is dif-
ficult to generate samples directly. To solve this problem, we derive the full conditional
posterior distributions of unknown quantities, modify the movement step of Bayesian
free-knots splines to speed up the convergence, and describe the detailed sampling method
in our algorithm.

It follows from the likelihood function (4) and the joint priors (5) that the conditional
posterior distribution of ρ given the remaining unknown parameters is proportional to

p(ρ|y, x, z, α, β, k, ξ, σ2, τ)

∝ |A(ρ)| exp
{
− 1

2σ2 [A(ρ)y− xTα− BT(u)β]T [A(ρ)y− xTα− BT(u)β]

}
. (6)

It is not easy to directly simulate from (6), which does not have the form of any standard
density function. Therefore, we prefer the Metropolis–Hastings algorithm [53,54] to solve
this difficulty: draw ρ∗ from a truncated Cauchy distribution with location ρ and scale σρ

on (−1, 1), where σρ is treated as a tuning parameter; and accept the candidate value ρ∗

with probability

min
{

1,
p(ρ∗|x, y, z, α, β, k, ξ, σ2, τ)

p(ρ|x, y, z, α, β, k, ξ, σ2, τ)
× Cρ

}
,

where
Cρ =

arctan[(1− ρ)/σρ]− arctan[(−1− ρ)/σρ]

arctan[(1− ρ∗)/σρ]− arctan[(−1− ρ∗)/σρ]
.
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From likelihood function (4) and priors (5), we can see that given (ρ, τ), the joint
posterior of (α, β, k, ξ, σ2) is given by

p(α, β, k, ξ, σ2|x, y, z, ρ, τ)

∝ σ−n exp
{
− 1

2σ2 [A(ρ)y− xTα− BT(u)β]T [A(ρ)y− xTα− BT(u)β]

}

×σ−r0−q−2 exp

{
−

s2
0

2σ2 −
αTα

2τ0σ2

}
×

p

∏
j=1

(
λj

bj − aj

)kj

∆j

×
p

∏
j=1

(2πτjσ
2)−

Kj
2 exp

{
−

βT
j β j

2τjσ2

}
I{Qjβ j = 0}

∝ σ−n−r0−K−q−2 exp
{
− 1

2σ2 [A(ρ)y−B(x, u)θ]T [A(ρ)y−B(x, u)θ]
}

(7)

× exp

{
−

s2
0

2σ2 −
θTdiag{τ−1}θ

2σ2

}
I{Qβ = 0} ×

p

∏
j=1

(
λjτj

bj − aj

)kj

∆j

∝ |Ξ|−
1
2
(

S2 + s2
0

)− n+r0
2

p

∏
j=1

λjτ
− 1

2
j

bj − aj


kj

∆j

×
(

S2 + s2
0

) n+r0
2

(σ2)−
n+r0

2 −1 exp

{
−

S2 + s2
0

2σ2

}

×(2πσ2)−
K+q

2 |Ξ|
1
2 exp

{
− 1

2σ2 (θ − θ̂)TΞ(θ − θ̂)

}
I{Qβ = 0},

where θ = (αT , βT)T , diag{τ−1} = diag{τ−1
0 Iq, τ−1

1 IK1 , . . . , τ−1
p IKp}, Q = (Q1, . . . , Qp),

Ξ = diag{τ−1} +BT(x, u)B(x, u), θ̂ = Ξ−1BT(x, u)A(ρ)y, and S2 = yT A(ρ)T A(ρ)y −
θ̂TΞθ̂, which gives rise to a marginal posterior distribution

p(k, ξ|y, x, z, ρ, τ) ∝ |Ξ|−
1
2
(

S2 + s2
0

)− n+r0
2

p

∏
j=1

λjτ
− 1

2
j

bj − aj


kj

∆j. (8)

It is easy to see from (8) that

p(k j, ξ j|y, x, z, ρ, α, k−j, ξ−j, β−j, τ) ∝
∣∣Ξj
∣∣− 1

2
(

S2
j + s2

0

)− n+r0
2

λjτ
− 1

2
j

bj − aj


kj

∆j, j = 1, . . . , p. (9)

where Ξj = τ−1
j IKj + Bj(uj)BT

j (uj), y?j = A(ρ)y− xTα− BT
−j(u−j)β−j, β̂ j = Ξ−1

j Bj(uj)y?j ,

S2
j = y?T

j y?j − β̂T
j Ξj β̂ j and k−j, ξ−j, β−j are k, ξ, β with k j, ξ j, β j excluded, respectively.

