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Abstract: In this article, we use the homotopy perturbation transform method to find the fractional
Kersten–Krasil’shchik coupled Korteweg–de Vries (KdV) non-linear system. This coupled non-linear
system is typically used to describe electric circuits, traffic flow, shallow water waves, elastic media,
electrodynamics, etc. The homotopy perturbation method is modified with the help of the ρ-Laplace
transformation to investigate the solution of the given examples to show the accuracy of the current
technique. The solution of the given technique and the actual results are shown and analyzed
with figures.

Keywords: ρ-Laplace transformation; homotopy perturbation method; Korteweg–de Vries non-linear
system; caputo operator

1. Introduction

Fractional calculus has a long history that began at the end of the 17 century and con-
tinued until the 20th century. Many scientists and mathematicians have spent the last few
decades researching numerical and analytic results to nonlinear fractional partial differen-
tial equations in engineering and science. Due to their use in many implementations, such
as viscoelasticity, fluid mechanic, physics, biology, dynamic schemes of control theories,
electric networks, optics, chemical physics, and signal processing, fractional differential
equations have gained special attention. Many books contain various definitions and basic
concepts of fractional calculus [1–4].

A differential equation symmetry is a transformation that makes the differential
equation invariant. The existence of such symmetries may aid in the solution of the
differential equation. A scheme of differential equations line symmetry is a continous
symmetry of a scheme of differential equations. Solving a linked set of ordinary differential
equations can reveal symmetries. It is sometimes easier to solve these equations than it is
to solve the original differential equations. The symmetry structure of the system consists
of integer partial differential equations and fractional-order partial differential equations
with the fractional Caputo derivative.

Using the symmetry construction, we consider two particular cases: pure fractional-
order partial differential equations, whose symmetry condition is divided into two parts
of integer-order and fractional, and the linear scheme of fractional partial differential
equations, which acknowledges an infinite dimensional insignificant generator continu-
ously. Second, we built a theoretical structure of potential symmetry and constructed three
potential schemes to analyze potential symmetries of time-fractional partial differential
equations with a divergence form using the composition rule of fractional derivatives. Still,
when dealing with linear equations, it is impossible to find their exact results.

Therefore, many approximate and numerical methods have been introduced for the
results of fractional-order linear and non-linear differential equations, such as variation
iteration technique [5,6], Adomian’s decomposition technique [7], homotopy analysis
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technique [8], homotopy perturbation technique [9], differential transform technique [10],
homotopy asymptotic technique [11], and Galerkin technique [12].

The fractional coupled Kersten–Krasil’shchik Korteweg–de Vries (KdV) nonlinear
scheme and homogeneous two component fractional coupled third-order KdV schemes are
significant fractional-order nonlinear systems for identifying wave behavior elaborating
numerous nonlinear phenomena in physics. The fractional-order coupled system is widely
used to investigate complex behavior containing multi-components, such as atoms, ions,
and free electrons. Many scholars have attempted to study this behavior numerically.

Recently, Paul Kersten and Joseph Krasil’shchik analyzed and modified the KdV equa-
tion, proposing absolute complexity between coupled KdV nonlinear systems to analyze
the behavior of nonlinear systems. Numerous variations of this Kersten–Krasil’shchik
coupled KdV-mKdV nonlinear system have been introduced by many researchers [13–16].
Many researchers applied different analytical and numerical methods to investigate KdV
equations, such as the homotopy analysis method [17], expansion method [18], shifted
Legendre polynomials [19], and natural decomposition method [20].

The homotopy perturbation method (HPM) was first proposed by He [21]. For solving
differential and integral equations, linear and nonlinear has been the subject abstract and
applied analysis of extensive analytical and numerical studies [21]. The HPM is efficient
and effective and eliminates an unconditioned matrix, complicated integrals, and infinite
series. This method does not need a specific parameter of the model. The ρ-Laplace
transformation is a modified transformation of the Laplace transform.

It should be remembered that, with the use of ρ-Laplace transform, absolute dif-
ferential equations with variable coefficients cannot be solved by Laplace and Sumudu
transforms [22,23]. The homotopy perturbation transformation method (HPTM) com-
bines the ρ-Laplace transformation and the homotopy perturbation method. Numerous
researchers have utilized HPTM to solve various equations, such as Navier–Stokes prob-
lems [24], heat-like problems [25], gas dynamic models [26], and Fisher’s and hyperbolic
equation [27].

