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Abstract: Inaccurate electricity load forecasting can lead to the power sector gaining asymmetric
information in the supply and demand relationship. This asymmetric information can lead to in-
correct production or generation plans for the power sector. In order to improve the accuracy of
load forecasting, a combined power load forecasting model based on machine learning algorithms,
swarm intelligence optimization algorithms, and data pre-processing is proposed. Firstly, the orig-
inal signal is pre-processed by the VMD–singular spectrum analysis data pre-processing method.
Secondly, the noise-reduced signals are predicted using the Elman prediction model optimized by
the sparrow search algorithm, the ELM prediction model optimized by the chaotic adaptive whale
algorithm (CAWOA-ELM), and the LSSVM prediction model optimized by the chaotic sparrow
search algorithm based on elite opposition-based learning (EOBL-CSSA-LSSVM) for electricity load
data, respectively. Finally, the weighting coefficients of the three prediction models are calculated
using the simulated annealing algorithm and weighted to obtain the prediction results. Comparative
simulation experiments show that the VMD–singular spectrum analysis method and two improved
intelligent optimization algorithms proposed in this paper can effectively improve the prediction
accuracy. Additionally, the combined forecasting model proposed in this paper has extremely high
forecasting accuracy, which can help the power sector to develop a reasonable production plan and
power generation plans.

Keywords: neural network; sparrow search algorithm; whale optimization algorithm; power load
forecast; machine learning

1. Introduction

With the improvement in economic and social development, high-quality electric
energy supply provides an important guarantee for the efficient and stable development
of the whole country. The accuracy of electricity load forecasting is directly related to
the economic efficiency and reliability of each energy supply sector. Many important
operational decisions such as generation plans, fuel procurement plans, maintenance plans,
and energy trading plans are based on electricity load forecasting [1–4].

The intrinsic properties of the electrical load make it fundamentally different from
other commodities. This is due to the non-storable nature of the electricity load, which is
also influenced by the dynamic balance between supply and demand and the reliability of
the intelligent transmission network [5]. Accurate power load forecasting can effectively
optimize the allocation of resources in intelligent distribution networks and power systems.
For the supply sector of the power system, accurate load forecasting enables rational
control of the capacity of generating units and rational dispatch of generating capacity, thus
reducing energy wastage and costs. For the management of the power system, mastering
the changes in the power load at any given moment allows them to control the power
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market information in advance and thus obtain higher economic benefits. In practice,
the power sector often does not have access to symmetrical information. This is because
inaccurate load forecasts provide the wrong information to the electricity sector, resulting
in an asymmetry between the sector and the electricity consumers. The use of asymmetrical
load information in production planning not only results in economic losses but also in
wasted resources.

In summary, the power sector must ensure a dynamic balance between power demand
and supply, while minimizing the waste of resources and economic losses [6]. Therefore,
accurate electricity load forecasting is key to achieving this target.

For the above reasons, a novel combinatorial model for electricity load forecasting is
proposed by this paper. The model combines a data pre-processing method (VMD–singular
spectrum analysis noise reduction method), two novel combinatorial intelligent optimiza-
tion algorithms (the CAWOA and EOBL-CSSA algorithm), and three independent and
efficient forecasting models (ELMAN neural network, LSSVM model, ELM neural net-
work). Firstly, the original signal is pre-processed by the VMD–singular spectrum analysis
data pre-processing method. Secondly, the noise-reduced signals are predicted using
the Elman prediction model optimized by the SSA algorithm, the ELM prediction model
optimized by the CAWOA-ELM algorithm, and the LSSVM prediction model optimized by
the EOBL-CSSA-LSSVM algorithm for electricity load data, respectively. Finally, the weight-
ing coefficients of the three prediction models are calculated using the simulated annealing
(SA) algorithm and weighted to obtain the prediction results.

2. Literature Review

Due to the rapid development of smart distribution networks, new grid planning
and strategy formulations need the support of high-precision power load forecasting.
Many researchers have made unremitting efforts to improve the accuracy of power load
forecasting in the environment of smart distribution networks. The different forecasting
principles can be divided into traditional forecasting methods based on statistics [7,8] and
intelligent forecasting methods based on machine learning algorithms [9,10]. Traditional
methods of forecasting electrical loads have the advantage of low computational effort and
high prediction accuracy for simple linear cases. However, such methods are not sufficient
to deal with complex nonlinear load time series and are difficult to meet the needs of
modern forecasting. With the development of artificial intelligence (AI) technology [11–13],
machine learning is widely used in the field of power load forecasting due to its powerful
non-linear processing capability [14].

The powerful adaptive and learning capabilities of machine learning algorithms are
well suited for processing non-linear time series. However, different machine learning
algorithms have their own limitations, which limit their further development. Currently,
swarm intelligence optimization algorithms are widely used in neural networks, ma-
chine learning, and other intelligent algorithms for structural optimization [15]. Common
swarm intelligence optimization algorithms include: ant colony optimization algorithms
(ACO) [16,17] and particle swarm optimization algorithms (PSO) [18,19]. In addition, such
novel swarm intelligence optimization algorithms as the whale optimization algorithm
(WOA) [15,20] and sparrow search algorithm (SSA) [21] also show amazing potential in
processing structure optimization.

Paper [22] has shown that using raw data directly for prediction would significantly
confound the results. In order to minimize the forecast error of electrical loads, schol-
ars have carried out many studies on combined forecasting models based on data pre-
processing and electrical load forecasting models. Typically, these scholars use wavelet
transform (WT) [23], empirical modal decomposition (EMD) [24], variational modal de-
composition (VMD) [25], and singular spectrum analysis [26] for noise reduction.

Electricity load is a complex time series with non-linear, highly random fluctuations
and time-varying characteristics. The modern requirement for accurate forecasting is
difficult to achieve due to the shortcomings of a single forecasting method. Therefore,
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the idea of combined forecasting is proposed to compensate for the shortcomings of single
forecasting methods to improve the overall forecasting accuracy of the model [27].

Jinliang Zhang and his colleagues [28] proposed a hybrid forecasting model based
on improved empirical modal decomposition (IEMD), autoregressive integrated moving
average (ARIMA), and wavelet neural network (WNN) based on fruit fly optimization algo-
rithm (FOA) optimization. Jinliang Zhang used the FOA algorithm to optimize the network
parameters in the WNN algorithm. This approach can effectively improve the shortcomings
of the WNN algorithm in terms of optimization capability. The optimized model is also
combined with traditional prediction methods to improve the overall prediction accuracy.
Simulation experiments demonstrate the effectiveness of this approach.

Heng Shi and his colleagues [29] proposed a method for household load predic-
tion using deep learning and a new deep recurrent neural network based on clustering.
The machine learning algorithm batches the load into the input pool to avoid overfitting.
Simulation experiments also demonstrate that the model has a higher prediction accuracy
than traditional prediction models.

Kun Xie and his colleagues [30] constructed a hybrid prediction model by optimizing
the Elman neural network (ENN) with the PSO algorithm. The PSO algorithm was used
to search for the optimal learning rate of the ENN to improve the prediction accuracy
of the prediction model. Kun XI also analyzed the effect of neural network parameters
on the performance of the network in detail and demonstrated that the optimization
of network parameters can effectively improve the performance of the model. Finally,
the effectiveness of the method was verified through simulation comparison experiments
with the generalized regression neural network (GRNN) and traditional back propagation
neural network (BPNN).