It follows from (7) that the approach of composition [55] can be used to generate σ2

from a conditional inverse-gamma posterior

p(σ2|y, x, z, ρ, α, k, ξ, β, τ) ∝
(

S2 + s2
0

) n+r0
2

(σ2)−
n+r0

2 −1 exp

{
−

S2 + s2
0

2σ2

}
(10)

and to sample θ from a conditional normal posterior

p(θ|y, x, z, ρ, k, ξ, σ2, τ) ∝ (2πσ2)−
K+q

2 |Ξ|
1
2 exp

{
− 1

2σ2 (θ − θ̂)TΞ(θ − θ̂)

}
I{Qβ = 0}. (11)
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It follows from (11) that

p(α|y, x, z, ρ, k, ξ, β, σ2, τ) ∝ (2πσ2)−
q
2 |Ξ0|

1
2 exp

{
− 1

2σ2 (α− α̂)TΞ0(α− α̂)

}
, (12)

where Ξ0 = τ−1
0 Iq + xTx, y?0 = A(ρ)y− BT(u)β, α̂ = Ξ−1

0 xTy?0 , and

p(β j|y, x, z, ρ, α, k, ξ, β−j, σ2, τ) ∝ (2πσ2)−
Kj
2
∣∣Ξj
∣∣ 1

2 exp
{
− 1

2σ2 (β j − β̂ j)
TΞj(β j − β̂ j)

}
I{Qjβ j = 0}, (13)

for j = 1, . . . , p. To achieve identification, we focus on the constraint Qjβ j = 0, which
should be imposed on β j. According to Panagiotelis and Smith [56], drawing β j from (13)
is equivalent to drawing β?

j from a normal distribution with mean vector β̂ j and covariance
matrix Ξj, then β?

j is transformed to β j by

β j = β?
j − Ξ∗j QT

j (QjΞ∗j QT
j )
−1Qjβ

?
j . (14)

As it is convenient to sample (σ2, α, β) from the conditional posterior (10), (12) and (13),
we concentrate on sampling from (9). A sampling method is applied, in which the original
Bayesian free-knots spline [43–51] is used as a reversible-jump sampler [57]. It includes
three types of movement: the deletion, the addition and the movement of only one knot [48].
We keep the first two move-types unchanged but improve the movement step through the
hit-and-run algorithm [58] so that all the knots can be repositioned in each iteration instead
of only one knot: for j = 1, . . . , p select a k j dimension direction vector cj = (cj1, . . . , cjk)

T

randomly, and define

Ωj =
{

ωj : ξ∗j = ξ j + ωcj with aj < ξ∗ji < bj, i = 1, . . . , k j

}
=
(
ωj1, ωj2

)
;

generate ωj from a Cauchy distribution with location 0 and scale σξ j truncated on
(
ωj1, ωj2

)
,

where σξ j acts as a tuning parameter; assign ξ∗j = ξ j + ωcj and reorder all of the knots. The
proposed number and positions of knots are finally accepted with probability

min

1, Aj

 ∣∣Ξj
∣∣∣∣∣Ξ∗j ∣∣∣
 1

2

×
(

S2
j + s2

0

S∗2j + s2
0

) n+r0
2

,

where Ξ∗j and S∗2j correspond to Ξj and S2
j in the candidate posterior, respectively, and

the factor

Aj =
arctan(ωj2/σξ j)− arctan(ωj1/σξ j)

arctan[(ωj2 −ωj)/σξ j ]− arctan[(ωj1 −ωj)/σξ j ]
.

It is evident that the posterior of hyperparameter τj is a conditional inverse-gamma
distribution

p(τ0|σ2, α) ∝ τ−
q+rτα0

2 −1 exp

{
−

s2
τα0

+ αTα/σ2

2τ0

}
(15)

and

p(τj|β j, k j, ξ j, σ2) ∝ τ
−

Kj+rτβj0
2 −1

j exp

− s2
τβj0

+ βT
j β j/σ2

2τj

, j = 1, . . . , p, (16)

which can be simulated directly from (15) and (16).

3.3. Sampling Scheme

The Bayesian estimate of Θ = {ρ, α, k, ξ, β, σ2, τ} is obtained by observations generated
from the posterior of all unknown quantities by running the Gibbs sampler. Moreover,
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simulating β j from (13) is challenging and nonstandard, and the parameter space on
the constraint Qjβ j = 0 for j = 1, . . . , p. According to Panagiotelis and Smith [56],
it is equivalent that β?

j is transformed to β j by (14). The MCMC sampling algorithm
(Algorithm 1) is described in the following manner.

Algorithm 1 The MCMC sampling algorithm.
Input: Samples {(xi, yi, zi)}i=1,...,n.
Initialization: Initialize Θ(0) = {ρ(0), α(0), k(0), ξ(0), β(0), σ2(0), τ(0)} in the MCMC
algorithm, where the unknown parameters are generated from the priors,
respectively.
MCMC iterations: Given the current state of Θ(t−1) successively, draw Θ(t) from
p(Θ|x, y, z), for t = 1, 2, 3, . . . The detailed MCMC sampling cycles are outlined in
the following manner.
(a) Generate ρ(t) from p(ρ|x, y, z, θ(t−1), α(t−1), k(t−1), ξ(t−1), σ2(t−1), τ(t−1));
(b) Generate σ2(t) from p(σ2|x, y, z, α(t), k(t), ξ(t), ρ(t), τ(t−1));
(c) Generate α(t) from p(α|x, y, z, ρ(t), k(t−1), ξ(t−1), β(t−1), τ(t−1));
(d) Generate (k(t)j , ξ

(t)
j ) from p(k(t)j , ξ

(t)
j |x, y, z, ρ(t), k(t−1)

−j , ξ
(t−1)
−j , β

(t−1)
−j τ(t−1)) for

j = 1, . . . , p;
(e) Generate β

(t)
j from p(β

(t)
j |x, y, z, ρ(t), α(t), k(t), ξ(t), β

(t−1)
−j , σ2(t), τ(t−1)),

and adjust β
(t)
j according to (14) for j = 1, . . . , p;

(f) Generate τ
(t)
j from p(τj|k(t), ξ(t), β

(t)
j , σ2(t)) for j = 1, . . . , p;

(g) Generate τ
(t)
0 from p(τ0|α(t), σ2(t)).

