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Abstract: Identifying influential nodes in complex networks is of great significance for clearly
understanding network structure and maintaining network stability. Researchers have proposed
many classical methods to evaluate the propagation impact of nodes, but there is still some room for
improvement in the identification accuracy. Degree centrality is widely used because of its simplicity
and convenience, but it has certain limitations. We divide the nodes into neighbor layers according
to the distance between the surrounding nodes and the measured node. Considering that the node’s
neighbor layer information directly affects the identification result, we propose a new node influence
identification method by combining degree centrality information about itself and neighbor layer
nodes. This method first superimposes the degree centrality of the node itself with neighbor layer
nodes to quantify the effect of neighbor nodes, and then takes the nearest neighborhood several
times to characterize node influence. In order to evaluate the efficiency of the proposed method,
the susceptible–infected–recovered (SIR) model was used to simulate the propagation process of
nodes on multiple real networks. These networks are unweighted and undirected networks, and the
adjacency matrix of these networks is symmetric. Comparing the calculation results of each method
with the results obtained by SIR model, the experimental results show that the proposed method is
more effective in determining the node influence than seven other identification methods.

Keywords: complex network; node influence; neighbor layer information; SIR model

1. Introduction

The research direction of node influence in complex networks has attracted wide
attention in recent years. The main research focus is to rank the influence of nodes to
evaluate their importance. In fact, many systems in real life can be considered as complex
network systems [1], such as animal networks [2], traffic networks [3], social networks [4],
and economic networks. For example, identifying critical nodes in social networks and
monitoring them can prevent the mass spread of infectious diseases. Identifying effective
drug targets in cellular network systems allows for faster drug action in the body [5].
Numerous studies [6–13] have shown the significant theoretical and practical importance
of identifying influential nodes that have a role in network structure and function. In
the network, there are often a small number of nodes that support the entire network
architecture, and the accurate identification of these nodes helps to maintain the stability of
the network and ensure the normal operation of network functions.

Currently, researchers have proposed many classical methods for identifying influ-
ential nodes, including degree centrality [6], betweenness centrality [7], closeness cen-
trality [8], eigenvector centrality [9], bridging centrality [10], LeaderRank [11], k-shell
decomposition [12], and H-index [13]. Among these methods, the most widely used are
degree centrality and k-shell decomposition. Degree centrality is simpler and more intuitive
because it can be expressed directly in terms of the number of connected nodes, and it can
be easily applied to large-scale networks. However, degree centrality and k-shell decompo-
sition also have certain limitations. Degree centrality considers the most local information
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of nodes, while k-shell decomposition divides many nodes into the same layer; both easily
cause the node sorting to be too coarse-grained. Researchers have made many efforts
to improve the problem of coarse-graining. Joonhyun et al. [14] proposed an improved
coreness method that introduces information on neighborhoods to define node influence.
Ahmed et al. [15] proposed a method to identify the influence of nodes according to the cir-
cular area density formula by taking the nodes’ own degree centrality and the shortest path
distance between two nodes as mass and radius, respectively. Li et al. [16] used the gravity
model to propose a method that uses neighborhood information and path information to
measure the influence of nodes in the spreading process. Li et al. [17] considered the role of
the clustering coefficient, and they combined the clustering coefficient and the sum of the
degree centrality of the nearest neighbor node to quantify node influence. Sheng et al. [18]
combined the global and local structural characteristics of the network, global information
reflecting the proximity to other nodes in the network, and local information as the con-
tribution value of the nearest neighbor node to the measured node. Yang et al. [19] first
proposed an improved k-shell decomposition method based on the k-shell value and the
number of iterations of node removal in the k-shell decomposition, and then combined the
improved method with degree centrality and the shortest path length to characterize the
node influence. Zareie et al. [20] proposed an improved clustering ranking approach, which
takes the common hierarchical structure of nodes and their neighborhood set into account.
Yan et al. [21] propose, a new method that considers the local topological characteristics of
nodes, center position of nodes, and effect of neighbor nodes.