Zhihao Shang and his colleagues [31] used the LSSVM, ELM, and GRNN models
to construct a combined prediction model. The weight coefficients of the three models
were calculated using the WOA algorithm. The model was compared with the traditional
BP and ARIMA models by real data. The experimental results verify that the model has
excellent prediction accuracy. This is also good evidence that the use of intelligent algo-
rithms to optimize the weighting coefficients of different models can effectively improve
the prediction accuracy of the models.

Lizhen Wu and his colleagues [32] proposed a GRU-CNN neural network electricity
load forecasting model based on gated recurrent units (GRU) and convolutional neural
networks (CNN). Lizhen Wu used the GRU module to specifically process the feature
vectors of time series data and the CNN module to process other high-dimensional data
feature vectors. The effective combination of the two modules was used to improve
the model prediction accuracy. Finally, the prediction performance of the model was
verified by comparison experiments with BPNN, GRU, and CNN models.

Zuoxun Wang and his colleagues [33] optimized the ELM neural network with the SSA
algorithm improved by firefly perturbation and chaos strategies to construct an electricity
load forecasting model. The powerful optimization-seeking capability of the FA-CSSA-
ELM algorithm was exploited to optimize two parameters in the ELM algorithm. Finally,
a comparison experiment with other competing models was used to verify that the model
can improve the prediction accuracy well.

Hairui Zhang and his colleagues [34] proposed a combined prediction model combin-
ing VMD, the Jordan neural network, the echo state network and the LSSVM model in order
to overcome the shortcomings of the single prediction model. The PSO algorithm was used
to optimize the relevant parameters of the neural network. This combined prediction model
can make full use of the advantages of different models. Finally, the weight coefficients
of the different models were calculated by the SA algorithm to obtain the final prediction
results. The simulation experiments of power load forecasting also demonstrated that this
model can improve the prediction accuracy of the forecasting model.

In summary, we found that the prediction performance of the combined prediction
model is better than that of the single model. Additionally, we believe that there is
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still a huge potential for improvement in the selection and improvement of intelligent
algorithms and data pre-processing for power load forecasting models, even though several
of the above forecasting models have high forecasting accuracy and performance.

3. Materials and Methods

This chapter introduces VMD, singular spectrum analysis, noise reduction methods
based on VMD–singular spectrum analysis, Elman neural network model, ELM neural
network model, LSSVM model, WOA algorithm, CAWOA algorithm, SSA algorithm,
EOBL-CSSA-LSSVM algorithm, and SA algorithm.

3.1. Variational Mode Decomposition

VMD is an adaptive solver and a completely non-recursive method for modal vari-
ation and signal processing. VMD can overcome the problems of endpoint effects and
modal component confounding that exist in EMD methods. It has been demonstrated in
the literature that VMD has a good decomposition effect in dealing with non-linear, non-
stationary, and highly complex time series. Additionally, the specific algorithm derivation
is shown in the paper [35].

3.2. Singular Spectrum Analysis

Singular spectrum analysis was first applied to oceanographic research in 1978 [36].
Nowadays, singular spectrum analysis is a common method for studying non-linear time
series. The basic idea of singular spectrum analysis is to calculate its corresponding Hankel
trajectory matrix H from a one-dimensional time series {hi, i = 1, . . . , N}, as shown in
Equation (1).

H =


h1 h2 · · · hk
h2 h3 · · · hK+1
...

...
. . .

...
hL hL+1 · · · hN

, (1)

where H is the trajectory matrix; L is the sliding window parameter and 1 < L < N; K
is defined as N − L + 1; and the eigenvalues and eigenvectors of their corresponding
eigenvectors are combined to reconstruct the new time series.

3.3. VMD–Specular Spectral Analysis Noise Reduction Method

In this paper, a noise reduction approach combining VMD and singular spectrum
analysis is proposed. First, the original data are adaptively decomposed and reconstructed
by introducing kurtosis calculation to make the variational mode decomposition. This
ensures that the reconstructed signal is close to the original signal while removing the high-
frequency noise present in it. Then, the reconstructed data are second filtered by an adaptive
singular spectrum analysis filter to remove the relatively low-frequency residual noise.
Additionally, the kurtosis value K(x) is calculated as shown in Equation (2).

K(x) =
E
[
(x− η)4

]
(

E
[
(x− η)2

])2 , (2)

where E is the expectation and η is the mean value of the series x. The calculated kurtosis
value K(x) is then compared with the kurtosis threshold set in this paper to select the IMF
components that need to be reconstructed. Finally, the signal to be reconstructed is noise-
reduced by singular spectrum analysis.

The detailed steps of the VMD–singular spectrum analysis of noise reduction method
can be summarized as follows:

1. Define the relevant parameters in VMD: the number of modes K and the penalty
factor ∂;
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2. Input time series f (t). The time series f (t) is decomposed into K components of IMF
by using VMD, and the decomposed components are denoted as F = {u1, . . . , uk, . . . uK};

3. The kurtosis values of the K components of IMF obtained from the VMD decomposi-
tion are calculated according to Equation (2) and noted as Ku = {Ku1, . . . , Kuk, . . . KuK};

4. Calculate the kurtosis value for each IMF component and search for IMF components
greater than the kurtosis threshold;

5. The IMF components obtained in step four are linearly reconstructed to obtain
the VMD noise-reduced time series f (t)′;

6. For the VMD processed signal f (t)′, choose a suitable window length parameter L to
lag-arrange the original time series to construct the Hankel matrix HL×K;

7. Singular spectrum analysis method is used to denoise Hankel matrix HL×K, and
H = U∑ VT is obtained. U and V represent the associated left and right singular spec-
tral vectors, respectively. Firstly, the covariance matrix S = HHT of the Hankel matrix
H is calculated, and then the covariance matrix S is decomposed into eigenvalues to
obtain λ1 ≥ λ2 ≥ . . . ≥ λL ≥ 0 and the corresponding eigenvector U1, U2, . . . , UL.
At this point, U = [U1, U2, . . . , UL] and

√
λ1 ≥

√
λ2 ≥ . . . ≥

√
λL ≥ 0 are singular

spectra of the original sequence, which can be expressed as H =
L
∑

m=1

√
λmUmVT

m ,

Vm = HTUm√
λm

, m = 1, . . . , L, where λi is the corresponding eigenvector and Ui is
a time-empirical orthogonal function that can reflect the evolutionary pattern of
the time series;

8. Divide the L components of the trajectory matrix H into C disjoint subsets representing
the different trend components;

9. Reconstruct the time series. Calculate the projection am
i of the hysteresis matrix Hi

onto Um, am
i = HiUm =

L
∑

j=1
Hi+jUm, 0 ≤ i ≤ N− L, where am

i reflects the weight of Hi

at the time of the original series hi+1, . . . , hi+L, and N is the length of the time series.
Finally, the time series is reconstructed by means of the time-empirical orthogonal
function Ui and the weights am

i . The specific reconstruction process can be defined as
Equation (3):

hk
i =



1
i

i
∑

j=1
ak

i−jUk,j, 1 ≤ i ≤ L− 1

1
L

L
∑

j=1
ak

i−jUk,j, L ≤ i ≤ N − L + 1

1
N−i+1

L
∑

j=i−N+L
ak

i−jEk,j, N − L + 2 ≤ i ≤ N

(3)

3.4. Elman Neural Network Model

The Elman neural network with great computational power. Each layer of the Elman
neural network is independent of each other, which is why it is widely used in the field of
power load forecasting [37].