2. Basic Definitions

In this section, the generalized fractional integral, the generalized fractional derivative,
the Mittag–Lefller function, and the ρ-Laplace transformation are defined.

Definition 1. The fractional-order generalized integral $ of a continuous function g : [0,+∞]→ R
is given as [22]

(I$,ρg)(χ) =
1

Γ($)

∫ χ

0

(
χρ − sρ

ρ

)$−1
g(s)ds
s1−ρ

,

the gamma function denote by Γ, ρ > 0, χ > 0 and 0 < $ < 1.

Definition 2. The fractional-order generalized derivative of $ of a continuous function g : [0,+∞]→ R
is given as [22]

(D$,ρg)(χ) = (I1−$,ρg)(χ) =
1

Γ(1− $)

(
d

dχ

) ∫ χ

0

(
χρ − sρ

ρ

)−$
g(s)ds
s1−ρ

.

where we define the gamma function Γ, ρ > 0, χ > 0 and 0 < $ < 1.

Definition 3. The fractional-order Caputo derivative $ of a continuous function g : [0,+∞]→ R
is expressed as [22]

(D$,ρg)(χ) =
1

Γ(1− $)

∫ χ

0

(
χρ − sρ

ρ

)−$

β
g(s)ds
s1−ρ

.
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where ρ > 0, χ > 0, β = χ1−ρ d
dχ and 0 < $ < 1.

Definition 4. The ρ-Laplace transform of a continuous function g : [0,+∞] → R is defined
as [22]

Lρ{g(χ)} =
∫ ∞

0
e−s χρ

ρ g(χ)
dχ

χ1−ρ
.

A continuous function g as the fractional-order Caputo generalized rho-Laplace transform
derivative is defined by

Lρ{D$,ρg(χ)} = s$Lρ{g(χ)} −
n−1

∑
k=0

s$−k−1(I$,ρβng)(0).

3. The General Methodology of HPTM

In this section, the HPTM for the general form of FPDEs

D$
=ϕ(χ,=) + Mϕ(χ,=) + Nϕ(χ,=) = h(χ,=), = > 0, 0 < $ ≤ 1, (1)

with the initial condition

ϕ(χ, 0) = g(χ). (2)

where D$
=ϕ(χ,=) = ∂$

∂=$ is the Caputo fractional derivative of order $; M and N, are linear
and non-linear functions, respectively; and h is the source operator. Using the ρ-Laplace
transform of Equation (1),

Lρ[D
$
=ϕ(χ,=) + Mϕ(χ,=) + Nϕ(χ,=)] = Lρ[h(χ,=)], = > 0, 0 < $ ≤ 1,

ϕ(χ,=) = 1
s

g(χ) +
1
s$ Lρ[h(χ,=)]− 1

s$ Lρ[Mϕ(χ,=) + Nϕ(χ,=)].
(3)

Now, by taking inverse ρ-Laplace transform, we obtain

ϕ(χ,=) = Lρ
−1
[

1
s

g(χ) +
1
s$ Lρ[h(χ,=)]

]
− Lρ

−1
[

1
s$ Lρ{Mϕ(χ,=) + Nϕ(χ,=)}

]
, (4)

where

ϕ(χ,=) = g(χ) + Lρ
−1
[

1
s$ Lρ[h(χ,=)]

]
− Lρ

−1
[

1
s$ Lρ{Mϕ(χ,=) + Nϕ(χ,=)}

]
, (5)

Now, the perturbation method parameter p is defined as

ϕ(χ,=) =
∞

∑
=0

p ϕ(χ,=), (6)

where the perturbation term p ∈ [0, 1].
The non-linear functions can be defined as

Nϕ(χ,=) =
∞

∑
=0

p H(ϕ), (7)

where Hm are He polynomials of ϕ0, ϕ1, ϕ2, · · · , ϕm, and can be determined as

Hm(ϕ0, ϕ1, · · · , ϕm) =
1

m!
∂m

∂pm

[
N

(
∞

∑
=0

p ϕ

)]
p=0

, m = 0, 1, 2 · · · . (8)

putting Equations (7) and (8) in Equation (5), we have
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∞