The above methods are from different perspectives to solve the problem of insufficient
differentiation in the process of node identification, but there is still room for improvement
in recognition accuracy. In order to improve the accuracy of identification, we propose a
new method of identifying node influence by combining information on the node itself
and neighbor layers, which first superimposes the degree centrality of the node itself
and neighborhood nodes within a certain range, and then considers the contribution of
multiple fetches of nearest neighbor information to the accuracy of the results. To verify the
effectiveness of the proposed method, this paper uses the SIR model [22,23] to perform 1000
independent simulations on multiple real networks to obtain the information dissemination
ability of nodes. The proposed method in this paper is compared with degree centrality,
betweenness centrality, closeness centrality, area density centrality [15], GM method [16],
CLD method [17], and GLI method [19] in terms of discrimination and accuracy. The
experimental results show that the proposed method in this paper can distinguish the
influence among nodes and improve the recognition accuracy.

This section clarified the background of the study and the current research progress
in the field. The rest of the paper is framed as follows: Section 2 explains the definition of
comparison methods and the detailed idea of the proposed method based on information
on the node itself and neighbor layers. The datasets used in this paper and the evaluation
criteria for the experiments are given in Section 3. In Section 4, we present verification
experiments in terms of the discrimination and accuracy comparing the proposed method
with others. The final summary of this paper is given in Section 5.

2. Materials and Methods

An unweighted and undirected network is represented by G = (V, E), where
V = {v1, v2, . . . , vn} represents the set of n nodes, and E = {e1, e2, . . . , em} represents
the set of m edges. We can use adjacency matrix A = (aij)n × n to represent the structural
characteristics of a complex network, where the adjacency matrix is symmetric. The ele-
ment aij in the matrix can represent the edge information between any two nodes. If aij = 1,
it means that there is a connection relationship between two nodes; otherwise, there is no
connection relationship. Hereafter, ki represents the degree centrality of node i.
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2.1. Node Influence Based on Node and Neighbor Layer Information

Degree centrality represents the most local information of nodes in the network. It
only reflects the importance of nodes according to the nodes themselves and ignores the
influence of the surrounding nodes. Numerous studies have shown that the neighbor
layer information of a node has an indispensable effect on node influence. During the
spreading process, the node will certainly spread information to neighbor nodes through
their connection in sequence until it cannot be transmitted. It is destined that the sur-
rounding environment of the node will directly affect the spreading ability of the node.
In order to explore the role of neighbor layer information on node spreading, this paper
proposes a node influence identification method based on the node itself and neighbor
layer information, called the NINL method. The main idea of this method is to consider
the local information within a certain range of nodes. First, a radius is defined according
to the average path length of the network, and the main consideration is the influence of
the surrounding environment caused by the set of nodes within this radius. Then, the
information of the nodes themselves is combined with the information of nodes within this
range, and the initial local information is defined as

NINL0(i) = ki + ∑
j

k j , j ∈ ΓdLei
, (1)

where Γ is used to represent nodes within a certain distance from node i, L refers to the
average path length of the network, and dxe refers to the smallest integer not smaller than x.
To reflect the influence of nearest neighbor information more comprehensively, Equation (1)
is extended to define the influence of nodes by using recursion, and the recursive formula
is shown below.

NINL1(i) = ∑
j∈Γi

NINL0(j)

NINL2(i) = ∑
j∈Γi

NINL1(j) ,

· · · · · · · · ·
NINLp(i) = ∑

j∈Γi

NINLp−1(j)

(2)

where p refers to the number of iterations, and Γi represents the nearest neighborhood
nodes of node i. We can speculate the p-value according to some networks. In this paper,
we chose p = 3, for reasons discussed in the next section. We use an example network below
to illustrate the calculation process in detail.

Taking the example network of 13 nodes in Figure 1, the average path length of the
network is calculated as L = sum(dij)/(n × (n−1)) = 358/(13 × (13−1)) ≈ 2.2949. Thus, we
can get dLe = 3. The following takes node 1 as an example to g ive the calculation process
of NINL0(1). First, we need to calculate degree centrality of each node, as shown below.

k1 = 1, k2 = 1, k3 = 4, k4 = 6, k5 = 4, k6 = 3, k7 = 1, k8 = 4, k9 = 5, k10 = 2, k11 = 2, k12 = 4, k13 = 1.

