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Abstract: In this article, we provide an expansion (up to the fourth order of the coupling constant)
of the energy of the ground state of the Hamiltonian of a quantum mechanical particle moving
inside a parabolic well in the x-direction and constrained by the presence of a two-dimensional
impurity, modelled by an attractive two-dimensional isotropic Gaussian potential. By investigating
the associated Birman–Schwinger operator and exploiting the fact that such an integral operator is
Hilbert–Schmidt, we use the modified Fredholm determinant in order to compute the energy of the
ground state created by the impurity.

Keywords: Gaussian potential; Birman–Schwinger operator; Hilbert–Schmidt operator; modified
Fredholm determinant

1. Introduction

The study of solvable models in quantum physics has drawn a great deal of interest
over the last four decades. First of all, Schrödinger Hamiltonians with point potentials
are undoubtedly among the most investigated solvable or quasi-solvable models: they are
used to approximate the action of intense yet strongly localised potentials [1–4]. Generally
speaking, they are exactly solvable, so that one-dimensional point potential models have
acted as a laboratory to analyse quantum properties of matter, including quantum unstable
systems, which are those showing scattering resonance phenomena. Resonances may be de-
fined in various ways, not always equivalent, although their equivalence may be shown for
a wide range of solvable models. The most popular characterization of resonances among
physicists is given by pairs of poles on the lower half plane of the analytic continuation
of the S-matrix in the momentum representation [5]. Point potential perturbations often
give exactly solvable models with scattering resonances. In addition, the one-dimensional
Laplacian can be equipped with four one-parameter families of point potentials [6], which
provide a wide range of interesting examples from the mathematical as well as from the
physical point of view, which are easily constructed via matching conditions on the wave
functions of their domains [6] (this is not the case for one-dimensional Salpeter Hamilto-
nians, namely semirelativistic Hamiltonians with kinetic term given by (p2 + m2)

1
2 , for

which delta interactions may only be added after a regularisation [7–9]).
Some attempts have been made to extend the formalism to systems in two or three

dimensions, where contact potentials have been defined over circles (two-dimensional
case) [10], surfaces like hollow spheres (three-dimensional case) [11] or points [12–14], or
even to a non-linear Schrödinger Equation [15]. In two or three dimensions, the construction
of a self-adjoint Hamiltonian with a point potential requires either the use of the theory
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of self-adjoint extensions of symmetric operators or the procedure known as coupling
constant renormalisation.

Two-dimensional systems are particularly interesting due to the properties of graphene
or other types of thin films. However, the study of two-dimensional systems appears to
be much more difficult than one-dimensional or even three-dimensional systems. Some
of these difficulties have their origin in the existence of the logarithmic singularity in the
resolvent kernel of the free two-dimensional Laplacian (see [1,16]). This sort of complica-
tions makes the analysis of two-dimensional systems difficult even though their physical
properties become more interesting and counterintuitive at times. For example, let us
briefly consider the issue of the existence of a bound state for the Schrödinger equation
with an attractive short range potential as the dimension ranges from one to three. While
the three-dimensional model is characterised by having a bound state only for sufficiently
large values of the magnitude of the coupling constant, its one and two-dimensional coun-
terparts share the feature of admitting a ground state no matter how small the magnitude
of the coupling constant may be (see [17–21]). Furthermore, if we consider the Schrödinger
equation with a point interaction, the amazing peculiarity of the two-dimensional model
is that, differently from its one and three-dimensional counterparts for which the bound
state exists only in the attractive case, it admits a ground state even if the point interaction
is repulsive (see [1,16]). The surprising features of two-dimensional point interactions
also manifest themselves in the presence of a background two-dimensional confinement,
precisely in terms of the location of the so-called level crossings, that is to say crossings
of the energy levels (eigenvalues) as functions of the coupling parameter. As was seen
in [22] (see [23–25] as well), the three-dimensional harmonic oscillator perturbed by an
attractive point interaction exhibits infinitely many level crossings, which occur for the
same value of the coupling constant. The same phenomenon also takes place for the most
singular one-dimensional point interaction, namely the nonlocal δ′-interaction, defined
by the quadratic form ( f , δ′)(δ′, f ) = ( f ′, δ)(δ, f ′) = ( f ′, δ f ′) for any Schwartz function f
(see [1,2]) with either the harmonic or conic confinement (see [22,26,27]). However, as
shown in [22], in two dimensions the harmonic oscillator perturbed by a point interaction
exhibits level crossings even in the repulsive case, and such level crossings are located at
different values of the coupling parameter. As attested in [28], the same spectral features
appear even more spectacularly when the harmonic confinement gets replaced by the
square pyramidal one or by a mixture of the type 1