∑
=0

p ϕ(χ,=) = g(χ) + Lρ
−1
[

1
s$ Lρ[h(χ,=)]

]
− p×

[
Lρ
−1

{
1
s$ Lρ{M

∞

∑
=0

p ϕ(χ,=) +
∞

∑
=0

p H(ϕ)}
}]

. (9)

With both sides comparison coefficient of p, we have

p0 : ϕ0(χ,=) = g(χ) + Lρ
−1
[

1
s$ Lρ[h(χ,=)]

]
,

p1 : ϕ1(χ,=) = Lρ
−1
[

1
s$ Lρ(Mϕ0(χ,=) + H0(ϕ))

]
,

(10)

p2 : ϕ2(χ,=) = Lρ
−1
[

1
s$ Lρ(Mϕ1(χ,=) + H1(ϕ))

]
,

...

p : ϕ(χ,=) = Lρ
−1
[

1
s$ Lρ(Mϕ−1(χ,=) + H−1(ϕ))

]
,  > 0,  ∈ N.

(11)

ϕ(χ,=) = lim
M→∞

M

∑
=1

ϕ(χ,=). (12)

4. Numerical Experiments

Example 1. Assume time fractional Kersten–Krasil’shchik coupled KdV-mKdV nonlinear system as:

D$
=µ + µ3χ − 6µµχ + 3ϕϕ3χ + 3ϕχ ϕ2χ − 3µχ ϕ2 + 6µϕϕχ = 0, = > 0, χ ∈ R, 0 < $ ≤ 1,

D$
=ϕ + ϕ3χ − 3ϕ2 ϕχ − 3µϕχ + 3µχ ϕ = 0,

(13)

with the initial conditions

µ(χ, 0) =c− 2c sech2(
√

cχ), c > 0,

ϕ(χ, 0) =2
√

c sech(
√

cχ).
(14)

Using ρ-Laplace transform on Equation (13) by the application of the initial condition given
by Equation (14), we find

Lρ[µ(χ,=)] = c− 2c sech2(
√

cχ)− 1
s$ Lρ[µ3χ − 6µµχ + 3ϕϕ3χ + 3ϕχ ϕ2χ − 3µχ ϕ2 + 6µϕϕχ],

Lρ[ϕ(χ,=)] = 2
√

c sech(
√

cχ)− 1
s$ Lρ[ϕ3χ − 3ϕ2 ϕχ − 3µϕχ + 3µχ ϕ]

(15)

Apply the inverse ρ-Laplace transform, and we obtain

µ(χ,=) = c− 2c sech2(
√

cχ)− L−1
ρ

[
1
s$ Lρ[µ3χ − 6µµχ + 3ϕϕ3χ + 3ϕχ ϕ2χ − 3µχ ϕ2 + 6µϕϕχ]

]
,

ϕ(χ,=) = 2
√

c sech(
√

cχ)− L−1
ρ

[
1
s$ Lρ[ϕ3χ − 3ϕ2 ϕχ − 3µϕχ + 3µχ ϕ]

] (16)
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Use HPM on Equation (16), and we obtain

∞

∑
n=0

pnµn(χ,=) = c− 2c sech2(
√

cχ)

− p

L−1
ρ

 1
s$ S

( ∞

∑
n−0

pnµn(χ,=)
)

3χ

+

(
∞

∑
n=0

pn Hn(µ)

),

∞

∑
n=0

pn ϕn(χ,=) = 2
√

c sech(
√

cχ)

− p

L−1
ρ

 1
s$ S

( ∞

∑
n=0

pn ϕn(χ,=)
)

3χ

+

(
∞

∑
n=0

pn Hn(ϕ)

)

(17)

Nonlinear steps given by He’s polynomials Hn(µ) and Hn(ϕ), which are given as

∞

∑
n=0

pnHn(µ) = −6µµχ + 3ϕϕ3χ + 3ϕχ ϕ2χ − 3µχ ϕ2 + 6µϕϕχ,

∞

∑
n=0

pnHn(ϕ) = −3ϕ2 ϕχ − 3µϕχ + 3µχ ϕ.
(18)