Output: The MCMC sampling from the conditional posteriors of {Θ(t)}t=1,2,3,....

4. Empirical Illustrations

We demonstrate the performance of the PLSISAR model and methodology by a
simulation and use them to analyze a real data. We set the Rook weight matrix [2] and
the Case weight matrix [3] to examine the influence of the spatial weight matrix W. The
Rook weight matrix is sampled from Rook contiguity in [59] by randomly allocating the n
spatial units on a lattice of m×m (≥ n) squares, finding the neighbors for the unit, and
then row normalizing. Meanwhile, we generated the Case weight matrix from the spatial
scenario W = Ir

⊗
Tm in [3] with m members in a district and r districts, and each neighbor

of a member in each district given equal weight [10], where
⊗

is the Kronecker product,
Tm = (1/(m− 1))(1m1T

m − Im) and 1m = (1, . . . , 1)T is an m-dimensional vector.

4.1. Simulation

Consider the following PLSISAR models:

yi = ρ
n

∑
l=1

wilyl + xT
i α + g1(zi1) + g2(zi2) + εi, i = 1, . . . , n,

where xi = (xi1, xi2)
T follows a bivariate standard normal distribution, zi = (zi1, zi2)

T

is a bivariate vector, where zi1 and zi2 are mutually independent and follow uniform
distributions on (−1, 1) and (0, 1), respectively. The nonparametric functions g1(z1) =
sin(πz1) and g2(z2) = 4z2(1 − z2

2) − 1, εi ∼ N(0, σ2), the parameters are assumed as
α = (1,−1)T and two cases of variance σ2 = {0.25, 0.75}, respectively. We consider
three different cases of spatial parameters ρ = {0.2, 0.5, 0.7}, which represent the spatial
dependence of the response from weak to strong. The sample size of the Case weight matrix
and the Rook weight matrix is (r, m) = {(20, 5), (80, 5)} and n = {100, 400}, respectively.

In our computation, we run each simulation with 1000 replications, adopt a quadratic
B-spline and set hyper-parameters (r0, s2

0, rτα0 , s2
τα0

) = (1, 1, 1, 0.005) and (rτβj0
, s2

τβj0
) =
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(1, 0.005) for j = 1, . . . , p. The initial state of the Markov chain of all unknown parameters
is selected as follows. All unknown parameters are sampled from the respective priors by
gradually decreasing or increasing the use of tuning parameters σρ and σξ j for j = 1, . . . , p
so that the acceptable rates are about 25%. For each replication, we generate 6000 sampled
values and then delete the first 2000 sampled values as a burn-in period by running our
MCMC sampling. Based on the last 4000 sampled values, we compute the corresponding
average of 1000 replications as the posterior mean (mean), the 95% posterior credible
intervals (95% CI), and standard error (SE). In addition, the standard derivations (SD) of
the estimated posterior mean are calculate to compare them with the mean of the estimated
posterior SE.

We evaluate the performance of nonparametric estimators by the integrated squared
bias (Bias), the root integrated mean squared errors (SSE), the mean absolute deviation
errors (MADE)

Bias(ĝj) =
∫ [

Eĝj(z)− gj(z)
]2dz, SSE(ĝj) =

{∫
E
[
ĝj(z)− gj(z)

]2dz
} 1

2
,

MADEj =
1

200

200

∑
i=1

∣∣ĝj(zji)− gj(zji)
∣∣ and MADE =

1
p

p

∑
j=1

MADEj

for j = 1, . . . , p, where mathematical expectations are estimated by their corresponding
empirical version, and the integrations are performed applying a Riemannian sum approx-
imation at 200 fixed grid points {zji}200

i=1 that are equally-spaced chosen from [aj, bj]. From

the model (1), the marginal effects are given by ∂y
∂xj

= (In − ρW)−1 Inαj for j = 1, . . . , q.
According to LeSage and Pace [52] suggestions, the mean of either the row sums or the
column sums of the non-diagonal elements is used as the indirect effects, the mean of the
diagonal elements is used as the direct effects, and the sum of the indirect and direct effects
is taken as the total effects.

To check the convergence of our algorithm, we run five Markov chains corresponding
to different starting values through the MCMC sampling algorithm to perform each replica-
tion. The sampled traces of some parameters and nonparametric functions on grid points
are displayed in Figure 1. It is obvious that the five parallel sequences mix quite well. We
compute the “potential scale reduction factor”

√
R̂ [60] for all unknown parameters and

nonparametric functions at 20 selected grid points. Figure 2 shows all the values of
√

R̂
against the iteration numbers. According to the suggestion of Gelman and Rubin [60], it is
easy to see that 2000 burn-in iterations are enough to make the MCMC algorithm converge
as all the values of

√
R̂ were less than 1.2.

