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Abstract: Many high formwork systems are currently equipped with health monitoring systems,
and the analysis of the data obtained can determine whether high formwork is a hazard. There-
fore, the post-processing of monitoring data has become an issue of widespread concern. In this
paper, we discussed the fitting effect of the symmetrical high formwork monitoring data using the
autoregressive–moving-average (ARMA) model and the back propagation neural networks (BPNN)
combined model to process. In the actual project, the symmetry of the high formwork system allows
the analysis of local monitoring results to be well extended to the whole. For the establishment
of the ARMA model, the accurate judgment of the model order has a significant impact. In this
paper, back propagation neural networks (BPNN) are used to simulate the ARMA process. The order
of the ARMA model is estimated by determining the optimal neural network structure, which is
suitable for linear or nonlinear sequences. We validated this approach from the ARMA model data
simulated in Monte Carlo and compared it with the Akaike information criterion (AIC) and Bayesian
information criterion (BIC). The length of the sequence, the coefficients and the order of the ARMA
model are considered as factors that influence the judgment effect. Under different conditions, the
BPNN always shows an accuracy rate of more than 90%, while the BIC only has a higher accuracy
rate when the model order is low and the judgment efficiency of the AIC is below 50%. Finally, the
proposed method successfully modeled the stress sequence and obtained the stress change trend.
Compared with AIC and BIC, the efficiency of the processing time series is increased by about 50%
when an order is obtained by BPNN.

Keywords: structural health monitoring; high formwork; ARMA; BPNN; stress trend prediction

1. Introduction

The safety management of the high formwork is one of the important tasks of con-
struction safety management, and the majority of failures occur due to inadequate site
supervision and poor design [1]. Undoubtedly, the real-time monitoring of near-miss
accidents provides an insight into possible accidents and can significantly improve safety
performance by appropriate action being taken before potentially impending accidents
occur [2]. In view of this, many high formwork systems have installed health monitoring
systems of different sizes around the world, and these have accumulated a large amount
of data over a long period of time [3,4]. Therefore, how to process this huge monitoring
data accurately and timely has become the key process of the high formwork condition
assessment and performance prediction [5].

Structural damage will lead to changes in the physical properties of the structure,
and these changes are often reflected in the monitoring sequence [6,7]. In the previous
evaluation of structural safety performance, most of its data were related to time [8–12].
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The methods of dealing with stress sequences from health monitoring include the time
e-frequency analysis method, modal analysis method, analytic hierarchy process, genetic
algorithm, neural network analysis method, time series analysis method, and reliability
theory analysis method [13–15]. Among them, the autoregressive–moving-average (ARMA)
is a method widely used to model time series [16]. Two steps of the ARMA model that
have an important impact on the establishment process are order estimation and coefficient
estimation [17]. Coefficient estimation is based on an accurate estimate of the order.
The most widely used methods of order estimation are the Akaike information criterion
(AIC) [18] and the Bayesian information criterion (BIC) [19]. AIC and BIC are based on
the concept of entropy and provide criteria for weighing the complexity of the estimation
model against the goodness of the fitted data. In recent years, with the popularity of
deep learning, ARMA models and artificial neural network associations have been used to
analyze time series [20–24]. These studies prove that the combination of the two is effective
for time series analysis [25]. However, in previous literature, the simulation performance
of neural networks lacks comprehensive research on different models.

As widely used time series models, ARMA and BPNN are used less in structural
monitoring. This paper applies these two methods to the template system for the first
time. In previous studies, we have successfully applied neural networks to the safety
assessment of long-span bridges and achieved good results [26]. The timeliness of the
structure monitoring sequence is more obvious than the safety assessment of long-span
bridges, so we model this using the ARMA model and the BPNN model [27]. Compared
with the previous literature, we have improved the network structure of BPNN to a better
mathematical model. The paper has mainly improved three aspects: (a) Designed and
improved the BPNN structure according to the characteristics of the monitoring system;
(b) Improved the judgment criteria of the ARMA model order and the model fitting effect;
(c) Considering the influence of bias in BPNN modeling, the recognition of discrete data
is enhanced.