Additionally, the non-linear state space expression of the Elman network can be
defined as:

y(k) = g
(

ω3x(k)
)

, (4)

x(k) = f
(

ω1xc(k) + ω2(u(k− 1))
)

, (5)

xc(k) = x(k− 1), (6)

where y is the output vector; x is the unit vector; u is the input vector; xc is the state vector;
ω3 is the weight of the output layer and the intermediate layer; ω2 is the weight of the input
and intermediate layers; ω1 is the weight of the take-up layer and the intermediate layer; g
and f is the transfer function.
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3.5. Extreme Learning Machine Neural Network

Elman is a neural network with powerful generalization capabilities. However, the ini-
tial weights and thresholds of ELM are randomly assigned [38,39].

Suppose there are Q learning samples, {(xl , yl)}Ql = 1 and xl ∈ Rπ , yl ∈ Rψ. Assume
that the number of hidden layer neurons is M. The standard form is shown in Equation (7):

∑M
j=1 aj

(
ωjxl + bj

)
= fM(x) (7)

According to the zero-error approximation principle, the existence of bj, aj, ωj reduces
the normalized form to Equation (8).

Ha = Y, (8)

where H is the output matrix, Y is the desired output matrix, and a is the output weight
matrix found using the solved least squares method. Finally, the solution is continued
using a′ = H+Y. The specific mathematical model is shown in paper [38].

3.6. Least Square Support Vector Machine

LSSVM can convert complex quadratic programming problems into linear systems
of equations problems and improve the speed of problem solving by replacing inequality
constraints with equation constraints in SVM optimization problems [40,41].

Let the input and output of the n training samples be (x1, y1), (x2, y2), . . . , (xi, yi), i = 1,
2, . . . , n, where xi is the input vector and yi is the output vector. The optimal decision
function is constructed in the high-dimensional feature space using a non-linear mapping
function, as shown in Equation (9):

f (x) = ωT ϕ(x) + b, (9)

where ωT is the weight vector and b is a constant. The optimization objective can be
expressed as Equation (10):

min
1
2
‖ω‖+ 1

2
λ

n

∑
i=1

ξ2
i (10)

The constraint can be expressed as Equation (11):

yi = ωT ϕ(xi) + b + ξ, i = 1, 2, . . . , n (11)

where λ is the penalty factor and ξ is the relaxation factor. Because the LSSVM can
transform a quadratic programming problem into a problem of solving the above system
of linear equations, the prediction model can be summarized as Equation (12).

yi = b +
n

∑
i=1

aik(x, xi) (12)

The specific mathematical derivation is shown in paper [40].

3.7. Sparrow Search Algorithm

The sparrow search algorithm is a swarm intelligence optimization algorithm pro-
posed by Xue in 2020 [21]. The algorithm is mainly based on the foraging and anti-predation
behavior of sparrows. The SSA has high search accuracy, fast convergence, high stability,
and robustness compared to other population intelligence optimization algorithms. Ad-
ditionally, the SSA has been successfully applied in the field of path planning [42] and
structural optimization of micro-grids [43].

Sparrows in the SSA algorithm are classified as discoverers, joiners, and vigilantes.
The discoverer is responsible for finding food for the entire population and providing
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foraging directions for the joiners, so the discoverer’s foraging search is larger than that of
the joiners. During each iteration, the discoverer iterates according to Equation (13):

xt+1
id =

{
xt

id · exp
(
−i
∂·T

)
, R2 < ST

xt
id + Q · L, R2 ≥ ST

, (13)

where t denotes the current number of iterations, T denotes the maximum number of
iterations, ∂ is a random number between [0, 1], Q is a random number subject to a normal
distribution, L is a matrix of 1× d whose elements are all 1, R2 denotes a guard value,
ranging from [0, 1], and ST is a safe value, ranging from

[
1
2 , 1
]
.

During the foraging process, some joiners will always monitor the finder, and when
the finder finds better food, the joiner will compete with it. If successful, it will immedi-
ately obtain that finder’s food, otherwise the joiner will update its position according to
Equation (14).

xt+1
id =


xt

id · exp
(

xwt
d−xt

id
i2

)
, i > n

2

xbt+1
d + 1

D

D
∑

d=1

(
rand{−1, 1} ·

∣∣∣xt
id − xbt+1

d

∣∣∣), i ≤ n
2

, (14)

where xwt
d denotes the worst position in dimension d of the t-th iteration and xbt+1

d denotes
the best position. When i > n

2 , it means that the population is short of food and needs to
go elsewhere to forage. When i ≤ n

2 , it means that the tracker is predating near the optimal
position xb.

The number of sparrows aware of danger in a sparrow population is 10–20% of
the total, and the location of these sparrows is randomly generated and continuously
updated according to Equation (15) for the location of the vigilantes.

xt+1
id =

 xbt + β
(
xt

id − xbt
d
)
, fi 6= fg

xt
id + K

(
xt

id−xwt
d

| fi− fw |+µ

)
, fi = fg

, (15)

where β is the step control parameter, a normally distributed random number with a mean
of 0 and a variance of 1; K is a random number between [−1, 1]; µ is a very small number,
just in case the denominator is 0; fi is the current fitness; fg is the best fitness; and fw is
the worst fitness.

3.8. The EOBL–CSSA Algorithm

In this paper, the chaotic mapping strategy and the elite opposition-based learning
strategy are used to optimize the SSA algorithm. Firstly, the initial population is initial-
ized by Tent chaotic mapping to improve the quality of the initial solution and enhance
the global search capability of the algorithm. An elite back-learning mechanism is then
introduced on top of the chaotic sparrow algorithm to extend the global search capability
of the algorithm. Before extending the neighborhood of the current best individual, reverse
learning is performed on it to generate a reverse search population within its search bound-
ary, guiding the algorithm to approach the solution space containing the global optimum,
thus improving the algorithm’s balancing and exploration capabilities as well as its ability
to jump out of local extremes.

3.8.1. Tent Chaotic Mapping Strategy

The random and ergodic nature of chaos can effectively maintain the diversity of
the population, helping the algorithm to jump out of the local optimum and improving
the global search capability of the algorithm. It has been documented that the algorithm’s
ability to find an optimum is influenced by the ergodicity of the chaotic mapping [44].
The more uniform the chaotic mapping, the faster the convergence of the algorithm. As
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shown in Figure 1, we can observe that the Tent chaotic mapping is well distributed and
has even better traversal performance.
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Suppose that in a space of dimension D, where x = {xn, n = 1, 2, . . . , D}. Additionally,
the Tent chaos mapping can be expressed as Equation (16):

xn+1 =

{
2xn, 0 ≤ xn < 0.5

2(1− xn), 0.5 ≤ xn ≤ 1
, (16)

3.8.2. Elite Opposition-Based Learning Strategies

Paper [45] introduces the concept of backward learning for the first time. This method
generates a reverse solution individual of the current individual in the fetching region and
will select the better of the two into the next generation. It is further shown that the reverse
solution has a probability of being closer to the global optimum than the current population
by about 50%. The elite inverse strategy has been used in group intelligence optimization
algorithms such as PSO [46], Harris Hawk Optimization (HHO) [47] and the Dragonfly
Algorithm (DA) [48].