Then, according to ceil(L) = 3, we can get that the first-level neighbor node set of node 1 is
{3}, the second-level neighbor node set is {4, 5, 6}, and the third-level neighbor node set is
{2, 7, 8, 9}. To sum up, the set of neighbor nodes within the three layers is {2, 3, 4, 5, 6, 7, 8, 9};
thus, NINL0(1) = k1 + (k2 + k3+ k4 + k5 + k6 + k7 + k8 + k9) = 1 + (1 + 4 + 6 + 4 + 3 + 1 + 4 + 5) = 1 + 28 = 29.
Table 1 shows the calculation results of the node influence of NINL0–NINL3 of the ex-
ample network.
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Figure 1. Example network.

Table 1. Node influence calculation results of the example network.

Node 1 2 3 4 5 6 7 8 9 10 11 12 13

NINL0 29 37 37 38 37 37 37 38 38 37 37 37 24
NINL1 37 38 141 224 150 112 38 150 187 75 75 136 37
NINL2 141 224 523 704 627 441 224 673 660 323 323 374 136
NINL3 523 704 1913 2931 2341 1823 704 2432 2397 1034 1034 1442 374

From the table, we can see that NINL0 defines nodes 2, 3, 5, 6, 7, 10, 11, and 12 as
the same value, and nodes 4, 8, and 9 as the same value. After getting the nearest neigh-
bor node information for the first time, NINL1 defines nodes 1 and 13 as the same value,
nodes 2 and 7 as the same value, nodes 5 and 8 as the same value, and nodes 10 and 11 as
the same value. NINL2 also distinguishes the influence of nodes 1 and 13. The influence
of nodes 5 and 8 was also identified. As for nodes 2 and 7, they could not be distin-
guished because they had the same information about themselves and their neighbors
as nodes 10 and 11. At the same time, we can observe that nodes 2 and 7 were locally
symmetrical, just like nodes 10 and 11. The above phenomenon shows that the proposed
NINL method can effectively distinguish the influence of the nodes in the sample network.

The specific computational flow of Algorithm 1 is shown below.

Algorithm 1. The NINLp Method

Input: the network G = (V, E)
Output: node influence of NINLp centrality
1: for i = 1 to |V|
2: for j = 1 to |V|
3: calculate the shortest path length between node i and node j
4: end for
5: end for
6: calculate average path length L
7: for i = 1 to |V|
8: calculate the Degree centrality of node i
9: end for
10: for i = 1 to |V|
11: find the neighbor nodes with a radius of ceil(L) from the node i
12: calculate NINL0 of node i according to Equation (1)
13: end for
14: for i = 1 to |V|
15: find the nearest neighbor nodes of node i
16: end for
17: set the value of p
18: Recursively calculate NINLp centrality according to Equation (2)
19: return NINLp centrality
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2.2. Benchmark Methods
2.2.1. Degree Centrality

Degree centrality [6] in complex network reflects the node’s connection information,
which can be expressed by the number of nearest neighbor nodes. A greater value of the
degree denotes a greater influence of the node. The degree centrality of node i can be
defined as

ki =
n

∑
j=1

aij. (3)

In addition, degree centrality can be normalized to

DC(i) =
ki

n− 1
. (4)

2.2.2. Betweenness Centrality

Betweenness centrality [7] refers to the ratio of the number of shortest paths through a
node to the number of shortest paths for all pairs of nodes in the network. The betweenness
centrality of node i can be expressed as

BC(i) = ∑
s 6=t 6=i∈V

gi
st

gst
, (5)

where gi
st represents the number of shortest paths through node i, and gst refers to the

number of shortest paths for all node pairs in the node set.

2.2.3. Closeness Centrality

Closeness centrality [8] refers to the reciprocal of the sum of the shortest path lengths
between a node and other nodes. This method takes the global information of the network
into account. The formula is as follows:

CC(i) =
n− 1
∑

j 6=i∈V
dij

, (6)

where dij refers to the shortest path length between node i and node j.

2.2.4. Density Centrality

The principle of density centrality [15] is the circular area density formula. The degree
centrality of the node and the path length between two nodes are used as the mass and
radius in the density formula, which highlights the influence of the number of neighbor
nodes. The density centrality of node i can be defined as

DNC(i) = ∑
j∈Γr

i

ki

πd2
ij

, (7)

where Γr
i refers to the set of nodes whose path length is less than or equal to r; r = 3 was

applied in the original paper.