The boxplots of the Bias values are displayed in Figure 3. Under the Rook weight
matrix, the medians of which are Bias1 = 0.0147 and Bias2 = 0.0104 for n = 100, and
Bias1 = 0.0039 and Bias2 = 0.0030 for n = 400, respectively. Under the Case weight matrix,
the medians of which are Bias1 = 0.0148 and Bias2 = 0.0104 for (r, m) = (20, 5), and
Bias1 = 0.0038 and Bias2 = 0.0030 for (r, m) = (80, 5), respectively. Figure 3 show the
boxplots of the SEE values. Under the Rook weight matrix, the medians are SSE1 = 0.2490
and SSE2 = 0.2271 for n = 100, and SSE1 = 0.1253 and SSE2 = 0.1151 for n = 400,
respectively. Under the Case weight matrix, the medians are SSE1 = 0.2495 and SSE2 =
0.2267 for (r, m) = (20, 5), and SSE1 = 0.1257 and SSE2 = 0.1154 for (r, m) = (80, 5),
respectively. The results show that the Bias values and the SEE values of the nonparametric
functions decrease with the increase in the sample size, indicating that the nonparametric
estimation is convergent. It is evident that the weight matrix of Case and Rook can obtain
a reasonable estimation effect.
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Figure 1. Trace plots of five parallel Markov chains with different starting values for some parameters and nonparametric
functions (only a replication with (r, m) = (80, 5) and (ρ, σ2) = (0.5, 0.25) is displayed).
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R̂ for simulation results (the case of (ρ, σ2) = (0.5, 0.25)).

0

0.01

0.02

0.03

0.04

0.05

0.06

’ ’

(a) Bias (n=100)

  
  
 

B
ia

s1

B
ia

s2

B
ia

s1

B
ia

s2

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

’ ’

(b) Bias (n=400)

  
  
 

B
ia

s1

B
ia

s2

B
ia

s1

B
ia

s2

0

0.1

0.2

0.3

0.4

’ ’

(c) SSE (n=100)

  
  

S
S

E
1

S
S

E
2

S
S

E
1

S
S

E
2

0

0.05

0.1

0.15

0.2

’ ’

(d) SSE (n=400)

  
  

S
S

E
1

S
S

E
2

S
S

E
1

S
S

E
2

Figure 3. The boxplots (a,b) display the integrated squared bias, the boxplots (c,d) display the root integrated mean squared
errors. (The two panels on the left are based on the Rook weight matrix, and the two panels on the right are based on the
Case weight matrix with (ρ, σ2) = (0.5, 0.25)).
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The estimation results are reported in Table 1. We observe that the mean values of all
estimators are very close to the corresponding true values, and the mean value of SE is close
to the respective SD. The results show that the parameter estimation and SE are precise.
Meanwhile, the larger the sample sizes under the same weight matrix, the more precise
the estimates are. The above experiences corresponding to different starting values have
been repeated, and the results are similar. It implies that the MCMC sampling works well.
Moreover, we find that the estimation effect of ρ with the Case weight matrix is slightly
better than that with Rook weight matrix under the same sample sizes. The possible main
reason is that the performance of the Case weight matrix is superior to the Rook weight
matrix under different variances σ2. In addition, the general pattern of estimates reported
in Table 1 is that all estimators impose a relatively bigger bias on the total effect when the
same sample sizes have a strong positive spatial dependence. Figure 4 depicts the fitted
functions, together with its 95% CI from a typical sample with ρ = 0.5 and σ2 = 0.25. The
typical sample is selected in such a way that the SSE values are equal to the median in the
1000 replications. It is obvious that the fitted nonparametric functions are improving with
increasing the sample size.
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Figure 4. The true functions (solid lines), the fitted functions (dotted lines) and their 95% CI (dot-dashed lines) for a
typical sample (the left panel based on the Rook weight matrix and the right panel based on the Case weight matrix with
(ρ, σ2) = (0.5, 0.25)).
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Table 1. Simulation results of parametric estimation.

Parameter n
Rook Weight Matrix

(r, m)
Case Weight Matrix

Mean SE SD 95% CI Mean SE SD 95% CI

ρ = 0.2000 100 0.2018 0.0552 0.0492 (0.0929, 0.3099) (20, 5) 0.1987 0.0512 0.0473 (0.0973, 0.2990)
α1 = 1.0000 0.9930 0.0649 0.0623 (0.8655, 1.1203) 0.9930 0.0648 0.0620 (0.8656, 1.1202)

α2 = −1.0000 −0.9956 0.0650 0.0633 (−1.1231,−0.8680) −0.9955 0.0650 0.0632 (−1.1202,−0.8679)
σ2 = 0.2500 0.2716 0.0447 0.0381 (0.1980, 0.3723) 0.2714 0.0447 0.0382 (0.1979, 0.3720)
Total effect
x1 = 1.2500 1.2544 0.1188 0.1064 (1.0378, 1.5042) 1.2487 0.1134 0.1083 (1.0340, 1.4853)

x2 = −1.2500 −1.2581 0.1189 0.1115 (−1.5083,−1.0414) −1.2516 0.1136 0.1057 (−1.4886,−1.0424)