In this paper, we use neural networks and ARMA to model and analyze the high
formwork monitoring sequences with the goal of data-driven modeling. We use back
propagation neural network (BPNN) [28] structures for the identification of the order of the
ARMA model. The order estimation of the model uses the mean square error (MSE) of the
neural network as the basis for the judgment of the order [29]. For neural network structures
with low MSE, the structure of the input layer corresponds to the order of the ARMA model.
Through the Monte Carlo simulation, a series of model simulation data is obtained. We
used the defined neural network model to make a comprehensive comparative analysis of
the sequences of different coefficients, sequence lengths, and orders.

This paper is organized as follows. The theoretical basis of the two methods is
described in Section 2. In Section 3, the setting of neural network parameters is introduced
and verified by the Monte Carlo method. In Sections 4 and 5, the methods proposed in this
paper are compared with the typical existing methods, and the effect of using the actual
observation data is also analyzed. Finally, the conclusions are provided in Section 6.

2. Methodology
2.1. ARMA (p, q) Model

The autoregressive–moving-average is an important simulation method of stationary
time series. Before discussing the order judgment of the time series, we need to analyze the
structure of the ARMA model. {Xt} is an ARMA (p, q) process if {Xt} is stationary and if
for every t,

Xt − φ1Xt−1 − · · · − φpXt−p = Zt + θ1Zt−1 + · · ·+ θqZt−q (1)

where {Zt} ∼ WN(0, σ2) and the polynomials (1 − φ1z − · · · − φpzp) and
(1 − θ1z − · · · − θpzp) have no common factors [17]. The p of the left-hand side of
Equation (1) represents the order of the autoregressive (AR) process. Similarly, the q
of the right-hand side is the order of the moving-average (MA) process. When they are
equal, the ARMA model has mathematical symmetry.
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For a mathematical model, it is an important requirement for the effectiveness to be
able to fully represent information of the sequence, which is also true for the ARMA model.
In Equation (1), Zt is actually a sequence of white noise. Its characteristic is that the value
of Zt does not affect the trend of Xt. At the same time, when the parameters of Equation (1)
and Xt are known, the value of Zt can also be determined within a certain range. The
characteristics of Zt provide a basis for us to determine the order of the ARMA model
through the neural network.

2.2. Back Propagation Neural Networks (BPNN)

BPNN discover intricate structures in large datasets by using the backpropagation
algorithm to indicate how a machine should change its internal parameters [30]. The
ARMA model in this paper is a linear time-invariant system, which can be effectively
simulated by using BPNN. BPNN is a multi-layer feedforward neural network trained
according to the error back propagation algorithm. The complete neural network structure
is composed of a large number of neurons. A typical BPNN consists of three layers: input
layer, hidden layer, and output layer. Generally, we use normalized data as the input
layer. Different from the input layer, the neurons in the hidden layer and the output layer
have computational functions and have similar definitions. For neurons in the hidden
layer and output layer, its iteration consists of two parts, namely forward propagation
and back propagation. The forward propagation of a single neuron consists of two steps.
First, calculate {z} through weight and bias, and then calculate {a} through an activation
function g(x), where {a} is the input layer of the next layer of neurons or output layer.
According to the calculation result of forwarding propagation, the weight and deviation are
updated through back propagation. The back propagation of the BPNN is calculated by the
gradient descent method. After many iterations, the neural network can fit the data with
less error. It is worth noting that the activation functions of the hidden layer and the output
layer can be different. Figure 1 shows single neuron calculation and BPNN structure.
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When using the BPNN to simulate the ARMA model, we expect this method to be
able to estimate the parameters of the ARMA model and obtain a method for determining
the order of the model. Hossain et al., 2020, studied artificial neural networks (ANN) to
determine the order of ARMA model, but this method did not consider the influence of
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bias in the process of formula derivation [20]. Therefore, we re-derive the relevant formula.
Equation (1) can be rewritten in the following form

Xt =
p

∑
i=1

φiXt−i +
q

∑
j=0

θjZt−j (θ0 = 1) (2)

where Xt is the time series, Zt is the noise sequence, φi and θj are coefficients of ARMA model.
Next, we compare the difference between the calculation method of BPNN and

Equation (2). Figure 1 shows the processing of the input data by a single neuron. According
to this, we can obtain the calculation process of the hidden layer neuron on the input data
as follows 

z1
z2
z3
...

zm

 =


w11 w12 w13 · · · w1n
w21 w22 w23 · · · w2n
w31 w32 w33 · · · w3n

...
...

...
...