2.2.5. Gravity Model

The gravity model [16] is derived from the law of gravity. It considers the relation-
ship between node neighbor layer information and path length. The degree centrality is
regarded as quality, and the shortest path length is taken as the distance. The influence of
node i is expressed as

GM(i) = ∑
j 6=i

kik j

d2
ij

. (8)
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2.2.6. Clustered Local-Degree (CLD) Method

The clustered local-degree method [17] first obtains the sum of degree centrality of the
nearest neighbor nodes, and then links the obtained results with the clustering coefficient of
the nodes to propose a method for identifying the influence of nodes, as expressed below.

CLD(i) = (1 + Ci)∑
j∈Γi

k j, (9)

where Ci represents clustering coefficient of node i, and Γi represents the nearest neighborhood.

2.2.7. GLI Method

The GLI method [19] contains both global location information and local structure
information. First, considering that the k-shell decomposition method divides many nodes
into the same layer, an improved k-shell decomposition method (Iks) was defined as follows:

Iks(i) = ks(i) + nit(i), (10)

where ks(i) refers to the level of node i after k-shell decomposition, and nit(i) refers to the
number of iterations when the node is deleted during the iteration. Then, researchers
proposed a new node influence identification method named the GLI method by linking
the obtained improved method with degree centrality and path information, expressed
as follows:

GLI(i) = exp
(

Iks(i) + ki

∑n
i=1(Iks(i) + ki)

)
× ∑

j∈Γr
i

Iks(j) + k j

dij
. (11)

In this case, the neighbors within three hops of the node are considered, i.e., r = 3.

3. Experimental Data and Evaluation Criteria
3.1. Datasets

In order to verify the effectiveness of the method proposed in this paper, several real
networks with different structures were selected for experiments. The real networks used in
this article were the Contiguous network [24], Dolphin network [25], Polbooks network [26],
Word network [27], Jazz network [28], Slavko Facebook network [26], USAir network [29],
Netscience network [27], Infectious network [30], and Email network [31]. The datasets
can also be found at https://github.com/Ismileo/Datasets, accessed on 19 July 2021 [32].
Table 2 shows the basic topological properties of the networks. In the table, n and m denote
the number of nodes in the network and the number of connected edges, respectively.
kmax refers to the maximum degree, <k> refers to the average degree of all network nodes,
D is the network diameter, L is the average path length, C refers to the average clustering
coefficient, and r refers to the assortative coefficient of the network [33].

Table 2. Basic topological characteristics of 10 real networks.

Networks n m kmax <k> D L C r

Contiguous 49 107 8 4.367 11 4.163 0.497 0.2334
Dolphins 62 159 12 5.129 8 3.357 0.259 −0.0436
Polbooks 105 441 25 8.4 7 3.079 0.488 −0.1279

Word 112 425 49 7.589 5 2.536 0.173 −0.1293
Jazz 198 2742 100 27.697 6 2.235 0.618 0.0202

Slavko 324 2218 58 13.691 7 3.054 0.466 0.2473
USAir 332 2126 139 12.807 6 2.738 0.625 −0.2079

Netscience 379 914 34 4.823 17 6.042 0.741 −0.0817
Infectious 410 2765 50 13.488 9 3.631 0.456 0.2258

Email 1133 5451 71 9.622 8 3.606 0.220 0.0782

https://github.com/Ismileo/Datasets
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3.2. Spreading Model and Evaluation Criteria
3.2.1. SIR Model

The SIR model can be used to describe the process of information dissemination, which
is widely used in the field of infectious diseases. In this paper, the SIR model was used
to simulate the node infection process to obtain the influence of nodes. Nodes in the SIR
spreading model can exist in the following three states: (i) susceptible (S), (ii) infected (I),
and (iii) recovered (R). The susceptible state means that the node is not currently infected
but has the possibility of being infected, the infected state means that it has been infected
and can infect other nodes with a certain probability, and the recovered state means that it
cannot infect other nodes and cannot be infected by other nodes. The specific process is to
first set a node to be in an infected state and other nodes to be in a susceptible state, and
then the infected node can infect the susceptible nodes with a certain spread probability β,
while the infected nodes will also be converted to the recovery state with a recovery
probability λ = 1, until the whole process is in a stable state. In this paper, the spreading
probability β was set to take a value around the spreading threshold [34], and the total
number of nodes infected by a node during spreading was considered as the influence of a
node. In this article, we carried out 1000 independent simulations, and the average value
was used to represent the node influence according to SIR model. The proposed method
and other methods were compared on the basis of the ranking results obtained from the
SIR spreading model. A closer ranking result to the SIR model denotes a higher accuracy.