ρ = 0.5000 0.5000 0.0462 0.0414 (0.4081, 0.5896) 0.4986 0.0344 0.0318 (0.4304, 0.5655)
α1 = 1.0000 0.9930 0.0652 0.0627 (0.8650, 1.1210) 0.9931 0.0652 0.0620 (0.8651, 1.1211)

α2 = −1.0000 −0.9957 0.0653 0.0633 (−1.1239,−0.8674) −0.9957 0.0653 0.0635 (−1.1239,−0.8676)
σ2 = 0.2500 0.2719 0.0450 0.0383 (0.1980, 0.3731) 0.2717 0.0453 0.0384 (0.1978, 0.3728)
Total effect
x1 = 2.0000 2.0153 0.2283 0.1971 (1.6229, 2.4969) 1.9972 0.1818 0.1734 (1.6633, 2.3758)

x2 = −2.0000 −2.0215 0.2311 0.2053 (−2.5037,−1.6281) −2.0018 0.1821 0.1687 (−2.3817,−1.6673)

ρ = 0.7000 0.6994 0.0348 0.0319 (0.6300, 0.7667) 0.6988 0.0217 0.0200 (0.6557, 0.7409)
α1 = 1.0000 0.9932 0.0655 0.0629 (0.8648, 1.1219) 0.9934 0.0656 0.0621 (0.8648, 1.1222)

α2 = −1.0000 −0.9959 0.0655 0.0635 (−1.1245,−0.8673) −0.9934 0.0656 0.0639 (−1.1249,−0.8671)
σ2 = 0.2500 0.2721 0.0451 0.0385 (0.1981, 0.3738) 0.2718 0.0451 0.0386 (0.1977, 0.3736)
Total effect
x1 = 3.3333 3.3823 0.4428 0.3911 (2.6360, 4.3697) 3.3273 0.3034 0.2895 (2.7702, 3.9615)

x2 = −3.3333 −3.3924 0.4434 0.4034 (−4.3811,−2.6451) −3.3346 0.3037 0.2810 (−3.9697,−2.7772)

ρ = 0.2000 100 0.1982 0.0766 0.0750 (0.0469, 0.3471) (20, 5) 0.1914 0.0713 0.0738 (0.0506, 0.3293)
α1 = 1.0000 0.9839 0.1108 0.1075 (0.7663, 1.2011) 0.9840 0.1107 0.1071 (0.7665, 1.2013)

α2 = −1.0000 −0.9882 0.1108 0.1095 (−1.2059,−0.7708) −0.9878 0.1108 0.1093 (−1.2050,−0.7701)
σ2 = 0.7500 0.8234 0.1385 0.1386 (0.5957, 1.1359) 0.8230 0.1393 0.1391 (0.5955, 1.1353)
Total effect
x1 = 1.2500 1.2487 0.1858 0.1743 (0.9164, 1.6442) 1.2369 0.1767 0.1771 (0.9169, 1.6083)

x2 = −1.2500 −1.2552 0.1865 0.1841 (−1.6525,−0.9221) −1.2408 0.1771 0.1734 (−1.6130,−0.9189)
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Table 1. Cont.

Parameter n
Rook Weight Matrix

(r, m)
Case Weight Matrix

Mean SE SD 95% CI Mean SE SD 95% CI

ρ = 0.5000 0.4947 0.0637 0.0630 (0.3676, 0.6170) 0.4934 0.0480 0.0498 (0.3975, 0.5853)
α1 = 1.0000 0.9847 0.1112 0.1082 (0.7667, 1.2031) 0.9849 0.1112 0.1069 (0.7667, 1.2033)

α2 = −1.0000 −0.9890 0.1112 0.1095 (−1.2073,−0.7707) −0.9887 0.1113 0.1097 (−1.2070,−0.7703)
σ2 = 0.7500 0.8250 0.1398 0.1402 (0.5955, 1.1404) 0.8248 0.1404 0.1407 (0.5951, 1.1405)
Total effect
x1 = 2.0000 2.0079 0.3449 0.3154 (1.4275, 2.7545) 1.9782 0.2826 0.2831 (1.4639, 2.5733)

x2 = −2.0000 −2.0187 0.3449 0.3321 (−2.7676,−1.4365) −1.9844 0.2830 0.2778 (−2.5805,−1.4696)

ρ = 0.7000 0.6942 0.0479 0.0477 (0.5984, 0.7853) 0.6955 0.0301 0.0314 (0.6351, 0.7528)
α1 = 1.0000 0.9854 0.1115 0.1086 (0.7670, 1.2044) 0.9857 0.1116 0.1074 (0.7673, 1.2052)