Values of components of He’s polynomials are given by

H0(µ) = −6µ0(µ0)χ + 3ϕ0(ϕ0)3χ + 3(ϕ0)χ(ϕ0)2χ − 3(µ0)χ(ϕ0)
2 + 6(µ0)ϕ0(ϕ0)χ,

H1(µ) = −6µ1(µ0)χ − 6µ0(µ1)χ + 3ϕ1(ϕ0)3χ + 3ϕ0(ϕ1)3χ + 3(ϕ0)χ(ϕ1)2χ

+ 3(ϕ0)2χ(ϕ1)χ − 3(µ1)χ(ϕ0)
2 + 6(µ0)χ ϕ0 ϕ1 + 6(µ0)ϕ1(ϕ0)χ + 6(µ0)ϕ0(ϕ1)χ

6(µ1)ϕ0(ϕ0)χ,

H2(µ) = −6µ2(µ0)xi − 6µ1(µ1)χ − 6µ0(µ2)χ + 3ϕ2(ϕ0)3χ + 3ϕ1(ϕ1)3χ + 3ϕ0(ϕ2)3χ

+ 3(ϕ0)χ(ϕ2)2χ + 3(ϕ1)χ(ϕ1)2χ + 3(ϕ2)χ(ϕ0)2χ − 3(µ2)χ(ϕ0)
2 − 6(µ1)χ ϕ0 ϕ1

− 6(µ1)χ ϕ0 ϕ2 + 6(µ2)ϕ0(ϕ0)χ + 6(µ1)ϕ(ϕ0)χ + 6(µ2)ϕ0(ϕ0)χ + 6(µ0)ϕ1(ϕ1)χ

+ 6(µ1)ϕ0(ϕ1)χ + 6(µ0)ϕ0(ϕ2)χ

H3(µ) = −6µ3(µ0)χ − 6µ2(µ1)χ − 6µ1(µ2)χ − 6µ0(µ3)χ + 3ϕ3(ϕ0)3χ + 3ϕ2(ϕ1)3χ

+ 3ϕ1(ϕ2)3χ + 3ϕ0(ϕ3)3χ + 3(ϕ0)χ(ϕ3)2χ + 3(ϕ1)χ(ϕ2)2χ + 3(ϕ2)χ(ϕ1)2χ

3(ϕ3)χ(ϕ0)2χ − 3(µ3)χ ϕ2
0 − 6(µ2)ϕ0 ϕ1 − 6(µ1)ϕ0 ϕ2 − 3(µ1)χ ϕ2

1

+ µ0 ϕ3(ϕ0)χ + 6(µ1)ϕ2(ϕ0)χ + 6(µ1)ϕ2(ϕ0)χ + 6(µ3)ϕ0(ϕ0)χ + 6(µ0)ϕ2(ϕ1)χ

+ 6(µ1)ϕ1(ϕ1)χ + 6(µ2)ϕ0(ϕ1)χ + 6(µ0)ϕ1(ϕ2)χ + 6(µ1)ϕ0(ϕ2)χ + 6(µ0)ϕ0(ϕ3)χ

...

(19)

and

H0(ϕ) = −3(ϕ0)
2(ϕ0)χ − 3µ0(ϕ0)χ + 3(µ0)χ ϕ0.

H1(ϕ) = −3(ϕ0)
2(ϕ1)χ − 6ϕ0 ϕ1(ϕ0)χ − 3µ1(ϕ0)χ − 3µ0(ϕ1)χ + 3(µ1)χ ϕ0 + 3(µ0)χ ϕ1

H2(ϕ) = −3(ϕ0)
2(ϕ2)χ − 6ϕ0 ϕ1(ϕ1)χ − 6ϕ0 ϕ2(ϕ1)χ − 3(ϕ2)

2(ϕ0)χ − 3µ2(ϕ0)χ

− 3µ1(ϕ1)χ − 3µ0(ϕ2)χ + 3(µ0)χ ϕ2 − 3(µ1)χ ϕ1 − 3(µ2)χ ϕ0

H3(ϕ) = −3(ϕ0)
2(ϕ3)χ − 6ϕ0 ϕ1(ϕ2)χ − 6ϕ0 ϕ2(ϕ1)χ − 6ϕ0 ϕ3(ϕ0)χ − 6ϕ1 ϕ2(ϕ0)χ

− 3(ϕ3)
2(ϕ3)χ − 3µ3(ϕ0)χ − 3µ2(ϕ1)χ − 3µ1(ϕ2)χ − 3µ0(ϕ3)χ + 3(µ0)χ ϕ3

+ 3(µ1)χ ϕ2 + 3(µ2)χ ϕ1 + 3(µ3)χ ϕ0

...