3.2.2. CCDF Method

In the process of obtaining node influence, there will be multiple nodes with the
same value. The complementary cumulative distribution function (CCDF) can show the
probability distribution of the sorting results, and the effect of each method can be observed
through the change trend. The specific formula is as follows:

CCDF(r) = 1− ∑r
i=1 ni

n
, (12)

where ni refers to the numerical value in the i-th place in a ranking list, and n refers the
number of all nodes. When the number of different values in a ranking list is closer to n, it
means that the method can distinguish the influence of each node more effectively, and the
decrease rate of CCDF will be smaller.

3.2.3. Kendall Correlation Coefficient

The Kendall correlation coefficient [35] is usually used to evaluate the correlation of
two sorting results, with a value range of [−1,1]; when the value is 1, it means that the
two groups have the same sorting result, whereas a value of −1 means that two sets of
numbers are completely negatively correlated, and a value of 0 means the sorting results
are independent of each other. Suppose there exist two sequences X and Y with n elements,
whereby the sequence XYi = (xi, yi) is formed by taking the elements at the same position
in the sequences X and Y. For any two elements XYi and XYj in the newly composed
sequence, there are three cases: (i) if xi > xj and yi > yj or xi < xj and yi < yj, it is said
that the node pairs are concordant; (ii) if xi > xj and yi < yj or xi < xj and yi > yj, the node
pairs are discordant; (iii) if the above conditions are not met, the node pairs are neither
concordant nor discordant. The Kendall correlation coefficient can be expressed by the
following formula:

τ(X, Y) =
2(C− D)

n(n− 1)
, (13)

where C refers to the number of concordant pairs, and D is the number of discordant
pairs. It is worth noting that, in addition to the Kendall correlation coefficient, there are
the Pearson correlation coefficient, Spearman’s rank correlation coefficient, and Gamma
correlation coefficient [36].



Symmetry 2021, 13, 1570 8 of 15

3.2.4. Jaccard Similarity Coefficient

Jaccard similarity [37] can be used to evaluate the similarity of the two methods in the
sorting results, expressed as the ratio of the number of intersection nodes to the number of
union nodes. The specific formula is

Jr(X, Y) =
|X(r) ∩Y(r)|
|X(r) ∪Y(r)| , (14)

where X(r) and Y(r) refer to the first r elements in the two lists X and Y, respectively. A
closer Jr result to 1 denotes that the two lists are closer, which can be used to evaluate the
accuracy of a certain ratio of node identification.

4. Experiment and Analysis

In this section, the CCDF, Kendall correlation coefficient, influence consistency, and
Jaccard similarity coefficient were used to evaluate the proposed method. The experimental
process and results are presented below.

4.1. Discrimination Experiment

The easy accessibility of degree centrality has led to it being widely used. Degree
centrality can be expressed only by the number of nearest neighbor nodes. This is its
advantage and its disadvantage. The disadvantage is that it is too simple to represent node
information using degree centrality, which will cause multiple nodes to be defined with
the same influence. The information of the nodes is also influenced by the environmental
elements, which leads to the majority of nodes having different influence results. Therefore,
the first step of an effective method should be able to distinguish the importance of each
node. Only by distinguishing the influence of each node can an effective ranking be carried
out. To verify the discernibility of each method on the node, this paper used the CCDF
method to determine the discrimination effect of the obtained sorting results, as shown in
Figure 2.