In this paper, the global search capability of the algorithm is extended by introducing
an elite opposition-based learning mechanism. The strategy takes the top 10% of individu-
als in terms of sparrow fitness as the elite solution, while obtaining the dynamic boundaries
of the elite sparrows. Before neighborhood expansion is performed on the current best
sparrow individual, backward learning is performed on it to generate a reverse search
population within its search boundary, guiding the algorithm to approach the solution
space containing the global optimum. The sparrow position is updated by comparing
the sparrow adaptation values before and after the update. If the comparison result is better,
the previous sparrow is replaced. In summary, the elite opposition-based learning strategy
can be a good way to improve the algorithm’s balance and exploration capabilities, thus
helping the algorithm to jump out of local extremes. The elite opposition-based learning
strategy can be illustrated by the following three definitions:

Theorem 1. Reverse solution [49]: Let there exist a real number x on the interval [a, b]. Then, the re-
verse solution of x is defined as x′ = a + b− x. Suppose there exists a certain N-dimensional point
p = (x1, . . . , xi, . . . , xN) on an R-domain and xi ∈ [ai, bi]. Then, define p′ =

(
x′1, . . . , x′i , . . . , x′N

)
to be the inverse of p, where x′i = k(ai + bi)− xi; k is a generalized coefficient and is a uniform
random number belonging within [0, 1].

Theorem 2. Optimization based on reverse solutions [49]: Let the problem to be optimized be
the minimum problem and the fitness function be set to f . If there exists some feasible solution x,
then its reverse feasible solution is x′. If f (x′) < f (x) holds, then replace x with x′.
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Theorem 3. Elite Reverse Solution [49]: Let x′best =
(
x′1, . . . , x′i , . . . x′N

)
be the reverse solution

of the current group of elite individuals xbest = (x1, . . . , xi, . . . xN) in some N-dimensional space,
where x′i = k(ai + bi)− xi; xi ∈ [ai, bi]; k is a generalized coefficient and is a uniform random
number belonging to the interior of [0, 1].

The flow of the chaotic sparrow search algorithm based on the elite opposition-based
learning strategy can be summarized as follows:

1. Initialize the population and the number of iterations using the Tent chaos mapping

formula xn+1 =

{
2xn, 0 ≤ xn < 0.5

2(1− xn), 0.5 ≤ xn ≤ 1
. Initialize the initial ratio of predators

and joiners;
2. Calculate fitness values and ranking based on the results;

3. Update predator location based on xt+1
id =

{
xt

id · exp
(
−i
∂·T

)
, R2 < ST

xt
id + Q · L, R2 ≥ ST

;

4. Update joiner location based on xt+1
id =


xt

id · exp
(

xwt
d−xt

id
i2

)
, i > n

2

xbt+1
d + 1

D

D
∑

d=1

(
rand{−1, 1} ·

∣∣∣xt
id − xbt+1

d

∣∣∣), i ≤ n
2

;

5. Update guard positions according to xt+1
id =

 xbt + β
(
xt

id − xbt
d
)
, fi 6= fg

xt
id + K

(
xt

id−xwt
d

| fi− fw |+µ

)
, fi = fg

;

6. Calculate fitness values and update sparrow positions;
7. Find the reverse solution of all current solutions according to the defining formula

x′ = a + b− x for the reverse solution;
8. Those individuals whose fitness value of the original solution is greater than the fitness

value of the reverse solution are selected according to the elite selection formula
f (x′) < f (x) and form an elite group;

9. On the new search space constructed by the elite population, the reverse solution is
then found for individuals whose original solution fitness value is less than the re-
verse solution fitness value according to equation x′i = k(ai + bi)− xi. If the algorithm
converges to the global optimal solution, the search interval formed by the elite popu-
lation must converge to the region where the optimal solution is located. This makes
full use of the effective information of the elite population to generate the inverse
solution on the dynamically defined interval formed by the elite population, guiding
the search closer to the optimal solution;

10. Calculate the fitness value and update the sparrow individuals and locations. Com-
pare the sparrow individuals and locations before and after the update and compare
the results with each other to see if the results are better. If the result is better, replace
the previous sparrow;

11. Determine whether the stop condition is met. If the condition is met, exit and output
the result. Otherwise, repeat steps 2–10.

3.9. Whale Optimization Algorithm

The whale optimization algorithm is a new nature-inspired optimization algorithm
proposed by Mirjalili in 2016 [20]. The WOA simulates the social behavior of humpback
whales, using random or optimal search agents to model the special hunting behavior of
humpback whales, and introduces a bubble attack strategy based on this. The WOA con-
verges quickly around the optimal value and has good global optimization capability. Pa-
per [20] systematically illustrates the mathematical model of the whale
optimization algorithm.

However, the WOA has the disadvantages of uneven initial population distribution,
low convergence accuracy, and insufficient global optimization capability when solving
complex problems. Therefore, this paper proposes a chaotic adaptive whale algorithm on
this basis.
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3.10. Chaotic Adaptive Whale Optimization Algorithm

The population is initialized by the chaotic properties of the Sine chaos mapping to
ensure a uniform distribution of this whale in the solution space. In addition, studies
have shown that larger thresholds facilitate global exploration and smaller thresholds
enhance local exploitation. Therefore, this paper introduces adaptive inertia weights to
improve the convergence accuracy and global optimization capability of the algorithm.
The algorithm is made to have larger inertia weights in the early iterations and smaller
inertia weights in the later iterations.

3.10.1. Sine Chaotic Mapping Strategy

The mathematical model of Sine chaotic self-mapping is defined as Equation (17):

Xn+1 =
a
4

sin(πXn) (17)

Additionally, when a ∈ [0, 4], the algorithm is in a chaotic state. This ensures that
the whales are evenly distributed in the solution space after a certain number of iterations.
The Sine chaos mapping distribution is shown in Figure 2.
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3.10.2. Adaptive Inertia Weights

The adaptive inertia weight is introduced to balance the global exploration capability
and local exploitation capability of the algorithm. This can be a good way to improve
the optimization capability of the algorithm. The mathematical model of adaptive inertia
weight ω is defined as Equation (18):

ω =
1
5
+

1

0.4− exp
( f f it(x)

s

)r (18)

where f f it(x) is the fitness value of whale x, r is the current number of iterations, and s is
the best adaptation value for the whale population in the first iteration of the calculation.
Using the dynamic nonlinearities of ω to obtain the new whale position, the optimized
formula can be expressed as Equations (19) and (22):

X(t + 1) = ω · Xd(t)− A · |CXd(t)− X(t)| (19)

X(t + 1) = ω · Xd(t) + (|Xd(t)− X(t)|) · ebh · cos(2πh) (20)

X(t + 1) =
{

ω · Xd(t)− A · |CXd(t)− X(t)|
ω · X(t + 1) = Xd(t) + (|Xd(t)− X(t)|) · ebh · cos(2πh)

p ≤ Po
p > Po

(21)

X(t + 1) = ω · XR(t)− A · |C · XR(t)− X(t)| (22)
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where |Xd(t)− X(t)| is the distance between the optimal solution and the current position,
b is the constant of the shape of the logarithmic spiral, h is the random number between
[−1, 1], X(t) is the current position of the whale, Xd(t) is the prey position, which is
the optimal solution, and t is the number of iterations. A and C are coefficient vectors, and
Po =

1
2 is selection probability.