2 (x2 + |y|).
Although they have been studied to a far lesser extent than quantum models with point

interactions, other potentials/interactions leading to solvable or quasi-solvable models
have been considered in the relevant literature. An interesting example is given by the
potential V(x) = −λe−|x|, thoroughly investigated in [29]. The one-dimensional attractive
Gaussian potential V(x) = −λe−x2

has also drawn considerable interest over the years
because of its quasi-solvability. For example, a fairly accurate approximation of the two
lowest lying eigenvalues of the Hamiltonian− d2

dx2 − λe−x2
has been obtained in [30,31] (see

also [32,33]). An analogous approximation of the two lowest lying eigenvalues has been
obtained also in the presence of the harmonic confinement, that is to say for the Hamiltonian
H0 − λe−x2

= − 1
2

(
− d2

dx2 + x2
)
− λe−x2

, in [34]. The detailed study of the integral operator

λ(H0 − E)−
1
2 e−x2

(H0 − E)−
1
2 , isospectral to the well-known Birman–Schwinger operator

λe−x2/2(H0 − E)−1e−x2/2, carried out in [35] was crucial in the relevant calculations.
It is worth recalling that a three-dimensional (3D) material with confinement in only

one dimension is said to be a quantum well [36], while a 3D material with two-dimensional
confinement is called a quantum wire. Therefore, in the case of a 3D quantum well inside
a 3D material that is far more extended in either unconfined dimension than the other,
it makes sense to consider the limiting case of a two-dimensional layer with a confining
potential in one dimension.

In a previous paper [37], we have studied some technicalities that arise in a two-
dimensional model in which the free Hamiltonian is a free particle Hamiltonian in one
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variable and a harmonic oscillator in the other. Then, we have added a two-dimensional
isotropic Gaussian impurity and shown, by means of the renowned Kato, Lions, Lax–
Milgram, Nelson theorem [38], that the ensuing Hamiltonian is self-adjoint. Later, the
Gaussian interaction in the direction along which the harmonic confinement is present was
replaced by a Dirac delta and proved that the new Hamiltonian is the limit in the sense
of resolvents of a suitable sequence of Hamiltonians with a two-dimensional Gaussian
potential. The study of this type of system has been inspired by some other attempts to
understand the dynamics of two-dimensional systems, such as a previous work on the
two-dimensional hydrogen atom decorated by a Dirac delta interaction [39].

In the present article, we want to proceed further with the model studied in [37]
with a rigorous approach to the study of its energy spectrum. We describe this model in
Section 2, where we have considered the isotropic Gaussian potential and not the Dirac
interaction studied as a limiting case in [37]. We show that its Hamiltonian has an absolutely
continuous spectrum on [1/2, ∞) with degeneracy equal to n on each of the intervals of
the form [(2n− 1)/2, (2n + 1)/2), plus a sequence of bound states, which in general are
embedded in the continuous.

Concerning the point spectrum (bound states), we remind the reader that in [37], we
have established a lower bound for the spectrum in terms of the coupling constant that
multiplies the Gaussian interaction. Furthermore, we have found the asymptotic behaviour
of this lower bound for higher values of the coupling constant. In this paper, we have made
an attempt to go beyond those results by providing an accurate approximation of the energy
value of the ground state up to the fourth order on the coupling constant. To accomplish
this objective, we have taken advantage of some advanced mathematical machinery, and
bound states are obtained as the zeroes of the modified Fredholm determinant (to be
defined in Section 3) of the operator I − λBE, where I is the identity, λ is the coupling
constant and BE is the Birman–Schwinger operator for the total Hamiltonian.

We organise the present paper as follows: in Section 2, we pose the problem and
give some basic results, in particular those relative to the degeneracy of the continuous
spectrum. In Section 3, we provide the approximation of the energy of the ground state. In
Section 4, we conclude with some final remarks. For the sake of clarity, we have collected
all the relevant mathematical results in Appendix A.

2. Preliminaries

In this article, we investigate the two-dimensional model with the free Hamiltonian
given by:

H0 =

(
−1

2
d2

dx2 +
x2

2

)
− 1

2
d2

dy2 , (1)

to which an attractive impurity is added. The model obviously lacks spatial symmetry
with respect to both variables even though the impurity is assumed to be proportional to
the isotropic Gaussian potential

V(x, y) = e−(x2+y2), (2)

so that the total Hamiltonian is

Hλ = H0 − λV(x, y) = H0 − λe−(x2+y2), λ > 0, (3)

λ being the parameter measuring the strength of the Gaussian interaction in our model.
As mentioned earlier, the latter Hamiltonian was first studied in [37]. In that paper,

the two following properties of Hλ were rigorously proved:

(i) The related Birman–Schwinger operator

BE = V1/2(H0 − E)−1V1/2, E ∈ ρ(H0),
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is Hilbert–Schmidt (see [38,40,41] for the definition and properties of such operators
as well as, more generally, for those of compact operators belonging to the so-called
Schatten classes).