Figure 2. CCDF of the ranking results obtained using each method. (a–f): CCDF on the network of Contiguous, Dolphin,
Jazz, Slavko, Infectious, Email.
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Figure 2 shows the change trend of CCDF obtained using each method on the six
networks of Contiguous, Dolphin, Jazz, Slavko, Infectious, and Email. The downward trend
of CCDF at a certain point is determined by the frequency of the corresponding ranking
point. If the number of corresponding ranking nodes is higher, the change trend is more
drastic. The closer the CCDF is to a straight line, the better the effect is of distinguishing
node influence. From the results in Figure 2, we can see that DC and CC methods declined
faster among the six networks compared to other methods. DC represents the most
local information of nodes; hence, it is very easy to define multiple nodes as the same
value, which also highlights the biggest shortcoming of the DC method. Furthermore, CC
considers the global shortest path length, and the result of superposition is likely to have the
same value. The CLD method has a certain limitation because it only considers the node’s
own clustering coefficient and the degree centrality of the nearest neighbor nodes, which
results in it not being able to distinguish the influence of nodes well. It can also be observed
that the BC method can make an effective distinction at an early stage, but there is a sudden
decrease at a later stage. The BC method considers the pivotal role of nodes in the network,
but there are also several nodes with insignificant pivotal roles in the network. Such nodes
will also vary in importance when they are affected by the environment; however, the BC
method cannot distinguish this phenomenon. Overall, GM, GLI, and the method proposed
in this paper best discriminated the influence of network nodes, basically demonstrating a
straight line. It can be concluded that the method proposed in this paper can successfully
distinguish the spreading influence of each node.

4.2. Accuracy Experiment
4.2.1. Selection of p-Value

In order to ensure the rationality of the value of p, this paper used the Kendall
coefficient to carry out simulation research on 10 networks, and the simulation results
are shown in Figure 3. We set the value of p as the x-axis and Kendall coefficient as the
y-axis. To observe the changes more clearly, a partially enlarged subfigure is presented.
According to the experimental results, the Kendall coefficient value increased with the
increase in p at the beginning, but stopped increasing after reaching a threshold. In the
partial enlarged image, we can see that the Kendall values of the networks except for
Jazz and Infectious began to decrease after a p-value of 3, whereas the Jazz and Infectious
networks began to decrease after a p-value of 4. Therefore, this paper selected p = 3 for
subsequent experiments.

Figure 3. Kendall values of different p-values on 10 networks.
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Table 3 shows the Kendall values obtained by comparing all methods and the SIR
model using the 10 networks. In this paper, the spreading probability β set in the SIR model
was the value near the spreading threshold βth, and 1000 independent SIR model simulation
experiments were conducted to represent the influence of a node with the average value.
According to the experimental results in Table 3, the BC method had the worst effect in
identifying nodes. Comparing the Kendall coefficients of the CLD and DC methods, it
can be found that superimposing the information of the nearest neighbor nodes could
improve the accuracy of node identification. Comparing the GM, GLI, and DC methods, it
can be found that the combination of the node itself and the neighbor layer information
could more effectively identify influential nodes. From this table, we can see that the NINL
method proposed in this paper had a more obvious recognition effect and a more accurate
effect compared with other methods, thus verifying that accumulating the nearest neighbor
information several times after combining node and neighbor layer information can more
accurately reflect the node influence and achieve effective identification.

Table 3. Kendall coefficient between ranking list obtained by SIR model and by other methods using 10 networks.

Networks βth β τDC τCC τBC τDNC τCLD τGM τGLI τNINL

Contiguous 0.2027 0.20 0.7126 0.7253 0.5587 0.8155 0.8435 0.8690 0.8469 0.9099
Dolphin 0.1470 0.15 0.7721 0.6187 0.5389 0.8355 0.7916 0.8731 0.8355 0.9344
Polbooks 0.0838 0.09 0.7518 0.3679 0.3505 0.7679 0.8139 0.8198 0.5141 0.9229

Word 0.0726 0.08 0.8311 0.8549 0.6523 0.8822 0.8388 0.9086 0.8784 0.9218
Jazz 0.0259 0.03 0.8069 0.7080 0.4569 0.8175 0.8655 0.8505 0.8937 0.9322

Slavko 0.0466 0.05 0.7719 0.7128 0.3625 0.8234 0.8538 0.8411 0.7938 0.9305
USAir 0.0225 0.03 0.7251 0.8043 0.5081 0.8157 0.8854 0.8243 0.8522 0.9211