(20)
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Comparing the coefficients of same powers of p, we have

p0 : µ0(χ,=) = c− 2c sech2(
√

cχ),

p1 : µ1(χ,=) = −L−1
ρ

[
1
s$ Lρ[(µ0)3χ + H0(µ)]

]

= 8c
5
2 sinh(

√
cχ) sech3(

√
cχ)

(
=ρ

ρ

)$

Γ($ + 1)
,

(21)

p2 : µ2(χ,=) = −L−1
ρ

[
1
s$ Lρ[(µ1)3χ + H1(µ)]

]

= −16c4[2 cosh2(
√

cχ)− 3] sech4(
√

cχ)

(
=ρ

ρ

)2$

Γ(2$ + 1)
,

p3 : µ3(χ,=) = −L−1
ρ

[
1
s$ Lρ[(µ2)3χ + H2(µ)]

]

= 128c11/2[cosh2(
√

cχ)− 3] sinh(
√

cχ) sech5(
√

cχ)

(
=ρ

ρ

)3$

Γ(3$ + 1)
,

p4 : µ4(χ,=) = −L−1
ρ

[
1
s$ Lρ[(µ3)3χ + H3(µ)]

]

= −256c7[2 cosh4(
√

cχ)− 15 cosh2(
√

cχ) + 15] sech6(
√

cχ)

(
=ρ

ρ

)4$

Γ(4$ + 1)
,

....

(22)

and

p0 : ϕ0(χ,=) = 2
√

c sech(
√

cχ),

p1 : ϕ1(χ,=) = −L−1
ρ

[
1
s$ Lρ[(ϕ0)3χ + H0(ϕ)]

]
,

= −4c2 sinh(
√

cχ) sech2(
√

cχ)

(
=ρ

ρ

)$

Γ($ + 1)
,

p2 : ϕ2(χ,=) = −L−1
ρ

[
1
s$ Lρ[(ϕ1)3χ + H1(ϕ)]

]
,

= 8c
7
2 [cosh2(

√
cχ)− 2] sech3(

√
cχ)

(
=ρ

ρ

)2$

Γ(2$ + 1)
,

p3 : ϕ3(χ,=) = −L−1
ρ

[
1
s$ Lρ[(ϕ2)3χ + H2(ϕ)]

]
,

= −16c2[cosh5(
√

cχ)− 6] sinh(
√

cχ) sech4(
√

cχ)

(
=ρ

ρ

)3$

Γ(3$ + 1)
,

p4 : ϕ4(χ,=) = −L−1
ρ

[
1
s$ Lρ[(ϕ3)3χ + H3(ϕ)]

]
,

= 32c13/2[cosh4(
√

cχ)− 20 cosh2(
√

cχ) + 24] sech5(
√

cχ)

(
=ρ

ρ

)4$

Γ(4$ + 1)
,

...

(23)
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Hence, the series solution is given by

µ(χ,=) =
∞

∑
n=0

µi(χ,=)

= c− 2c sech2(
√

cχ) + 8c
5
2 sinh(

√
cχ) sech3(

√
cχ)

(
=ρ

ρ

)$

Γ($ + 1)

− 16c4[2 cosh2(
√

cχ)− 3] sech4(
√

cχ)

(
=ρ

ρ

)2$

Γ(2$ + 1)
+ 128c11/2[cosh2(

√
cχ)− 3]

sinh(
√

cχ) sech5(
√

cχ)

(
=ρ

ρ

)3$

Γ(3$ + 1)
− 256c7[2 cosh4(

√
cχ)− 15 cosh2(

√
cχ) + 15]

sech6(
√

cχ)