(ii) As a consequence of the well-known Kato, Lions, Lax–Milgram, Nelson theorem
(see [38]), the Hamiltonian Hλ is self-adjoint in the sense of quadratic forms, that is to
say Q(Hλ) = Q(H0) (see [38,40,41]), and bounded from below.

As shown in [37], the Birman–Schwinger operator associated to Hλ has its integral
kernel given by:

BE(x, x′, y, y′) = e−
(x2+y2)

2

[
∞

∑
n=0

e−γn(E)|y−y′ |

γn(E)
φn(x)φn(x′)

]
e−

(x′2+y′2)
2 :=

∞

∑
n=0

KE,n(x, x′, y, y′), (4)

where KE,n(x, x′, y, y′) is an integral kernel and φn(x) is the normalised n-th eigenfunction
of the one-dimensional harmonic oscillator,

φn(x) =
1√

2nn!
√

π
e−x2/2 Hn(x), (5)

Hn(x) being the n-th Hermite polynomial (see [38,40,42]), so that the series inside the
square brackets represents the Green function of the “free" Hamiltonian with (see [43])

γn(E) =

√
2
(

n +
1
2
− E

)
, n = 0, 1, . . . (6)

It is quite evident that BE ≥ 0 (positive operator) for any E < 1
2 . Before moving

forward with the calculation of the expansion for the energy of the ground state of Hλ,
some remarks on the functional analytical features of BE, E < 1

2 , might be enlightening.
First of all, as rigorously shown in Theorem A1 of the Appendix A, each summand

KE,n(x, x′, y, y′) on the right hand side of (4) is the integral kernel of a positive trace class
operator and that the trace of BE, E < 1

2 , is barely divergent since it is given by:

Tr(BE) =
∞

∑
n=0

∫ ∞

−∞

∫ ∞

−∞

e−(x2+y2)

γn(E)
φ2

n(x) dxdy =
√

π
∞

∑
n=0

1
γn(E)

∫ ∞

−∞
e−x2

φ2
n(x) dx, (7)

which, by using Wang’s results in [44], can be written as:

Tr(BE) = π
∞

∑
n=0

(
φn, φ2

0φn
)

γn(E)
=

π√
2

∞

∑
n=0

φ2
2n(0)

γn(E)
, (8)

so that the sequence inside the sum decays like n−1 since γn(E) in (6) behaves like n1/2 and
φ2

2n(0) like n−1/2 for large n’s (see [45,46]), which implies the divergence of (8). However,
as stated earlier, it was shown in [37] that the infinite sum converges in the norm topology
of Hilbert–Schmidt operators.

Remark 1. In order to get a better understanding of the spectral features of the free Hamiltonian
H0 in (1), the Green function inside the square brackets on the right hand side of (4) can be regarded
as an infinite sum of Green functions, each of which implies, due to the presence of γn(E) in the
denominator, an absolutely continuous spectrum

[
n + 1

2 ,+∞
)

, so that the absolutely continuous

spectrum of H0 is
[

1
2 ,+∞

)
. As a consequence of this spectral structure, it is clear that, while the

points in
[

1
2 , 3

2

)
have degeneracy equal to one, the degeneracy of those in

[ 3
2 , 5

2
)

is equal to two,

the degeneracy of those in
[ 5

2 , 7
2
)

is equal to three and so on. This fact will be quite relevant if one
wishes to investigate the discrete spectrum of Hλ in (3) above its ground state energy.
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It is also worth pointing out that, if the convolution kernel e−γn(E)|y−y′ | in (4) were
replaced by e−γn(E)(|y|+|y′ |), the resulting integral operator B̃E(x, x′, y, y′) would become an
infinite sum of positive rank one operators belonging to the trace class (Schatten class of
index 1) with trace equal to:

Tr(B̃E) =

√
π

2

∞

∑
n=0

φ2
2n(0)

γn(E)

∫ ∞

−∞
e−y2−2γn(E)|y|dy =

π√
2

∞

∑
n=0

φ2
2n(0)

γn(E)
eγ2

n(E)erfc(γn(E)) < ∞, (9)

since the additional factor eγ2
n(E)erfc(γn(E)) → 0 as n → ∞ (where erfc(x) denotes the

complementary error function defined in [42]), as follows easily from L’Hôpital’s theorem.

3. Calculation of the Ground State Energy

As shown in [37], the Birman–Schwinger operator BE, E < 1
2 , with integral kernel (4)

is Hilbert–Schmidt (H-S) with H-S norm bounded by:

1

8
√

π( 1
2 − E)

3
√

2 +
1√

1
2 − E

2

+
1

4
√

π3( 3
2 − E)3

.

As a consequence, the modified Fredholm determinant will have to be used in order
to determine the eigenvalues of Hλ, that is to say those values of E for which

det2[1− λBE] = 0. (10)

We remind the reader that the latter determinant is defined by the formula (see [1,47,48])

det2[1 + A] = det[1 + A]e−Tr(A), A ∈ T2,

where det denotes the ordinary Fredholm determinant (see [1,49]) and T2 is the H-S class.