Netscience 0.1247 0.13 0.5955 0.3292 0.3048 0.7724 0.7980 0.7788 0.6950 0.8395
Infectious 0.0534 0.06 0.7281 0.6095 0.3707 0.7877 0.8105 0.8186 0.6984 0.9273

Email 0.0535 0.06 0.7615 0.8138 0.6203 0.8330 0.8622 0.8226 0.8345 0.9255

4.2.2. Influence Consistency Experiment

The influence consistency experiment was used to show the correlation between each
method and the node influence and the correlation between the proposed method and
each method. A higher correlation denotes a higher accuracy of node recognition. Figure 4
shows the experimental results of six methods on the Word, Jazz, and USAir networks. The
x-axis is the node influence calculated by each method, and the y-axis is the node influence
calculated by 1000 independent SIR spreading models. The experimental plots show that
all six methods had positive correlations with node influence. Among them, the DNC
and GM methods had an obvious upward convex trend, the GLI method had an obvious
downward convex trend, and the DC, CLD, and NINL methods had a straight-line trend.
The NINL method proposed in this paper showed better linearity in the three networks,
and the scattered points were basically maintained around the straight line, suggesting a
relatively strong correlation with the influence of nodes. In summary, the method proposed
in this paper is more advantageous for discovering influential nodes.

To explore the intrinsic connection between the methods, Figure 5 shows the nodal
influence correlation diagram between the proposed method and the other five methods in
this paper. Each node in the figure represents the value obtained by a node in the network
according to different methods. The x-axis refers to the NINL method values, and the
y-axis refers to five method values of DC, DNC, CLD, GM, and GLI. As shown in Figure 5,
the NINL method showed a positive correlation with the other five methods, and in the
Netscience network, a more divergent scatter plot was obtained. In the Email network,
the NINL method and CLD method seemingly presented a straight line. There was no
such correlation when using the other methods. By observing the scatter plots of the NINL
method and the DC method in the three networks, we can find that the value of DC method
was concentrated in a very small interval, highlighting that the weak distinguishing ability
of degree centrality for nodes was the main reason for the divergence of the results.
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Figure 4. The correlation between six methods and the influence of nodes by SIR model on three networks. (a–c): The
correlation on the network of Word, Jazz, USAir.

Figure 5. The correlation between several methods and the proposed method on two networks. (a,b): The correlation on
the network of Netscience, Email.

4.2.3. Recognition Effect of Each Method under a Certain Range of Propagation Probability

In order to more comprehensively evaluate the influence of the spreading probability
on the ranking accuracy, this paper used the SIR model to obtain the node influence within
a certain range of spreading probability, and the effectiveness of the proposed method was
verified by the Kendall correlation coefficient. The results are shown in Figure 6. It can
be seen from the figure that the BC method had the weakest ability to accurately identify
influential nodes on the six networks. When the spreading probability was small, it can
be seen that the DC, DNC, and GM methods had higher Kendall correlation coefficients,
which was due to the fact that the infected node could only infect a portion of nodes close
to it. At this time, the spreading process was limited to a certain local area, and the degree
of a node in the local area had a great impact on the spreading influence. As the spreading
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probability was near the spreading threshold, the NINL method fully considered the
relationship between the nearest neighbor and neighbor layer information within a certain
range. Compared with other methods, NINL had a higher correlation with node influence,
reflecting a better recognition effect. When the spreading probability was increased, we
can see that the correlation curve had a significant decline in the USAir network. This is
because the clustering coefficient of the network was very high, which led to the connection
between nodes becoming closer. Under these circumstances, the information between
nodes could be easily transmitted through the closely connected nodes layer by layer. As a
result, the recognition accuracy of the NINL method approached that of the other methods.
In general, the proposed NINL method could more accurately evaluate the influence of
nodes than other methods around the propagation threshold.

Figure 6. Accuracy comparison of different methods under different probabilities. (a–f): The Kendall correlation coefficient
on the network of Contiguous, Polbooks, Word, USAir, Infectious, Email.