...
wm1 wm2 wm3 · · · wmn

·


x1
x2
x3
...

xn

+


b1
b2
b3
...

bn

 (3)

or
Z[1] = W [1]X + b[1]

Next, 
a1
a2
a3
...

am

 =


g1(z1)
g1(z2)
g1(z3)

...
g1(zm)

 (4)

or
a[1] = g1(Z[1])

where X is a column vector composed of input data, W [1] is a column vector composed of
WT

i , b[1] sis a column vector composed of bias, g is the activation function used, and a[1] is
a column vector composed of activation value. The output of the proposed BPNN can be
written as follows

[z1] =
[

w11 w12 w13 · · · w1m
]
·


a1
a2
a3
...

am

+ [b1] (5)

or
Z[2] = W [2]a[1] + b[2]

Next,
ŷ = a[2] = g2(Z[2]) (6)

where the meaning of each letter is similar to before. In this process, if we do not consider
the bias and the activation function of the hidden layer, and at the same time set the
activation function of the output layer to the linear activation function, we will obtain the
following results

ŷ = W [2]W [1]X (7)

Equation (7) is consistent with the conclusion derived by Hossain et al., 2020 [20].
Although the method described in Equation (7) can easily obtain the coefficient

estimates of the ARMA model, it does not consider the influence of the bias and the
nonlinear activation function on the neural network process. The existence of bias is of



Symmetry 2021, 13, 1543 5 of 19

great significance to the operation of neural networks. It can improve the accuracy of
neural network classification and reduce the noise in the evaluation process [31]. When we
add bias, although the effect of neural network iteration can be improved, the coefficient
estimates cannot be obtained as easily as Equation (7). This is because of the influence
of the deviation column vector, the coefficient calculation of the ARMA model in the
calculation of the BPNN can no longer be simply obtained through the weight matrix. Our
other improvement to Equation (7) is the addition of a nonlinear activation function. This
is not only because the nonlinear activation function can better exert the computational
performance of the neural network but also the coefficient estimation of the ARMA model
itself is a nonlinear process. In the symmetric formwork system, BPNN can overcome the
shortcomings of insufficient randomness of ARMA order estimation. It is worth noting
that the coefficient of the model can be better estimated by the least square method when
we can accurately determine the order of the model [32,33].

3. Model Establishment
3.1. Simulation Settings

This section introduces the simulation methods separately from the simulation of
data and the design of the artificial neural network. The paper mainly uses MATLAB
2017a to establish an analytical model, and the relevant calculations are also completed in
the software.

In the real world, most systems can be modeled by ARMA (5, 5), so in this paper, we
set the maximum value of AR and MA order to 5 (AR (1–5) and MA (0–5), the numbers
represent the range of values for the corresponding order) [34]. All the simulated datasets
in this paper are generated by Monte Carlo simulation. We constructed a time series
(Xt) based on the random simulated noise series (Zt) and the coefficients of the ARMA
model. The expectation of the noise sequence is 0 and the variance is 1. The coefficients of
the model were generated by a random method and met the conditions of causality and
invertibility. The initial value of the time series was determined by the noise series.

For the neural network, we used Equation (8) to calculate the number of neurons in
the hidden layer, and its value was a dynamic integer. The maximum number of epochs
to train was 100, the performance goal was set to 10−7, and the training was terminated
when the MSE did not drop for 10 consecutive iterations. The neural network parameters
were updated using Adam optimizer, and its learning rate was set to 0.01, which was
chosen empirically [35]. Although the ARMA model is a linear time-invariant system,
the linear unit (ReLU) activation function of hidden neurons cannot handle occasional
discrete data well. Thus, we used a nonlinear activation function (Sigmoid) as the activation
function [36–38].

M = integer(sqrt(m + 1) + 15) (8)

Based on the above conditions, we built 30 neural networks (combination of AR (1–5)
and MA (0–5)) to analyze time series. For different neural networks, we converted the time
series into corresponding datasets, 80% of the processed data was used as the training set
and the rest as the validation set. We used the MSE of the validation set as the basis for
judging the order. Figures 2 and 3 show a system identification block diagram.
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3.2. Pre-Simulation

According to the settings in Section 3.1, we verified the established model. We tested
whether the neural network is suitable for the simulation of the ARMA model to verify
the correctness of the derivation in Section 3.2. On the other hand, the proposed method is
used for order estimation, and special cases are discussed at the same time.