By noting that γn(E) =

√
2
(

n + 1
2 − E

)
→ 0 as E → n + 1

2 from below for any n;

then, for any E in the left neighbourhood of n + 1
2 , it should be possible to write λBE as

the sum of a rank one operator, which is divergent as E→ n + 1
2 , and a Hilbert–Schmidt

operator, which remains bounded as E→ n + 1
2 . This is a consequence of some standard

techniques developed by Simon and Klaus [50] in the seventies.
Let us see how this works for n = 0, that is to say near E0 = 1

2 , the ground state
energy of the unperturbed harmonic oscillator. To this end, let us set E0(λ) =

1
2 − ε0, so

that γ0(ε0) =
√

2ε0, and:
Bε0 = Pε0 + Mε0 + Nε0 , (11)

where Pε0 is the rank one operator with integral kernel equal to

Pε0(x, x′, y, y′) =
e−x2/2φ0(x)e−x′2/2φ0(x′)e−y2/2e−

√
2ε0|y|e−y′2/2e−

√
2ε0|y′ |

√
2ε0

, (12)

Mε0 is the trace class operator with integral kernel equal to

Mε0(x, x′, y, y′) =
e−x2/2φ0(x)e−x′2/2φ0(x′)e−y2/2e−

√
2ε0|y−y′ |e−y′2/2

√
2ε0

− Pε0(x, x′, y, y′), (13)

and Nε0 is the positive Hilbert–Schmidt operator with integral kernel equal to

Nε0(x, x′, y, y′) = e−
(x2+y2)

2

[
∞

∑
n=1

e−γn(ε0)|y−y′ |

γn(ε0)
φn(x)φn(x′)

]
e−

(x′2+y′2)
2 , (14)

with γn(ε0) =
√

2(n + ε0), n ≥ 1.
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The rank one operator Pε0 is clearly divergent as ε0 → 0+. As will be shown in the
mathematical appendix, the operator Nε0 converges in the H-S norm to the positive H-S
operator with integral kernel given by the function

N0(x, x′, y, y′) = e−
(x2+y2)

2

[
∞

∑
n=1

e−
√

2n|y−y′ |
√

2n
φn(x)φn(x′)

]
e−

(x′2+y′2)
2 . (15)

Although it is slightly more challenging from the mathematical point of view, it can
also be shown (see Appendix A) that Mε0 → M0 in the trace class norm, where M0 is the
trace class operator with integral kernel equal to:

M0(x, x′, y, y′) = e−x2/2φ0(x)e−x′2/2φ0(x′)e−y2/2[|y|+ ∣∣y′∣∣− ∣∣y− y′
∣∣]e−y′2/2. (16)

Therefore, (10) can be written as:

det2[1− λ(Pε0 + Mε0 + Nε0)] = 0, (17)

which, taking into account that 1− λ(Mε0 + Nε0) is invertible for small values of λ in
a suitable right neighbourhood of ε0 = 0 due to the results of Theorems A2 and A3 in
Appendix A, can be recast as:

det2[1− λ(Mε0 + Nε0)]det2

[
1− λPε0 [1− λ(Mε0 + Nε0)]

−1
]
= 0, (18)

Given that the first determinant cannot vanish for small values of λ in a suitable right
neighbourhood of ε0 = 0, we need only seek the roots of

det2

[
1− λPε0 [1− λ(Mε0 + Nε0)]

−1
]
= 0, (19)

which, taking into account that Pε0 ∈ T1 since it is a rank one operator, can be written as
(see [1,47]):

det
[
1− λPε0 [1− λ(Mε0 + Nε0)]

−1
]
eλ·tr

(
Pε0 [1−λ(Mε0+Nε0)]

−1)
= 0. (20)

As the second factor cannot vanish, the equation determining the energy of the ground
state reduces to:

det
[
1− λPε0 [1− λ(Mε0 + Nε0)]

−1
]
= 0, (21)

involving only a Fredholm determinant. Furthermore, since Pε0 is a rank one operator,
(21) becomes:

1− λ · tr
(

Pε0 [1− λ(Mε0 + Nε0)]
−1
)
= 0, (22)

which explicitly reads:

√
2ε0 = λ

∫ ∞

−∞
· · ·

∫ ∞

−∞
e−x2/2 φ0(x) e−y2/2−

√
2ε0|y|

×S(x, x′, y, y′) e−x′2/2 φ0(x′) e−y′2/2−
√

2ε0|y′ | dxdx′dydy′,

(23)

S(x, x′, y, y′) being the integral kernel of the operator [1− λ(Mε0 + Nε0)]
−1.