(
=ρ

ρ

)4$

Γ(4$ + 1)
+ · · · ,

(24)

and

ϕ(χ,=) =
∞

∑
n=0

ϕi(χ,=)

= 2
√

c sech(
√

cχ)− 4c2 sinh(
√

cχ) sech2(
√

cχ)

(
=ρ

ρ

)$

Γ($ + 1)
+ 8c

7
2 [cosh2(

√
cχ)− 2]

sech3(
√

cχ)

(
=ρ

ρ

)2$

Γ(2$ + 1)
− 16c2[cosh5(

√
cχ)− 6] sinh(

√
cχ) sech4(

√
cχ)

(
=ρ

ρ

)3$

Γ(3$ + 1)

+ 32c13/2[cosh4(
√

cχ)− 20 cosh2(
√

cχ) + 24] sech5(
√

cχ)

(
=ρ

ρ

)4$

Γ(4$ + 1)
− · · · ,

(25)

Putting $ and ρ = 1 in Equations (24) and (25), we obtain the solution of the problem as:

µ(χ,=) = c− 2c sech2(
√

cχ) + 8=c
5
2 sinh(

√
cχ) sech3(

√
cχ)− 8=2c4

[2 cosh2(
√

cχ)− 3] sech4(
√

cχ) +
64
3
=3c11/2[cosh2(

√
cχ)− 3] sinh(

√
cχ)

sech5(
√

cχ)− 32
3
=4c7[2 cosh4(

√
cχ)− 15 cosh2(

√
cχ) + 15]

sech6(
√

cχ) + · · · ,

(26)

and

ϕ(χ,=) = 2
√

c sech(
√

cχ)− 4=c2 sinh(
√

cχ) sech2(
√

cχ) + 4=2c
7
2 [cosh2(

√
cχ)− 2]

sech3(
√

cχ)− 8
3
=3c2[cosh5(

√
cχ)− 6] sinh(

√
cχ) sech4(

√
cχ) +

4
3
=4c13/2

[cosh4(
√

cχ)− 20 cosh2(
√

cχ) + 24] sech5(
√

cχ)− · · · ,

(27)

The solution represented by Equations (26) and (27) is similar to exact solution in closed form as:

µ(χ,=) = c− 2c sech2(
√

c(χ + 2c=)),
ϕ(χ,=) = 2

√
c sech(

√
c(χ + 2c=)).

(28)

In Figure 1, the actual and HPTM solutions of µ(χ,=) is calculated at $ = 1. In Figure 2, the
3D graphs for µ(χ,=) for different fractional-order shows that the HPTM approximated solutions
derived are in a strong agreement with the actual and the approximate solution. Similarly Figure 3,
the actual and HPTM solutions of ϕ(χ,=) is calculated at $ = 1. In Figure 4, the ϕ(χ,=) for
different fractional-order shows that the HPTM approximated solutions derived are in a strong
agreement with the actual and the approximate solution. This comparison shows that the HPTM
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and the actual solutions are very close. As a result, the HPTM is a dependable new study that
requires less computation of computations, is adaptable, and simple to use.

Figure 1. The graphs of actual and HPTM results at µ(χ,=) of Example 1.

Figure 2. The various fractional-order graphs of µ(χ,=) for Example 1.

Figure 3. The actual and HPTM results graphs at ϕ(χ,=) of Example 1.
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Figure 4. The various fractional-order of ϕ(χ,=) for Example 1.

Example 2. Assume a homogeneous two-component time fractional coupled third order KdV system as:

D$
=µ− µ3χ − µµχ − ϕϕχ = 0, = > 0, χ ∈ R, 0 < $ ≤ 1,

D$
=ϕ + 2ϕ3χ − µϕχ = 0,

(29)

with the initial condition

µ(χ, 0) = 3− 6 tanh2
(χ

2

)
,

ϕ(χ, 0) = −3c
√

2 tanh
(χ

2

)
.