4.2.4. Recognition Effect of Each Method under a Certain Percentage of Ranking Results

There are a very small number of nodes in the network responsible for the normal
operation of the entire network. It is of great significance to identify the most influential
nodes. Table 4 shows the top 10 nodes obtained using each method in the Word and
USAir networks. In this table, the Φ value given in the last column of the table is the
ranking result calculated by the SIR model under the condition of spreading probability β.
By observing the results of each method and the SIR model, it can be found that, in the
Word network, the top 10 nodes identified by the DC, DNC, GM, GLI, and NINL methods
had nine identical nodes in terms of Φ, whereas eight of the CC and CLD methods were
identical. The BC method had only seven identical nodes. In the USAir network, the
GM, GLI, and NINL methods identified nine identical nodes in terms of Φ, whereas DC



Symmetry 2021, 13, 1570 13 of 15

and DNC only identified eight identical nodes, CC identified six identical nodes, and BC
and CLD only identified five identical nodes. According to the above analysis, the NINL
method could accurately identify the top 10 nodes.

Table 4. Top 10 nodes measured using various methods in Word and USAir networks.

Word Network USAir Network

Rank DC CC BC DNC CLD GM GLI NINL Φ Rank DC CC BC DNC CLD GM GLI NINL Φ

1 18 18 18 18 18 18 18 18 18 1 118 118 118 118 109 118 118 118 261
2 3 3 3 3 3 3 3 3 3 2 261 261 8 261 131 261 261 261 118
3 44 52 44 52 52 52 52 52 52 3 255 67 261 255 112 255 255 255 255
4 52 44 52 44 44 44 44 44 44 4 152 255 201 182 299 182 182 182 182
5 105 28 10 105 51 105 105 105 105 5 182 201 47 152 118 152 152 152 230
6 10 105 80 10 105 10 25 51 10 6 230 182 182 230 255 230 230 230 176
7 25 10 105 28 22 25 51 10 25 7 166 47 255 166 176 166 67 112 152
8 28 27 28 25 55 51 28 26 51 8 67 166 152 67 147 67 166 166 147
9 51 25 2 51 25 28 26 25 28 9 112 248 313 112 261 112 112 67 67
10 2 26 29 26 32 26 10 55 55 10 201 112 13 201 301 147 147 147 166

In order to explore the recognition accuracy of the top nodes, the Jaccard similarity
coefficient was used as the evaluation standard to carry out related experiments. Figure 7
presents the results of Jaccard similarity experiments on six types of networks. The x-axis
represents the range of ranking results considered, and the y-axis represents the Jaccard
similarity coefficient. A larger Jaccard coefficient denotes a higher similarity and, thus,
a more effective recognition result. It can be seen from Figure 7 that, as the range of
the ranking results increased, the Jaccard similarity coefficients obtained by each method
became more and more stable. At the same time, the NINL method proposed in this
paper clearly showed a superior similarity curve to the other seven methods in the Slavko,
Netscience, Infectious, and Email networks. Thus, it can be considered that the NINL
method was highly correlated with the influence of nodes and, thus, could more accurately
identify the first r nodes.

Figure 7. Comparison of Jaccard similarity of different methods. (a–f): The Jaccard similarity on the network of Polbooks,
Slavko, USAir, Netscience, Infectious, Email.
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5. Conclusions

In this paper, we studied the problem of identifying influential nodes in the network.
Identifying influential nodes accurately in the network can provide a clearer understanding
of the overall network function implementation process and the information dissemination
between nodes. This paper mainly uses the symmetric adjacency matrix of the unweighted
and undirected network to obtain various information. The paper first defines a node’s own
information and neighbor layer nodes within a certain range as the initial node influence,
and then takes the nearest neighbor information multiple times as the final influence of
nodes. In different networks, the number of times to fetch the nearest neighbor information
is different. In order to ensure the rationality of the p-value, a verification experiment of
p selection was done. At the same time, this paper used the CCDF curve to perform a
discrimination experiment on multiple real networks, while the Kendall coefficient and
Jaccard similarity coefficient were used to carry out recognition and accuracy experiments.
The method proposed in this paper effectively avoided the phenomenon of most nodes
having the same value. Furthermore, it had higher accuracy in identifying the influence of
nodes near the propagation threshold. The experimental results show that the proposed
method was more effective than other methods in identifying influential nodes, which is
significant for understanding the node information dissemination process.
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