By mimicking the argument used in [49] essentially based on the implicit function theo-
rem, we can prove the existence and the analyticity of the unique solution γ0(λ) =

√
2ε0(λ)

near λ = 0, γ0 = 0. In order to approximate the solution with satisfactory accuracy, it
makes sense to have e−y2/2−

√
2ε0|y| replaced by e−y2/2 and [1− λ(Mε0 + Nε0)]

−1 replaced
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by its linearisation evaluated at ε0 = 0, that is to say 1 + λ(M0 + N0), so that the resulting
equation reads:√

2ε0 = λ

[∫ ∞

−∞
e−x2

φ2
0(x)dx

]2[∫ ∞

−∞
e−y2

dy
]2

+λ2
∫ ∞

−∞
· · ·

∫ ∞

−∞
e−x2/2 φ0(x) e−y2/2 M0(x, x′, y, y′) e−x′2/2 φ0(x′) e−y′2/2 dxdx′dydy′

+λ2
∫ ∞

−∞
· · ·

∫ ∞

−∞
e−x2/2 φ0(x) e−y2/2 N0(x, x′, y, y′) e−x′2/2 φ0(x′) e−y′2/2 dxdx′dydy′.

(24)

The calculation of the first summand on the right hand side of (24) is quite straightforward:

I1 = λ

[∫ ∞

−∞
e−x2

φ2
0(x)dx

]2[∫ ∞

−∞
e−y2

dy
]2

=
λ

π

[∫ ∞

−∞
e−2x2

dx
]2[∫ ∞

−∞
e−y2

dy
]2

=
πλ

2
. (25)

Let us evaluate the second term on the right hand side of (24), using the form of the
integral kernel M0(x, x′, y, y′) given in (16)

I2 = λ2
[∫ ∞

−∞
e−x2

φ2
0(x)dx

]2 ∫ ∞

−∞

∫ ∞

−∞
e−y2−y′2(|y|+ ∣∣y′∣∣− ∣∣y− y′

∣∣)dydy′,

whose value turns out to be
I2 =

1
2
(2−

√
2)
√

π λ2. (26)

Finally, let us now focus on the evaluation of the last summand on the right hand side
of (24) using the form of the integral kernel N0(x, x′, y, y′) given in (15), that is to say:

I3 = λ2
∞

∑
m=1

1√
2m

[∫ ∞

−∞
φ0(x)e−x2

φm(x)dx
]2 ∫ ∞

−∞

∫ ∞

−∞
e−y2

e−
√

2m |y−y′ |e−y′2 dydy′

= πλ2
∞

∑
m=1

1
2
√

m

[∫ ∞

−∞
φ3

0(x)φ2m(x)dx
]2 ∫ ∞

−∞

∫ ∞

−∞
e−y2

e−2
√

m |y−y′ |e−y′2 dydy′.

(27)

As shown in [34],

(φ0, φ2
0φ2m)

2 =
φ2

2m(0)
22m+1

√
π

,

so that (27) becomes:

I3 =

√
π λ2

4

∞

∑
m=1

φ2
2m(0)

22m√m

∫ ∞

−∞

∫ ∞

−∞
e−y2

e−2
√

m |y−y′ |e−y′2 dydy′. (28)

As a consequence of Schwarz inequality, we get that the double integral in (28) is
bounded by:

I3 ≤
√

πλ2

4

∞

∑
m=1

φ2
2m(0)

22m√m

[∫ ∞

−∞
e−2y2

dy
]1/2

[∫ ∞

−∞

(∫ ∞

−∞
e−2
√

m|y−y′ |e−y′2 dy′
)2

dy

]1/2

<

√
πλ2

4

∞

∑
m=1

φ2
2m(0)

22m√m

(∫ ∞

−∞
e−2y2

dy
)(∫ ∞

−∞
e−2
√

m|y|dy
)
=

πλ2

4
√

2

∞

∑
m=1

φ2
2m(0)

22mm
< ∞,

as follows by using Young’s inequality to estimate the convolution, that is to say

|| f ∗ g||2 ≤ || f ||1||g||2,

with f (x) = e−2
√

m |x| and g(x) = e−x2
.
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It is worth stressing that the fast convergence of the series defining I3 is ensured by the
fact that the m-th term of the dominating series behaves like m−

3
2 2−2m, due to the explicit

expression of the harmonic oscillator eigenfunctions evaluated at 0 (see [45,46]).
Having shown the convergence of the series (28), we rewrite it as:

I3 =
πλ2

8

∞

∑
m=1

φ2
2m(0)

22m√m
em
∫ ∞

−∞
e−y2

[
e2
√

m y erfc(
√

m + y) + e−2
√

m y erfc(
√

m− y)
]
dy =

πλ2

8
S∞, (29)

which defines S∞. The almost straightforward estimate
∞

∑
m=11

φ2
2m(0)

22m√m

∫ ∞

−∞

∫ ∞

−∞
e−y2

e−2
√

m |y−y′ |e−y′2 dydy′ ≤
√

π

2

∞

∑
m=11

φ2
2m(0)