3.11. Simulated Annealing

The SA algorithm can be divided into two parts: the Metropolis criterion and the an-
nealing process. The specific mathematical model is shown in paper [50]. In this paper,
the SA algorithm is used to determine the proportion of weights for the prediction results
of the three models, and the initial weights of all three models are set to 1/3. Finally,
the prediction results of each prediction model are used to determine the final prediction
results using Equation (23).

Y = ω1Y1 + ω2Y2 + ω3Y3 (23)

where Y is the final prediction result; Y1, Y2, and Y3 are the Elman prediction model,
CAWOA-ELM prediction model, and EOBL-CSSA-LSSVM prediction model, respectively;
and ω1, ω2, and ω3 are the best weighting coefficients for the above three prediction models,
respectively. The size of the weights represents the degree of influence the model has on
the overall portfolio forecasting model. The larger the weight, the greater the contribution
of the model to the portfolio model. The smaller the weight, the smaller the model’s
contribution to the portfolio model. The specific operational flow of the SA algorithm to
determine the optimal weighting coefficients for the three prediction models is shown in
Figure 3.
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3.12. The Combined Forecasting Models

This paper introduces a novel combined prediction model based on machine learning
algorithms, swarm intelligence optimization algorithms, and data pre-processing. As
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shown in Figure 4, the prediction model can be simplified into three modules: Module A,
Module B, and Module C.
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Module A represents the data processing module. In real life, raw electrical load data
inevitably contain data noise. This data noise can significantly interfere with the learning
ability of the model. Therefore, we use VMD–spectral analysis to obtain pure signals.

Module B represents the process of obtaining forecasts using three independent
forecasting models. Divide the pure data obtained through module A into the input set
and the output set. Firstly, the ELMAN prediction model is trained with the dataset and
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the optimal number of hidden layers is determined by simulation. The prediction results
are then recorded as Y1. Secondly, the CAWOA-ELM model is trained with the dataset to
obtain the prediction result Y2. The appropriate initial weights and thresholds for the ELM
model are selected by the CAWOA algorithm. Thirdly, the EOBL-CSSA-LSSVM model is
trained using the dataset to obtain the prediction result Y3. Then, the EOBL-CSSA algorithm
is used to optimize the two parameters in the LSSVM: the penalty factor gam and RBF
kernel parameter sig.

Module C represents the process of determining the best weighting coefficients for
each set of prediction models by using the SA algorithm. Module C represents the weight-
ing calculation process. The SA algorithm is used to determine the best weighting co-
efficients for each set of predictions obtained from module B predictions. Additionally,
the weight coefficients obtained for each set are multiplied with the prediction results
of each of the three prediction models. Finally, the final prediction results are obtained
by summing.

3.13. Forecast Feedback System for Electricity Load Forecasting Models

In real life, the way in which the electricity load forecasting model is applied is
shown in Figure 5. The generator converts the voltage to 220 KV through the booster
transformer. The electrical load is then transmitted to the primary high-voltage substation
via the 220 KV high-voltage transmission line. The voltage is converted from 220 KV to
110 KV at the primary high-voltage substation and then transmitted to the secondary high-
voltage substation via the 110 KV high-voltage transmission line. Finally, the secondary
high-voltage substation converts the electrical load to the voltage required by the factory
or the general user for the daily supply of electricity. Due to the nature of the electrical
load, it cannot be stored on a large scale. If too much of the electrical load is transmitted,
it can lead to a waste of resources. If too little electrical load is transmitted, it can lead to
inadequate power supply and inconvenience to the population.

Based on the above problems, this paper applies the power load forecasting model
to the primary high-voltage substation phase. Firstly, historical data of the power load
in the area are collected through the relevant power department. The historical data
are applied to the combined forecasting model proposed in this paper. The predictive
model learns continuously to accurately predict the values and trends of the power loads on
the 110 KV high-voltage transmission lines in the coming days. Secondly, the forecast results
are fed back to the relevant authorities to provide accurate and reasonable feedback to
the power sector. Finally, the power sector obtains symmetric information through the high
accuracy of the combined forecasting model proposed in this paper. This symmetric
information will not only help the power sector to maintain a dynamic balance between
power supply and consumption, but also to reduce the waste of resources.
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4. The Simulation Experiments
4.1. The Datasets

To verify the forecasting performance and applicability of the combined model pro-
posed in this paper, real electricity load data for 20 weeks from 00:00 on 30 April 2007 to
24:00 on 12 September 2007 for the five administrative states of the south-eastern Aus-
tralian grid are used as the experimental data for the simulation. The experimental data
are collected using a 30-min measurement interval. In other words, a total of 48 sets of
experimental data are collected each day, making a total of 6720 sets of experimental data.
In this paper, electricity load data are divided into seven data subsets in the order of
Monday to Sunday. That is, the electricity load data for each Monday of the 20 weeks are
stored in the Monday data subset, and so on for the rest, creating a total of seven data
subsets from Monday to Sunday. Then, a combined model is built for each data subset for
prediction. In this paper, 912 data points from the first 19 weeks of the 20 weeks of data
from each data subset are used as the training set and 48 data points from the last week as
the test set to verify the prediction performance of the proposed combination model. In
this way, each data subset is used to predict the data of the next week using the data of
the previous week.



Symmetry 2021, 13, 1579 15 of 27

4.2. Error Evaluation Indicators

Because of the uncertainty and randomness of electrical loads, errors are inevitable
in any forecasting method. In this paper, the Root Mean Square Error (RMSE), Mean
Absolute Percentage Error (MAPE), Mean Square Error (MSE), and Mean Absolute Error
(MAE) are used to verify the results. The four evaluation functions are shown in Table 1.
In addition, the statistics of the four error evaluation metrics are presented in numerical
form to indicate the prediction results of the forecasting model. The lower the value of
the statistic, the better the prediction performance.

Table 1. The four error evaluation indicators.

Metrics The Formula

RMSE RMSE =

√
1
N

N
∑

i=1
(ti − pi)

2,

MAPE MAPE = 100%
N

N
∑
i

∣∣∣ ti−pi
ti

∣∣∣,
MSE MSE = 1

N

N
∑

i=1
(ti − pi)

2

MAE MAE = 1
N

N
∑

i=1
|ti − pi|,

where ti is the i-th sample of expected output; pi is the i-th sample of predicted output; and N is the sample size.

4.3. Electricity Load Simulation Experiments
4.3.1. Electricity Load Forecasting Data Pre-Processing Experiments

Any noise removal method can only reduce the noise present in the signal as much as
possible but cannot remove it completely. In order to verify the noise reduction performance
of the VMD–singular spectrum analysis method, in this paper, the data pre-processing sim-
ulation comparison experiments are divided into two groups, namely, the VMD–singular
spectrum analysis and the singular spectrum analysis method comparison experiments,
and the VMD–singular spectrum analysis and the original un-noised method compari-
son experiments.

In order to better compare the de-noising performance of the VMD–singular spectrum
analysis method proposed, the paper is compared with the singular spectrum analysis
method used in paper [34] in the comparative test of the de-noising effect.

Model A is the combined forecasting model proposed in paper [34] combining the Jor-
dan, ESN, and LSSVM models. Model B is the novel combined forecasting model proposed
in this paper combining the Elman, CAWOA-ELM, and EOBL-CSSA-LSSVM models. In
addition, the two combined models are broken down into six single forecasting models for
observation and the MAPE values are used as quantitative data. The comparison of noise
reduction effect data is shown in Tables 2–4.

Table 2. VMD–singular spectrum analysis is used in power load denoising reduction experiments (MAPE).