(30)

Using the ρ-Laplace transform on Equation (29) by the application of initial conditions given
by Equation (30), we obtain

Lρ[µ(χ,=)] = 3− 6 tanh2
(χ

2

)
+

1
s$ Lρ[µ3χ − µµχ − ϕϕχ],

Lρ[ϕ(χ,=)] = −3c
√

2 tanh
(χ

2

)
− 1

s$ Lρ[2ϕ3χ − µϕχ].
(31)

Applying the inverse ρ-Laplace transform, we obtain

µ(χ,=) = 3− 6 tanh2
(χ

2

)
+ L−1

ρ

[
1
s$ Lρ[µ3χ − µµχ − ϕϕχ

]
,

ϕ(χ,=) = −3c
√

2 tanh
(χ

2

)
− L−1

ρ

[
1
s$ Lρ[2ϕ3χ − µϕχ]

]
.

(32)

Using HPM on Equation (32), we obtain

∞

∑
n=0

pnµn(χ,=) = 3− 6 tanh2
(χ

2

)
+ p

[
L−1

ρ

{
1
s$ Lρ

(
(

∞

∑
n=0

pnµn(χ,=))3χ + (
∞

∑
n=0

pnHn(µ))

)}]
,

(33)
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∞

∑
n=0

pn ϕn(χ,=) = −3c
√

2 tanh
(χ

2

)

− p

L−1
ρ

 1
s$ Lρ

2

(
∞

∑
n=0

pn ϕn(χ,=)
)

3χ

−
(

∞

∑
n=0

pn Hn(ϕ)

)
.

(34)

Nonlinear steps given by He’s polynomials Hn(µ) and Hn(ϕ), are given as:

∞

∑
n=0

pn Hn(µ) = µµχ + ϕϕχ,

∞

∑
n=0

pn Hn(ϕ) = −µϕχ.
(35)

Values of factors of He’s polynomials are given as

H0(µ) = µ0(µ0)χ + ϕ0(ϕ0)χ,

H1(µ) = µ1(µ0)χ + µ0(µ1)χ + ϕ1(ϕ0)χ + ϕ0(ϕ1)χ,

H2(µ) = µ2(µ0)χ + µ1(µ1)χ + µ0(µ2)χ + ϕ2(ϕ0)χ + ϕ1(ϕ1)χ + ϕ0(ϕ2)χ,

H3(µ) = µ3(µ0)χ + µ2(µ1)χ + µ1(µ2)χ + µ0(µ3)χ + ϕ3(ϕ0)χ + ϕ2(ϕ1)χ

+ ϕ1(ϕ2)χ + ϕ0(ϕ3)χ,
...

(36)

and

H0(ϕ) = −µ0(ϕ0)χ,

H1(ϕ) = −µ1(ϕ0)χ − µ0(ϕ1)χ,

H2(ϕ) = −µ2(ϕ0)χ − µ1(ϕ1)χ − µ0(ϕ2)χ,

H3(ϕ) = −µ3(ϕ0)χ − µ2(ϕ1)χ − µ1(ϕ2)χ − µ0(ϕ3)χ,
...

(37)

Comparing coefficients of the same powers of p, we have

p0 : µ0(χ,=) = 3− 6 tanh2
(χ

2

)
,

p1 : µ1(χ,=) = L−1
ρ

[
1
s$ Lρ[(µ0)3χ + H0(µ)]

]
,

= 6 sech2
(χ

2

)
tanh

(χ

2

) (=ρ

ρ

)$

Γ($ + 1)
,

p2 : µ2(χ,=) = L−1
ρ

[
1
s$ Lρ

[
(µ1)3χ + H1(µ)

]]
,

= 3[2 + 7 sech2
(χ

2

)
− 15 sech4

(χ

2

)
] sech2

(χ

2

) (
=ρ

ρ

)2$

Γ(2$ + 1)
,

p3 : µ3(χ,=) = L−1
ρ

[
1
s$ Lρ[(µ2)3χ + H2(µ)]

]
,

...

(38)
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and

p0 : ϕ0(χ,=) = −3c
√

2 tanh
(χ

2

)
,

p1 : ϕ1(χ,=) = −L−1
ρ

[
1
s$ Lρ[2(ϕ0)3χ − H0(ϕ)]

]
,

= 3c
√

2 sech2
(χ

2

)
tanh

(χ

2

) (=ρ

ρ

)$

Γ($ + 1)
,

p2 : ϕ2(χ,=) = −L−1
ρ

[
1
s$ Lρ[2(ϕ1)3χ − H1(ϕ)]

]
,

=
3c
√

2
2

[
2 + 21 sech2

(χ

2

)
− 24 sech4

(χ

2

)]
sech2

(χ

2

) (
=ρ

ρ

)2$

Γ(2$ + 1)
,

p3 : ϕ3(χ,=) = −L−1
ρ

[
1
s$ Lρ[2(ϕ2)3χ − H2(ϕ)]

]
,

...