22mm

≤
√

π

2
φ2

22(0)
11

∞

∑
m=11

1
22m =

√
π

2
φ2

22(0)
11 · 222

∞

∑
m=0

1
22m =

√
π

2
φ2

22(0)
33 220 ,

(30)

whose approximate value is given by 3.780591× 10−8, shows that the difference S∞ − S10
is of the order 10−8, so that a fairly accurate approximation of S∞ is given by the sum of the
first ten terms in the series in (29), let us denote the sum of these terms by S10 = 0.09397.
Consequently, I3 ≈ 0.03690 λ2. Incidentally, it is worth noting that the latter contribu-
tion to the quadratic term is far smaller than the one from the second summand, namely
I2 = 1

2 (2−
√

2)
√

π λ2 ≈ 0.51914 λ2. Hence, the quadratic term in λ is accurately approxi-
mated by I2 + I3 ≈ 0.55604 λ2.

Summarising the previous results, we have that the expansion of
√

2ε0 up to the
second order of the coupling constant is given by (24):√

2ε0(λ) =
πλ

2
+

[
1
2
(2−

√
2)
√

π +
π

8
S∞

]
λ2, (31)

so that

ε0(λ) =
πλ2

8

[√
π +

(
2−
√

2 +
√

π

4
S∞

)
λ

]2

, (32)

which finally leads to the desired expansion for the ground state energy:

E0(λ) =
1
2
− ε0(λ) =

1
2
− πλ2

8

[√
π +

(
2−
√

2 +
√

π

4
S∞

)
λ

]2

. (33)

The plot of the latter expansion is shown in Figure 1.

0.5 1
λ

-0.5

-1.5

-2.5

Eo(λ)

Figure 1. Plot of the ground state energy E0(λ) as a function of λ, given in (33).
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Before closing this section, we wish to provide the reader with some detailed informa-
tion regarding the magnitudes of the norms of the relevant operators. This quantitative
information will be crucial if one wishes to grasp the structure of the eigenvalues above
the energy of the ground state. Let us start by recalling that

||Pε0 ||∞ = ||Pε0 ||1 =

√
1

2ε0

∫ ∞

−∞
e−x2

φ2
0(x) dx

∫ ∞

−∞
e−y2−2

√
2ε0|y| dy =

√
π

ε0

e2ε0 erfc(
√

2ε0)

2
, (34)

which clearly diverges as ε0 → 0 from above, thus ensuring the existence of the ground
state regardless of the smallness of the coupling constant.

Next, as shown in the mathematical appendix, we have:

||Mε0 ||1 =

(∫ ∞

−∞
e−x2

φ2
0(x)dx

)(∫ ∞

−∞

1− e−2γ0(ε0)|y|

γ0(ε0)
e−y2

dy

)

=

√
π

ε0

1− e2ε0erfc(
√

2ε0)

2
→ ||M0||1 =

√
2,

(35)

as ε0 → 0 from above. Another easy consequence of Theorem A3 in Appendix A is that

||Nε0 ||2 ≤ ||N0||2 < 1.3 <
√

2, (36)

which clearly implies that the eigenvalues of the Hamiltonian Hλ arising from the presence
of Nε0 are bound to occur for larger values of λ than those arising from the presence of
Mε0 in the modified Fredholm determinant. Furthermore, as follows from Theorem A1 in
Appendix A, for any n ≥ 1, we get:

||Kε0,n||1 =
π

2
√

n + ε0
φ2

2n(0)→
π

2
√

n
φ2

2n(0) = ||K0,n||1. (37)

In particular, we have:

∣∣∣∣Kε0,1
∣∣∣∣

1 =
π

2
√

1 + ε0
φ2

2(0)→
π

2
φ2

2(0) =
√

π

4
= ||K0,1||1 ≈ 0.44311, (38)

and ∣∣∣∣Kε0,2
∣∣∣∣

1 =
π

2
√

2 + ε0
φ2

4(0)→
π

2
√

2
φ2

4(0) =
3
√

π

16
√

2
= ||K0,2||1 ≈ 0.23500, (39)

which imply that the eigenvalues of Hλ arising from Kε0,1 and Kε0,2 are bound to emerge
for larger values of λ than those arising Mε0 . The information resulting from (34), (35), (38),
(39) is depicted in Figure 2.