α2 = −1.0000 −0.9896 0.1116 0.1099 (−1.2090,−0.7708) −0.9857 0.1117 0.1104 (−1.2087,−0.7705)
σ2 = 0.7500 0.8268 0.1417 0.1417 (0.5959, 1.1454) 0.8263 0.1420 0.1418 (0.5949, 1.1455)
Total effect
x1 = 3.3333 3.3768 0.6705 0.6079 (2.3087, 4.8873) 3.2961 0.4704 0.4722 (2.4414, 4.2873)

x2 = −3.3333 −3.3950 0.6743 0.6351 (−4.9107,−2.3229) −3.3061 0.4716 0.4637 (−4.2986,−2.4486)

ρ = 0.2000 400 0.1996 0.0245 0.0235 (0.1514, 0.2475) (80, 5) 0.2006 0.0218 0.0208 (0.1577, 0.2431)
α1 = 1.0000 1.0005 0.0297 0.0286 (0.9422, 1.0587) 1.0005 0.0297 0.0287 (0.9423, 1.0587)

α2 = −1.0000 −0.9972 0.0297 0.0290 (−1.0554,−0.9389) −0.9972 0.0297 0.0291 (−1.0554,−0.9390)
σ2 = 0.2500 0.2549 0.0186 0.0185 (0.2210, 0.2939) 0.2549 0.0186 0.0185 (0.2210, 0.2939)
Total effect
x1 = 1.2500 1.2521 0.0524 0.0503 (1.1525, 1.3578) 1.2532 0.0496 0.0477 (1.1584, 1.3527)

x2 = −1.2500 −1.2480 0.0524 0.0514 (−1.3539,−1.1484) −1.2490 0.0494 0.0480 (−1.3484,−1.1546)

ρ = 0.5000 0.4995 0.0207 0.0198 (0.4587, 0.5399) 0.5003 0.0148 0.0140 (0.4712, 0.5290)
α1 = 1.0000 1.0006 0.0299 0.0287 (0.9420, 1.0590) 1.0005 0.0299 0.0288 (0.9419, 1.0590)

α2 = −1.0000 −0.9972 0.0299 0.0287 (−1.0558,−0.9387) −0.9972 0.0299 0.0292 (−1.0557,−0.9387)
σ2 = 0.2500 0.2550 0.0187 0.0186 (0.2210, 0.2941) 0.2549 0.0187 0.0186 (0.2209, 0.2941)
Total effect
x1 = 2.0000 2.0051 0.0974 0.0932 (1.8227, 2.2045) 2.0049 0.0797 0.0765 (1.8526, 2.1651)

x2 = −2.0000 −1.9984 0.0973 0.0949 (−2.1977,−1.8162) −1.9983 0.0795 0.0772 (−2.1580,−1.8465)
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Table 1. Cont.

Parameter n
Rook Weight Matrix

(r, m)
Case Weight Matrix

Mean SE SD 95% CI Mean SE SD 95% CI

ρ = 0.7000 0.6996 0.0158 0.0151 (0.6684, 0.7304) 0.7001 0.0093 0.0087 (0.6817, 0.7183)
α1 = 1.0000 1.0006 0.0300 0.0288 (0.9419, 1.0594) 1.0004 0.0300 0.0289 (0.9416, 1.0593)

α2 = −1.0000 −0.9972 0.0300 0.0291 (−1.0560,−0.9385) −0.9971 0.0300 0.0293 (−1.0560,−0.9384)
σ2 = 0.2500 0.2550 0.0187 0.0183 (0.2210, 0.2942) 0.2549 0.0188 0.0187 (0.2208, 0.2942)
Total effect
x1 = 3.3333 3.3475 0.1920 0.1833 (2.9942, 3.7466) 3.3415 0.1335 0.1272 (3.0867, 3.6098)

x2 = −3.3333 −3.3364 0.1917 0.1862 (−3.7347,−2.9837) −3.3304 0.1332 0.1283 (−3.5980,−3.0764)

ρ = 0.2000 400 0.1986 0.0366 0.0365 (0.1266, 0.2701) (80, 5) 0.1994 0.0326 0.0323 (0.1354, 0.2630)
α1 = 1.0000 0.9999 0.0512 0.0493 (0.8996, 1.1001) 0.9999 0.0512 0.0495 (0.8997, 1.1001)

α2 = −1.0000 −0.9942 0.0512 0.0501 (−1.0945,−0.8940) −0.9943 0.0512 0.0501 (−1.0945,−0.8942)
σ2 = 0.7500 0.7597 0.0555 0.0558 (0.6587, 0.8760) 0.7596 0.0555 0.0560 (0.6586, 0.8757)
Total effect
x1 = 1.2500 1.2527 0.0847 0.0827 (1.0936, 1.4257) 1.2530 0.0807 0.0786 (1.1000, 1.4165)

x2 = −1.2500 −1.2457 0.0847 0.0843 (−1.4187,−1.0866) −1.2459 0.0805 0.0800 (−1.4090,−1.0936)

ρ = 0.5000 0.4982 0.0306 0.0306 (0.4376, 0.5578) 0.4995 0.0219 0.0216 (0.4563, 0.5420)
α1 = 1.0000 1.0001 0.0514 0.0494 (0.8994, 1.1007) 1.0000 0.0514 0.0497 (0.8994, 1.1007)