(39)

Hence, the series solution is given by

µ(χ,=) =
∞

∑
n=0

µn(χ,=),

= 3− 6 tanh2
(χ

2

)
+ 6 sech2

(χ

2

)
tanh

(χ

2

) (=ρ

ρ

)$

Γ($ + 1)

+ 3[2 + 7 sech2
(χ

2

)
− 15 sech4

(χ

2

)
] sech2

(χ

2

) (
=ρ

ρ

)2$

Γ(2$ + 1)
− · · · ,

ϕ(χ,=) =
∞

∑
n

ϕn(χ,=)

= −3c
√

2 tanh
(χ

2

)
+ 3c
√

2 sech2
(χ

2

)
tanh

(χ

2

) (=ρ

ρ

)$

Γ($ + 1)

+
3c
√

2
2

[
2 + 21 sech2

(χ

2

)
− 24 sech4

(χ

2

)]
sech2

(χ

2

) (
=ρ

ρ

)2$

Γ(2$ + 1)
+ · · · .

(40)

Placing $ and ρ = 1 in Equation (40), we obtain the solution of the problem as:

µ(χ,=) = 3− 6 tanh2
(χ

2

)
+ 6= sech2

(χ

2

)
tanh

(χ

2

)
+

3
2
=2[2 + 7 sech2

(χ

2

)
− 15 sech4

(χ

2

)
] sech2

(χ

2

)
− · · · ,

ϕ(χ,=) = −3c
√

2 tanh
(χ

2

)
+ 3=c

√
2 sech2

(χ

2

)
tanh

(χ

2

)
+

3c
√

2
4
=2
[
2 + 21 sech2

(χ

2

)
− 24 sech4

(χ

2

)]
sech2

(χ

2

)
+ · · · .

(41)

The solution given by Equation (41) is similar to the closed form solution as:

µ(χ,=) = 3− 6 tanh2(
χ +=

2
),

ϕ(χ,=) = −3c
√

2 tanh(
χ +=

2
).

(42)



Symmetry 2021, 13, 1592 12 of 14

In Figure 5 the actual and HPTM solutions of µ(χ,=) is calculated at $ = 1. In Figure 6, the
3D graphs for µ(χ,=) for different fractional-order shows that the HPTM approximated solutions
derived are in a strong agreement with the actual and the approximate solution. Similarly Figure 7,
the actual and HPTM solutions of ϕ(χ,=) is calculated at $ = 1. In Figure 8, the ϕ(χ,=) for
different fractional-order shows that the HPTM approximated solutions derived are in a strong
agreement with the actual and the approximate solution. This comparison shows that the HPTM
and the actual solutions are very close. As a result, the HPTM is a dependable new study that
requires less computation of computations, is adaptable, and simple to use.

Figure 5. The actual and HPTM results graphs at µ(χ,=) of Example 2 for $ = 1.

Figure 6. The various fractional-order graphs of µ(χ,=) for Example 2.

Figure 7. The actual and HPTM results graphs at ϕ(χ,=) and ϕ(χ,=) of Example 2 at $ = 1.
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Figure 8. The various fractional-order graphs of ϕ(χ,=) for Example 2.

5. Conclusions

In this paper, we calculated the fractional-order Kersten–Krasil’shchik coupled KdV-
mKdV nonlinear system, using an ρ-Laplace transform. The suggested method was applied
to obtain the solution of the given two problems. The HPTM solution is in close contact with
the exact result of the given problems. We also calculated the results of the given problems
with the fractional-order derivatives. The figures of the fractional-order results achieved
demonstrated convergence toward the results of the integer-order. Furthermore, the present
method is simple, straightforward, and requires less computational cost; the current
technique can be modified to solve other fractional-order partial differential equations.
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