Figure 2. Plot of the energy dependence of the norms of the following four operators: Pε0 in (34)
(blue curve), Mε0 in (35) (red curve), Kε0,1 in (38), (cyan curve) and Kε0,2 in (39) (magenta curve). In
the inset, we can see more details of the two lowest curves.
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4. Final Remarks

Two-dimensional quantum models are of increasing interest in mathematical physics
due to a wide range of applications. Solving the eigenvalue problem for the Schrödinger
equation with some particularly interesting confinement potentials in two dimensions
often gives rise to complicated mathematical problems, mainly because of the logarithmic
singularity of the two-dimensional Green function at the origin. The system under study
in the present article, as described in Section 2, is a typical example thereof. Here, even
the estimation of the energy value of the ground state is far from trivial and requires
advanced mathematical tools. As a matter of fact, even the study of a model with a sharply
peaked impurity such as the Gaussian one becomes more complicated if the dimension
changes from one to two, as a consequence of the fact that, while the Birman–Schwinger
operator is trace class in one dimension, it is only Hilbert–Schmidt in two dimensions.
This modification implies that the modified Fredholm determinant will have to be used in
place of the ordinary Fredholm determinant in order to study the eigenvalues created by
the impurity.

In a previous paper by ourselves, a lower bound for the energy spectrum of the model
under consideration in the present manuscript has been found. To that end, we have
already made use of sophisticated mathematical tools, first to prove the self-adjointness
of the Hamiltonian and then using the properties of the Birmann–Schwinger operator to
draw our conclusions. Now, we went further and have been able to find the approximate
value of the energy of the ground state, using similar functional analytic methods.

Furthermore, it is conceptually possible to determine, up to some degree of accuracy,
at least the first excited state. However, this task will require additional mathematical work
and even more complex calculations, so that we have decided to put off this analysis until
a forthcoming paper.
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Appendix A. Some Mathematical Results

In this appendix we rigorously prove three mathematical results used throughout
our paper.

Appendix A.1. First Theorem

First of all, we are going to demonstrate a result relative to the integral kernel intro-
duced in Equation (4).

Theorem A1. The function

KE,n(x, x′, y, y′) = φn(x) e−
(x2+y2)

2 e−γn(E)|y−y′ |
γn(E) φn(x′) e−

(x′2+y′2)
2 ,

γn(E) =

√
2
(

n + 1
2

)
− E, E < 1

2 ,

(A1)

defines the integral kernel of a positive trace class operator for any integer n ≥ 0.
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Proof. It is immediate to notice that the function is continuous and

KE,n(x, x, y, y) =
1

γn(E)
φ2

n(x)e−(x2+y2) ≥ 0, (A2)

for any n ≥ 0, E < 1
2 . Furthermore, for any n ≥ 0, E < 1

2 ,∫ ∞

−∞

∫ ∞

−∞
KE,n(x, x, y, y) dxdy =

1
γn(E)

∫ ∞

−∞

∫ ∞

−∞
φ2

n(x)e−(x2+y2) dxdy

=

√
π

γn(E)

∫ ∞

−∞
e−x2

φ2
n(x) dx =

π

γn(E)

(
φn, φ2

0φn

)
=

π√
2γn(E)

φ2
2n(0) < ∞,

(A3)

the last equality being due to [35,44]. Hence, due to (A2) and (A3), KE,n(x, x′, y, y′) meets
both requirements of the Lemma listed after Theor. XI.31 in [51] by invoking which we
can claim that the function is actually the integral kernel of a positive trace class operator
whose trace is exactly equal to the right hand side of (A3).

Appendix A.2. Second Theorem

The second result we wish to prove in this mathematical appendix is the anticipated
convergence of the trace class operator Mε0 with integral kernel given by (13) to the trace
class operator M0 with integral kernel given by (16).

The proof essentially mimics the one of Theorem 3.1 in [52] (see also [21]). It is worth
mentioning that a similar result also holds in the case of the resolvent of the one-dimensional
Dirac Hamiltonian (see [53]).

Theorem A2. The operator Mε0 with integral kernel given by (13) is trace class and converges
to the trace class operator M0 with integral kernel given by (16) in the norm topology of trace
class operators.

Proof. As an immediate consequence of the previous theorem, it is clear that the first
summand on the right hand side of (13) is the integral kernel of a trace class operator, so
that Mε0(λ)

, being given by a linear combination of a trace class operator and a rank one
operator, is trace class as well.

Before proving the stated convergence, let us show that the limiting operator M0 is
trace class. Its integral kernel is clearly continuous and, as an easy consequence of the
triangular inequality, we have:

M0(x, x′, y, y′) = e−x2/2 φ0(x) e−x′2/2 φ0(x′) e−y2/2[|y|+ ∣∣y′∣∣− ∣∣y− y′
∣∣]e−y′2/2 ≥ 0. (A4)

Furthermore,
M0(x, x, y, y) = 2e−x2

φ2
0(x)|y|e−y2 ≥ 0, (A5)

and∫
R2

M0(x, x, y, y) dxdy = 2
∫
R2

e−x2
φ2

0(x)|y|e−y2
dxdy = 2

∫ ∞

−∞
e−x2

φ2
0(x) dx

∫ ∞

0
2y e−y2

dy

=
2√
π

(∫ ∞

−∞
e−2x2

dx
)(∫ ∞

0
e−s ds

)
=

√
2
π

∫ ∞

−∞
e−s2

ds =
√

2.