α2 = −1.0000 −0.9944 0.0513 0.0501 (−1.0950,−0.8939) −0.9943 0.0514 0.0502 (−1.0951,−0.8938)
σ2 = 0.7500 0.7600 0.0559 0.0564 (0.6585, 0.8770) 0.7598 0.0559 0.0567 (0.6582, 0.8769)
Total effect
x1 = 2.0000 2.0068 0.1541 0.1509 (1.7231, 2.3272) 2.0048 0.1293 0.1256 (1.7601, 2.2668)

x2 = −2.0000 −1.9956 0.1538 0.1538 (−2.3151,−1.7121) −1.9935 0.1289 0.1280 (−2.2544,−1.7496)

ρ = 0.7000 0.6984 0.0232 0.0234 (0.6524, 0.7435) 0.6996 0.0137 0.0136 (0.6725, 0.7262)
α1 = 1.0000 1.0002 0.0515 0.0496 (0.8993, 1.1012) 1.0001 0.0516 0.0499 (0.8991, 1.1013)

α2 = −1.0000 −0.9945 0.0515 0.0502 (−1.0956,−0.8937) −0.9944 0.0516 0.0504 (−1.0955,−0.8936)
σ2 = 0.7500 0.7603 0.0563 0.0569 (0.6581, 0.8782) 0.7600 0.0564 0.0573 (0.6575, 0.8781)
Total effect
x1 = 3.3333 3.3537 0.2978 0.2935 (2.8195, 3.9858) 3.3415 0.2155 0.2091 (2.9334, 3.7779)

x2 = −3.3333 −3.3351 0.2970 0.2967 (−3.9661,−2.8023) −3.3226 0.2150 0.2134 (−3.7580,−2.9153)
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For comparison purposes, we use the Bayesian P-splines approach to approximate
the nonparametric functions [61], where we assign a second-order random walk prior
to the spline coefficients. The boxplots of MADE values with the Case weight matrix in
Figure 5. In our method, the medians of MADE are MADE1 = 0.0997, MADE2 = 0.0804
and MADE = 0.0916 for (r, m) = (20, 5), and the medians of MADE are MADE1 = 0.0504,
MADE2 = 0.0433 and MADE = 0.0476 for (r, m) = (80, 5), respectively, which are slightly
smaller than the Bayesian P-splines approach. The results show that the Bayesian free knots
splines approach is superior to the Bayesian P-splines approach in terms of fitting unknown
nonparametric functions and computing time. Furthermore, we also compare the perfor-
mance between the generalized method of moment estimator (GMME) in Du et al. [29]
and the Bayesian MCMC estimator (BE) in our method. In order to evaluate the estimation
effect of the nonparametric functions, we calculate the integrated squared bias (Bias) and
the root integrated mean squared errors (SSE). Table 2 reports the results of the nonparame-
ter estimation for GMME and BE (only a replication with (ρ, σ2) = (0.5, 0.25) is displayed).
It is evident that the estimates are improving with increasing the sample size, the Bias of
the BE estimates are slightly smaller than the Bias of the GMME, and the SSE of the BE
estimates are very smaller than Bias of the GMME under the same sample size, showing
that BE is better than GMME, although the latter can also obtain a reasonable estimation.
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Figure 5. The boxplots (a) display the mean absolute deviation errors with the Case weight matrix (r, m) = (20, 5) and
(b) display the mean absolute deviation errors with the Case weight matrix (r, m) = (80, 5) (the three panels on the left are
based on Bayesian free knots splines and the three panels on the right are based on Bayesian P-splines).

Table 2. Simulation results of the nonparametric estimation.

Functions (r, m)
With GMME With BE

Bias SSE Bias SSE

g1(·) (60, 5) 0.014 7.947 0.006 0.146
g2(·) 0.009 7.246 0.007 0.141

g1(·) (80, 5) 0.011 6.860 0.004 0.131
g2(·) 0.004 6.235 0.001 0.117

4.2. Application

We use the proposed model and estimation methods to analyze the well-known
Sydney real estate data. A detailed description of the data set can be found in Harezlak
et al. [62]. The data set contains a total of 37,676 properties sold in the Sydney Statistical
Division in the calendar year of 2001, which is available from the HRW package in R.
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We only focus on the last week of February to avoid the temporal issue, and there are
538 properties.

In this application, the house price (Price) is explained by four variables that include
average weekly income (Income), levels of particulate matter with a diameter of less than a
10 micrometers level recorded at the air pollution monitoring station closest to the house
(PM10), lot size (LS), and distance from house to the nearest coastline location in kilometers
(DC). On the one hand, Income and PM10 have a linear effect on the response Price. On
the other hand, LS and DC have a nonlinear effect on the response Price. Meanwhile,
logarithmic transformation is performed on all variables to alleviate the trouble caused by
large gaps in the domain. In addition, all variables are transformed such that the marginal
distribution is approximately a standard normal distribution. This motivates us to consider
the PLASAR model:

yi = ρ
n

∑
l=1

wilyl + xT
i α + g1(zi1) + g2(zi2) + εi, i = 1, . . . , n, (17)

where the response variable yi = log(Pricei), xi1 = log(Incomei), xi2 = log(PM10i),
zi1 = log(LSi), zi2 = log(DCi). Regarding the choice of the weight matrix, we use the
Euclidean distance between any two houses to calculate the spatial weight matrix [63]. The
spatial weight wil is

wil = exp{−‖si − sl‖}/ ∑
k 6=i

exp{−‖si − sk‖},

where si = (Loni, Lati) is represented as the longitude and latitude of location. We
apply a quadratic B-splines and assign hyperparameters (λ, r0, s2