Time Jordan PSO-ESN SA-
LSSVM

Combination
Model A Elman CAWOA-

ELM
EOBL-CSSA-

LSSVM
Combination

Model B

Monday 2.88 1.36 1.02 1.01 1.27 0.97 1.01 0.61
Tuesday 3.26 1.85 1.11 1.03 3.28 1.82 1.09 1.00

Wednesday 2.05 1.13 1.07 0.74 1.42 1.12 1.12 0.81
Thursday 1.79 1.65 1.65 1.41 1.70 1.31 1.00 0.87

Friday 1.21 1.27 0.90 0.62 1.33 0.79 0.64 0.58
Saturday 1.93 1.93 1.06 0.89 1.51 1.03 0.72 0.57
Sunday 2.13 2.39 1.68 1.25 1.85 1.42 0.95 0.79
Average 2.18 1.53 1.21 0.98 1.76 1.20 0.79 0.74
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Table 3. Singular spectrum analysis is used in power load noise reduction experiments (MAPE).

Time Jordan PSO-ESN SA-
LSSVM

Combination
Model A Elman CAWOA-

ELM
EOBL-CSSA-

LSSVM
Combination

Model B

Monday 2.70 2.04 1.21 1.14 2.01 1.12 1.09 0.82
Tuesday 1.44 2.79 1.39 1.21 2.79 2.47 1.32 1.23

Wednesday 2.03 1.13 2.42 1.02 1.65 1.22 0.97 0.89
Thursday 1.83 1.72 1.26 1.19 2.42 1.37 1.07 0.91

Friday 1.44 1.30 1.03 0.98 1.27 1.26 1.71 1.20
Saturday 2.41 2.48 1.55 1.32 1.86 1.68 1.11 1.08
Sunday 2.26 2.17 1.46 1.29 1.88 1.15 1.23 1.07
Average 2.02 1.95 1.47 1.16 1.98 1.47 1.21 1.02

Table 4. Raw data are used for power load noise reduction experiments (MAPE).

Time Jordan PSO-ESN SA-
LSSVM

Combination
Model A Elman CAWOA-

ELM
EOBL-CSSA-

LSSVM
Combination

Model B

Monday 5.02 2.45 1.09 1.32 4.14 1.35 1.02 0.94
Tuesday 6.88 4.07 2.44 2.37 5.02 3.01 1.67 1.53

Wednesday 4.94 1.51 2.80 1.66 3.71 1.74 2.35 1.67
Thursday 3.12 2.95 1.51 1.78 4.45 2.27 1.52 1.48

Friday 5.10 1.66 2.36 1.89 4.88 1.64 2.80 1.57
Saturday 5.47 2.37 4.72 2.35 6.02 2.28 4.42 2.15
Sunday 4.71 1.48 3.16 1.56 6.78 2.79 3.33 2.44
Average 5.03 2.36 2.58 1.85 5.01 2.15 2.44 1.68

Through the comparative experimental analysis of the denoising effect of the VMD–sin-
gular spectrum analysis and the singular spectrum analysis in Tables 2 and 3, we can clearly
observe that the combined model A has a different degree of reduction in all subsets ex-
cept for the Thursday subset, where the MAPE value is slightly increased. Among them,
the highest reduction in MAPE value is 0.43%, the lowest is 0.13%, and the average pre-
diction error is reduced by 0.18%. For the combined model B, the noise reduction effect of
the VMD–spectral analysis was reduced to varying degrees compared to the noise removal
effect of the singular spectrum analysis. The highest reduction in MAPE value was 0.62%,
the lowest was 0.04%, and the overall average reduction was 0.28%.

In addition, we observed that for the six single combination models, MAPE values
decreased to varying degrees for most of the subsets, except for some single models that
showed an increase in MAPE values for individual time subsets. Especially for the SA-
LSSVM model and the EOSL-CSSA-LSSVM model, the prediction errors are reduced
by 0.26% and 0.42%, respectively. Therefore, we can obtain the following conclusion:
from the perspective of the overall noise reduction effect, the noise reduction effect of
VMD–singular spectrum analysis is better than that of the singular spectrum analysis noise
reduction method.

Through the VMD–singular spectrum analysis in Tables 2 and 4 and the compara-
tive experimental analysis of the original data without denoising, we can observe that,
regardless of the combination model A or the combination model B, the effect of noise
reduction processing is more obvious, especially for the Elman prediction model and
the Jordan prediction model. At the same time, we also observed that almost all the data
pre-processed by VMD–singular spectrum analysis in the combined model B have different
degrees of reduction in the MAPE value of the unprocessed original data. This also shows
that the VMD–singular spectrum noise reduction method does have a positive effect on
improving the prediction performance of the combined model. In addition, the highest
value of the noise reduction effect is on Sunday, and its MAPE value is reduced by 1.65%.
The lowest value of noise reduction effect is on Monday, and its MAPE value is reduced
by 0.33%. This may be because the data model of Sunday is more complicated, so the de-
noising effect is obvious, while the data model of Monday is relatively stable and the noise
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reduction effect is relatively gentle. In summary, we can draw the conclusion that for
the new combined prediction model proposed in this article, the VMD–singular spectrum
analysis denoising method can indeed effectively improve the prediction performance of
the combined prediction model.

4.3.2. Performance Analysis of Simulation Experiment of Elman Electric Load
Forecasting Model

Secondly, Elman forecasting models are built for each of the seven subsets of temporal
data divided as described above. In addition, in order to obtain the best predictive per-
formance for the whole combination model, it is necessary to ensure that each sub-model
of the combination model achieves the best predictive performance. Since the prediction
performance of the Elman network is affected by the number of hidden layers, we ensure
that the Elman model achieves the best performance by selecting the appropriate number
of hidden layers and choosing a range between 15 and 50. The optimal number of hidden
layers for the Elman model is shown in Table 5.

Table 5. Optimal number of hidden layers in Elman model.

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Hidden layer 25 27 25 23 26 32 29
MAPE (%) 1.27 3.28 1.42 1.70 1.33 1.51 1.85

As shown in Table 5, the optimal number of hidden layers in the Elman model from
the Monday subset to the Friday subset is very similar, and the value fluctuates around 25.
Additionally, Monday and Wednesday have the same optimal number of hidden layers.
Interestingly, we also found that MAPE values are very similar in all the models except
Tuesday. Although the optimal number of hidden layers for Saturday and Sunday is 32
and 37, respectively, the MAPE values for these two subsets are also relatively similar.
This may be due to the similarity of the data patterns from Monday to Friday, even
though the magnitude of the change in MAPE values is more pronounced on Thursday.
We also found that the MAPE values of the ELMAN model fluctuate considerably, and
the maximum value is 2.01% of the minimum value.

4.3.3. Performance Analysis of CAWOA-ELM Power Load Forecasting Model

Thirdly, this paper builds seven CAWOA-ELM models for each of the seven data
subsets divided above. The performance of the ELM model depends on the initial weights
and thresholds. Therefore, we use the CAWOA algorithm to determine the ELM model.
In addition, this paper also improves the prediction accuracy of the model by selecting
the best hidden layer neurons.

Table 6 shows the optimal number of hidden layers and MAPE values for different
datasets. As can be seen from Table 6, the prediction performance of the CAWOA-ELM
model is excellent, and the fluctuation of MAPE values is relatively small. The difference
between the maximum and minimum values of the MAPE is 1.03%. The difference between
the maximum and minimum MAPE values is 1.03%, and the MAPE value for Friday
is 0.78%.