(A6)

Therefore, by invoking again the aforementioned Lemma in [51], the function M0(x, x′, y, y′)
is the kernel of a positive trace class operator M0 with trace equal to∫ ∞

−∞

∫ ∞

−∞
M0(x, x, y, y) dxdy =

√
2.
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Let us focus now on the proof of the stated convergence. Given that, as γ0(ε0) =√
2ε0 → 0+,

e−γ0(ε0)|y−y′ | − e−γ0(ε0)|y|+|y′ |

γ0(ε0)
→ |y|+

∣∣y′∣∣− ∣∣y− y′
∣∣ = 2 min(|y|,

∣∣y′∣∣) ≥ 0, (A7)

we immediately get the pointwise convergence of the integral kernel, that is to say

Mε0(x, x′, y, y′)→ M0(x, x′, y, y′) (A8)

as γ0(ε0) =
√

2ε0 → 0+, which, in turn, implies the weak convergence of Mε0 to M0.
Furthermore, as γ0(ε0) =

√
2ε0 → 0+,∫ ∞

−∞

∫ ∞

−∞
Mε0(x, x, y, y) dxdy =

(∫ ∞

−∞
e−x2

φ2
0(x)dx

)(∫ ∞

−∞

1− e−2γ0(ε0)|y|

γ0(ε0)
e−y2

dy

)
→

2
(∫ ∞

−∞
e−x2

φ2
0(x)dx

)(∫ ∞

−∞
|y|e−y2

dy
)
=
√

2 =
∫ ∞

−∞

∫ ∞

−∞
M0(x, x, y, y)dxdy,

(A9)

which is equivalent to saying that the trace class norm of Mε0 converges to that of M0
as γ0(ε0) =

√
2ε0 → 0+. As a result of a well-known theorem on the convergence of

sequences of operators belonging to the trace class ideal (Ref. [41] Theorem 2.21), the latter
convergence, together with the weak convergence of Mε0 to M0, implies the convergence
in the trace class norm, which completes our proof of the theorem.

Appendix A.3. Third Theorem

The last result that we are going to demonstrate refers to the operator Nε0 , introduced
in (14) through an integral kernel.

Theorem A3. The operator Nε0 with integral kernel given by (14) is Hilbert–Schmidt and con-
verges to the H-S operator N0 with integral kernel given by (15) in the norm topology of H-S
operators.

Proof. As follows from Theorem A1, each summand in both Nε0 and N0 is trace class.
However, as shown in (8), both infinite sums do not belong to T1. They belong instead to
T2 as a consequence of an easy modification (removal of the first summand) of the proof of
Theorem 2.1 in [37]. For their H-S norms, given by

tr(N2
ε0
) =

∫ ∞

−∞

∫ ∞

−∞
N2

ε0
(x, x, y, y) dxdy

=
∞

∑
m=1

∞

∑
n=1

(
φm, e−(·)

2
φn

)2
∫

R2
e−y2 e−

(√
2(m+ε0)+

√
2(n+ε0)

)
|y−y′ |

2
√
(m + ε0)(n + ε0)

e−y′2 dydy′

 (A10)

and

tr(N2
0 ) =

∫ ∞

−∞

∫ ∞

−∞
N2

0 (x, x, y, y)dxdy

=
∞

∑
m=1

∞

∑
n=1

(
φm, e−(·)

2
φn

)2
[∫ ∞

−∞

∫ ∞

−∞
e−y2 e−(

√
2m+

√
2n)|y−y′ |

2
√

mn
e−y′2 dydy′

]
,

(A11)

we have by using first Young’s inequality to estimate the convolution and later Schwartz
inequality:
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tr(N2
ε0
) ≤ tr(N2

0 ) ≤
π

3
2

2

∞

∑
m=1

∞

∑
n=1

(
φm, φ2

0φn
)2

m
3
4 n

3
4

≤ π
3
2

2

[
∞

∑
n=1

||φ0φn||22
n

3
4

]2

=

=
π

3
2

2

[
∞

∑
n=1

(
φn, φ2

0φn
)

n
3
4

]2

=
π

3
2

4

[
∞

∑
n=1

φ2
2n(0)

n
3
4

]2

≈ 1.66265,

(A12)

the convergence of the series inside the square brackets being ensured by the fact that
φ2

2n(0)/n
3
4 decays like n−5/4. Therefore, by dominated convergence:

tr(N2
ε0
) =

∫ ∞

−∞

∫ ∞

−∞
N2

ε0
(x, x, y, y)dxdy→

∫ ∞

−∞

∫ ∞

−∞
N2

0 (x, x, y, y)dxdy = tr(N2
0 ) (A13)

as ε0 → 0+. By invoking again Theorem 2.21 in [41], it follows that (A13) and the weak con-
vergence of Nε0 to N0 imply that the convergence actually takes place in the H-S norm.
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