0, rτα0 , s2
τα0

, rτβj0
, s2

τβj0
) =

(2, 1, 1, 1, 0.005, 1, 0.005) for j = 1, . . . , p in our computation. We gradually decrease or
increase the use of tuning parameters σρ and σξ j such that the acceptable rates for updating
ρ and (k j, ξ j) are around 25% for j = 1, . . . , p.

We generate 10,000 sampled values following a burn-in of 10,000 iterations and run the
proposed Gibbs sampler five times with different initial states in each replication. Figure 6
plot the traces of some unknown parameters and nonparametric functions on grid points.
It is obvious that the five parallel Markov chains mix well. We further calculate the “poten-
tial scale reduction factor”

√
R̂ for each of the unknown parameters and nonparametric

functions on 20 selected grid points, which are plotted in Figure 7. The result indicates that
the Markov chains have converged within the first 10,000 burn-in iterations.
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Figure 6. Trace plots of five parallel Markov chains with different starting values for some parameters and nonparametric
functions.
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Figure 7. The “potential scale reduction factor”
√

R̂ for Sydney real estate data.

Table 3 lists the estimated parameters together with their SE and 95% CI, which show
that the estimation of ρ̂ is 0.5548 with SE = 0.0307. It implies that there exists a significant
and positive spatial relationship on the housing price. We find that two covaraites have
significant effects on the housing price, and the effects of Income are positive, but PM10
is negative. The regression coefficient of Income is α̂1 = 0.3269 > 0, which indicates that
the Income has a positive effect on the housing price. Moreover, the regression coefficient
of PM10 is α̂2 = −0.0810 < 0, which reveals that the housing price would decrease as the
PM10 increases.

Table 3. Parametric estimation in the model (17) for Sydney real estate data.

Parameter Mean SE 95% CI

ρ 0.5548 0.0307 (0.4932, 0.6160)
α1 0.3269 0.0326 (0.2630, 0.3908)
α2 −0.0810 0.0318 (−0.1433,−0.0186)
σ2 0.3269 0.0326 (0.2630, 0.3908)

Total effect
x1 0.7343 0.0875 (0.5573, 0.9073)
x2 −0.1819 0.0866 (−0.3531,−0.0087)

Figure 8 depicts the fitted functions, together with its 95% CI, which look like two
nonlinear functions. The curves show that g1(z1) has a local maximum 0.6184 at around
z1 = 3.9198 and a local minimum 0.1557 at around z1 = −0.8237, and g2(z2) has a local
minimum −0.8224 at around z2 = 2.1605. The results provide evidence that the significant
effects of LS and DC on the housing price have a nonlinear S-shape and U-shape, respectively.

−2 −1 0 1 2 3 4 5 6
−1

−0.5

0

0.5

1

1.5

z
1

g
1
(z

1
)

−1 0 1 2 3 4 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

z
2

g
2
(z

2
)

Figure 8. The fitted functions (dotted lines) and their 95% CI (dot-dashed lines) in the model (17) for Sydney real estate data.
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5. Summary

Spatial data are frequently encountered in practical applications and can be analyzed
through the SAR model. To avoid some serious shortcomings of fully nonparametric
models and reduce the high risk of misspecification of the traditional SAR models, we
have considered PLASAR models for spatial data, which combine the PLA model and
SAR model. In addition to spatial dependence between neighbors, it captures the linear
and nonlinear effects between the related variables. We specify the prior of all unknown
parameters, which led to a proper posterior distribution. The posterior summaries are
obtained via the MCMC technique, and we have considered a fully Bayesian approach with
free-knot splines to analyze the PLASAR model and design a Gibbs sampler to explore
the full conditional posterior distributions. To obtain a rapidly-convergent algorithm, a
modified Bayesian free-knot splines approach incorporated with powerful MCMC tech-
niques is employed. We have illustrated that the finite sample of the proposed model and
estimation method perform satisfactorily through a simulation study. The results show
that the Bayesian estimator is efficient relative to the GMME, although the latter can also
obtain reasonable estimations. Finally, the proposed model and methodology are applied
to analyze real data.

This article focuses only on symmetrical data and the homoscedasticity of independent
errors. Since spatial data cannot easily meet the conditions, it is fairly straightforward to
analyze the proposed model and methodology to deal with spatial errors and heteroscedas-
ticity. While we use PLASAR models to assess the linear and nonlinear effects of the
covariates on the spatial response, the other models, such as partially linear single-index
SAR models and partially linear varying-coefficient SAR models, can also be considered.
Moreover, it would be interesting to develop a model selection method in which covariates
are linear or nonlinear. We leave these topics for future research.
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