Table 6. The optimal number of hidden layer neurons in CAWOA-ELM model.

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Hidden layer 25 24 25 29 42 38 32
MAPE (%) 0.97 1.81 1.12 1.31 0.78 1.03 1.42
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4.3.4. Performance Analysis of the EOBL-CSSA-LSSVM Electricity Load Forecasting Model

Finally, seven EOBL-CSSA-LSSVM prediction models are built for each of the seven
temporal data subsets divided above. Additionally, the novel EOBL-CSSA algorithm is
used to optimize the penalty factor gam and the RBF kernel parameter sig in LSSVM, and
the results of the optimization search are shown in Table 7. Then, the two parameters
obtained by the optimization of the EOBL-CSSA algorithm are assigned to the LSSVM
prediction model.

Table 7. The optimization results of EOBL-CSSA algorithm for LSSVM model.

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

gam 7896.90 10,000.00 9881.20 10,000.00 5712.00 7822.40 6127.30
Sig 153.97 1260.20 31.67 41.10 150.35 30.77 14.44

MAPE (%) 1.01 1.09 1.12 1.00 0.64 0.72 0.95

4.3.5. SA Algorithm Optimizes the Weighting Factors of Three Electricity Load
Forecasting Models

Finally, the SA algorithm is used to solve for the optimal weights for each predictive
model in the linear combination formulation. The parameters of the SA algorithm were
set as follows: the Markov chain length is 50, the decay parameter is 0.998, and the step
factor is 0.01. Moreover, the initial value of the combined weights for all three models
was set to 0.33. The optimal weight proportions for each model are shown in Table 8.
From Table 8, we find some interesting phenomena: firstly, the average weight of the three
models shows that the EOBL-CSSA-LSSVM model has the highest weight and contribution,
accounting for approximately 60% of the weight. The Elman model has the lowest weight
and contribution, about 10%, while the CAWOA-ELM model also plays a key role, about
30%. Additionally, as shown in the Monday subset, W2 has a weight of 0.5714, while W3 has
a weight of 0.5714. This is a good indication that the prediction accuracy of the combined
model is influenced in large part by the CAWOA-ELM model. In the Wednesday subset,
the weights of the three models are very close to each other, which is a good indication that
the three models make similar contributions to the combined model.

Table 8. The optimized combination weights by the SA algorithm for load forecasting.

Monday Tuesday Wednesday Thursday Friday Saturday Sunday Average

W1 0.1175 0.0402 0.2774 0.1761 0.0815 0.0281 0.0386 0.1085
W2 0.5714 0.0961 0.3613 0.3125 0.4473 0.1068 0.0971 0.2846
W3 0.3111 0.8637 0.3613 0.5114 0.4712 0.8651 0.8643 0.6069

MAPE 0.61 1.00 0.81 0.87 0.58 0.57 0.79 0.74

Among them, W1 represents the weight of the Elman model, W2 represents the weight
of the CAWOA-ELM model, and W3 represents the weight of the EOBL-CSSA-LSSVM model.

5. Analysis of Experimental Results of Power Load Simulation

In order to illustrate more effectively the points of the combined prediction model
proposed in this paper, we divided the simulation experimental results into several groups
of experiments for analysis. Figure 6 shows the prediction results and prediction trends for
the three combined prediction models and the six individual prediction models. Figure A1
in Appendix A shows an enlarged view of the prediction results of the competitive model.
The three combined forecasting models include the combined forecasting model proposed
in this paper, the combined forecasting model proposed in paper [34], and the FA-CSSA-
ELM forecasting model proposed in paper [33]. The six individual forecasting models
include the Jordan model, the Elman model, the PSO-ESN, the SA-LSSVM, the CAWOA-
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ELM, and the EOBL-CSSA-LSSVM forecasting model. Additionally, the different color
curves represent the prediction results of different prediction models.
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Figure 6. The final daily power load forecast value of different forecast models. (a) Describes the prediction results of
different prediction models in the Monday subset; (b) Describes the prediction results of different prediction models in
the Tuesday subset; (c) Describes the prediction results of different prediction models in the Wednesday subset; (d) Describes
the prediction results of different prediction models in the Thursday subset; (e) Describes the prediction results of different
prediction models in the Friday subset; (f) Describes the prediction results of different prediction models in the Saturday
subset; (g) Describes the prediction results of different prediction models in the Sunday subset.
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We conducted a comparative analysis between the combined prediction model pro-
posed in this paper and the six individual prediction models. As shown in Figure 6,
we found that the prediction results of the combined prediction model proposed in this
paper are closer to the real historical data. This is followed by the prediction results of
the EOBL-CSSA-LSSVM model and the PSO-ESN prediction model. Although the pre-
dictive performance of both the EOBL-CSSA-LSSVM model and the PSO-ESN model is
excellent, the overall volatility of the PSO-ESN model is higher than that of the EOBL-
CSSA-LSSVM model. However, the overall volatility of the PSO-ESN model is higher than
that of the EOBL-CSSA-LSSVM model, especially on weekdays. Therefore, we believe
that the EOBL-CSSA-LSSVM model has a better predictive performance. In addition,
the prediction curves of Jordan’s model and Elman’s model are the furthest away from
the real data and have the largest variation. Therefore, we conclude that the prediction
performance of the Jordan and Elman models is relatively poor. In summary, the com-
bined prediction model proposed in this paper showed the best prediction accuracy and
prediction performance compared to the six individual prediction models.

We also conducted a comparative analysis between the combined prediction model
proposed in this paper and the three combined prediction models. As shown in Figure 6,
among the three combined prediction models, the FA-CSSA-ELM prediction model has
the lowest prediction accuracy and the prediction curve is the farthest away from the real
data. In addition, the prediction curves of both the combined prediction model proposed
in paper [34] and the prediction model proposed in this paper are very close to the distance
of the real data. However, on Thursday, the prediction curves of the model proposed in
this paper are closer to the real data. Therefore, from an overall perspective, the prediction
model proposed in this paper has the best prediction accuracy.

In order to more intuitively verify the predictive performance of the combined models
proposed in this paper, we gave the evaluation values of the different prediction models
in numerical form in conjunction with the four error evaluation metrics shown in Table 1,
as shown in Table 9. In particular, the RMSE, MSE, and MAE can reflect the prediction
accuracy, while the MAPE shows a high prediction expressiveness. In addition, we also
compared the prediction performance of different prediction models more visually in
the form of bar charts, as shown in Figure 7. From the values of the indicators presented
in Table 9 and Figure 7, we found that the RMSE, MAE, MAPE, and MSE values of
the combined forecasting model proposed in this paper have the best expressions compared
to other competing models. We also found a satisfactory prediction result: the MAPE values
for all data subsets were less than or equal to 1%, even with a minimum value of 0.57%.
Although the mean MAPE value of the prediction model proposed in paper [34] is very close
to 1%, its maximum and minimum MAPE values are 1.52% and 0.62%, respectively. This
also indicates that our proposed new combined forecasting model has the best forecasting
accuracy and forecasting performance.

Table 9. Evaluation index statistics of different power load competition models.

Time Jordan Elman PSO-
ESN

SA-
LSSVM

CAWOA-
ELM

EOBL-CSSA-
LSSVM

Combination
Model A

Combination
Model B

FA-CSSA-
ELM

MSE Monday 49.31 21.95 19.38 22.50 16.83 15.62 15.62 10.13 17.09
Tuesday 50.82 31.45 18.89 51.50 30.13 18.88 17.88 15.22 24.87
Wednesday 25.51 20.90 17.27 23.45 18.24 17.24 12.10 14.30 16.63
Thursday 31.57 28.97 27.35 27.65 22.65 17.95 26.24 12.75 13.35

Friday 18.34 21.68 15.25 23.84 12.30 11.13 10.91 8.72 22.03
Saturday 33.65 38.12 21.12 30.00 19.96 13.00 14.91 7.95 20.85
Sunday 35.47 26.43 31.64 33.06 26.86 19.04 21.12 14.28 17.83

MAPE Monday 2.89 1.36 1.03 1.27 0.97 1.01 1.01 0.61 1.00
Tuesday 3.27 1.85 1.09 3.28 1.82 1.09 1.03 1.00 1.49
Wednesday 2.05 1.13 1.07 1.42 1.12 1.12 0.74 0.81 1.02
Thursday 1.79 1.65 1.65 1.71 1.31 1.01 1.52 0.87 0.94

Friday 1.21 1.28 0.91 1.33 0.78 0.64 0.62 0.58 1.30
Saturday 1.93 1.93 1.06 1.51 1.03 0.72 0.90 0.58 1.03
Sunday 2.13 1.57 1.69 1.85 1.43 0.95 1.26 0.79 0.90
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Table 9. Cont.

Time Jordan Elman PSO-
ESN

SA-
LSSVM

CAWOA-
ELM

EOBL-CSSA-
LSSVM

Combination
Model A

Combination
Model B

FA-CSSA-
ELM

RMSE Monday 328.56 152.10 134.26 155.88 116.57 112.84 112.84 0.61 118.41
Tuesday 352.07 235.70 130.85 356.81 230.71 130.82 120.82 74.36 150.76
Wednesday 128.23 142.80 119.71 162.48 126.37 119.43 80.12 110.42 115.23
Thursday 218.69 200.71 189.48 191.58 156.93 124.33 197.43 89.76 92.49

Friday 127.07 150.20 105.69 165.16 85.22 77.12 66.16 91.33 152.65
Saturday 233.16 264.07 146.34 207.83 138.25 90.09 91.26 57.08 144.48
Sunday 245.72 183.08 219.18 229.02 186.09 131.90 146.34 54.06 123.56

MAE Monday 266.73 125.41 98.21 118.17 91.83 87.25 87.25 61.54 96.07
Tuesday 281.34 158.95 95.95 286.55 155.51 95.95 95.95 96.79 109.62
Wednesday 99.76 97.21 91.59 122.54 98.53 97.31 66.95 91.55 87.40
Thursday 150.87 140.69 141.31 145.57 114.11 82.80 144.30 76.96 79.00

Friday 106.02 115.95 84.13 121.27 68.89 57.95 71.79 67.95 117.4595
Saturday 179.19 183.82 96.56 141.89 92.43 64.50 79.84 62.89 94.38
Sunday 191.45 139.69 153.12 167.76 130.51 85.42 96.56 79.10 79.42
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Figure 7. The statistics of evaluation indexes of different power load competition models. (a) Comparison of MSE values
for different competition forecasting models; (b) Comparison of MAPE values for different competition forecasting models;
(c) Comparison of RMSE values for different competition forecasting models; (d) Comparison of MAE values for different
competition forecasting models.
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6. Conclusions

Nowadays, accurate electrical loads not only help the power sector to make rational
work plans and production decisions, but also to reduce the waste of resources and eco-
nomic losses. Based on the above problems, this paper proposes a combined power load
forecasting model based on machine learning, swarm intelligence optimization algorithms,
and data pre-processing. The combined model is based on the Elman model, the ELM
model, and the LSSVM model. Additionally, two improved swarm intelligence optimiza-
tion algorithms (CAWOA-CSSA and EOBL-CSSA algorithms) proposed in this paper are
used to optimize the parameters of the ELM and LSSVM models, respectively. Then, the SA
algorithm is used to calculate and assign the weighting coefficients of the three models.
Finally, the final prediction results are obtained by weighted summation. By combining
models, the advantages of machine learning algorithms, swarm intelligence optimization
algorithms, and data pre-processing can be combined to reduce the shortcomings of a single
model. In addition, through several sets of simulations and analysis of the experimental
results, we obtained the following conclusions.

1. We found that the noise reduction effect of the VMD–singular spectrum analysis
method proposed in this paper is obvious and can effectively improve the prediction
accuracy of the prediction model. The average MAPE value of the combined predic-
tion model is reduced by 0.28% and the prediction accuracy is improved by 27.4%
when compared to the singular spectrum analysis method. The average MAPE value
of the combined prediction model is reduced by 0.94% and the prediction accuracy is
improved by 55% when compared to the non-denoised method;

2. The two improved swarm intelligence optimization algorithms proposed in this paper
can improve the prediction accuracy of the combined prediction model. Through
Table 8, we can find that the weight proportion of the EOBL-CSSA-LSSVM model is
60% and the weight proportion of the CAWOA-ELM model is 30%, which is good
proof that our proposed EOBL-CSSA algorithm and CAWOA-CSSA algorithm play
an important role in the combined prediction model;

3. The simulation experiments and the analysis of the experimental results show that
the combined forecasting model proposed in this paper has the best performance
in terms of forecasting performance and forecasting accuracy. The combined model
has the best performance in terms of MSE, MAPE, RMSE, and MAE. The prediction
model proposed in paper [34] and the FA-CSSA-ELM model proposed in paper [33]
are the next best, while the Jordan model has the worst prediction performance.
Compared with the Jordan model, the MSE value of the combined model is reduced
by 67%, the MAPE value is reduced by 66%, the RMSE value is reduced by 69%,
and the MAE value is reduced by 57%. Compared with the FA-CSSA-ELM model,
the combined model’s MSE value is reduced by 38%, the MAPE value is reduced
by 32%, the RMSE value is reduced by 45%, and the MAE value is reduced by 18%.
Compared with paper [34], the MSE value of the combined model is reduced by 31%,
the MAPE value is reduced by 32%, the RMSE value is reduced by 33%, and the MAE
value is reduced by 15%.

In short, the combined forecasting model proposed in this paper has strong forecasting
performance and forecasting accuracy. Additionally, the VMD–singular spectrum analysis
method proposed in this paper has an obvious denoising effect. In addition, the EOBL-
CSSA algorithm and CAWOA algorithm proposed in this paper can also effectively improve
the deficiencies of the machine learning model. Although the predictive performance of our
proposed predictive model is excellent, it can provide effective feedback and information
for the power sector. However, we have not considered too many practical factors such as
weather and holidays. Therefore, we will consider the impact of other factors on power
load forecasting in future research.
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Figure A1. The final daily power load forecast value of different forecast models. (a) Describes
the prediction results of different prediction models in the Monday subset; (b) Describes the prediction
results of different prediction models in the Tuesday subset; (c) Describes the prediction results
of different prediction models in the Wednesday subset; (d) Describes the prediction results of
different prediction models in the Thursday subset; (e) Describes the prediction results of different
prediction models in the Friday subset; (f) Describes the prediction results of different prediction
models in the Saturday subset; (g) Describes the prediction results of different prediction models in
the Sunday subset.
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