Figure 4 is the MSE loss value of the time series conforming to the ARMA (3, 2) model.
Figure 4a,b represent the time series by simulating the neural network of ARMA (3, 2) and
ARMA (1, 2) respectively. We use this example to illustrate the judgment theory of neural
networks. As shown in Figure 4a, when the time series passes the correct model, MSE has
been in a downward trend and, after a sufficient period of the epoch, MSE reaches the target
value (10−7). In Figure 4b, when the time series passes through the mismatched model,
we find that MSE reaches the optimal value (10−3) at 33 Epochs and does not drop again
for ten consecutive times. The reason for this phenomenon is that, for the correct neural
network model, the model can approach an analytical solution after sufficient iterations.
For the wrong neural network models, the value of MSE will often not drop after reaching
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the critical point, and the correct model can obtain a satisfactory MSE. This is also the basis
for us to judge the order of the ARMA model through MSE.
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Next, the problem we needed to solve was how to determine the order of the ARMA
model through the BPNN. From Figures 1 and 4, we can see that when determining the
best input layer of the BPNN, the p and q of the input layer corresponded to the best order
of the ARMA model. Therefore, we expected that the neural network’s MSE loss function
should be the smallest for the correct model order. Finally, the time series obtained MSE
through 30 possible neural network structures.

Figure 5 shows the MSE calculation results of two different time series. It can be seen
from Figure 5a that, as the order increases, the MSE presents an obvious downward trend,
in which the red circle marks the true model orders. When the critical point is reached,
the MSE will not change significantly with the increase of the order because high-level
neural network models can reflect low-level changes. In the calculation, we found that
the calculation result of MSE has the special case shown in Figure 5b. Figure 5b simulates
a special case of the ARMA (2, 1) calculation. The three points represented by the red
circle in Figure 5 may all be the value of the order, and the MSE is relatively small at these
three points. Therefore, in addition to comparing MSE, we also introduce the gradient
to determine the order of the model when there are multiple critical points. When the
descending gradient of the critical point is the largest and the MSE is small, the point is
considered to be the best value for this set of critical points. From Figure 5, we find that
the asymmetric ARMA structure is more prone to result judgment difficulties because the
descending gradient of its MSE is gentler near the correct values.
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4. Performance on Simulated Data
4.1. Different Coefficients

In the process of simulating data conforming to the ARMA model, the coefficients
are restricted by many conditions. According to the definition of the ARMA model,
the coefficients need to meet the requirements of causality and invertibility. In [17], the
judgments of causality and invertibility are given by Equations (9) and (10).

Causality is equivalent to the condition

φ(z) = 1− φ1z− · · · − φpzp 6= 0 for all |z| ≤ 1 (9)

Invertibility is equivalent to the condition

θ(z) = 1 + θ1z + · · ·+ θqzq 6= 0 for all |z| ≤ 1 (10)

where φ(·) and θ(·) are the pth and qth-degree polynomials. The complex z is used here
since the zeros of a polynomial of degree p > 1 or q > 1 may be either real or complex.
The region is defined by the set of complex z such that |z| = 1 is referred to as the unit
circle. From Equations (9) and (10), the conditions of causality and invertibility are satisfied
when the roots of φ(z) = 0 and θ(z) = 0 are outside the unit circle. In the calculation, we
found that it is also necessary to consider whether the selected coefficients can effectively
reflect the characteristics of the model in addition to causality and invertibility. In order to
improve the sensitivity of the model, we set the minimum absolute value of the coefficient
to 0.1. This avoids the fact that the coefficients are too small to make the polynomial
difficult to identify.

In this section, we have simulated three ARMA models, each of which used 25 sets
of different coefficients to simulate time series. Since the symmetrical ARMA model was
less prone to result judgment difficulties, we used the asymmetrical ARMA model here.
The three models were ARMA (1, 2), ARMA (2, 3), and ARMA (4, 2). Table 1 is the model
coefficients we obtained through the random method, and Figure 6 is the verification of
causality and invertibility.

In Figure 6, the roots of φ(z) = 0 and θ(z) = 0 for each model are shown in a different
color. All roots are outside the unit circle, which shows that the coefficients meet the
requirements of causality and invertibility. For the coefficients in Table 1, we simulated
30 different realizations of the system’s response with time series lengths of 400. From
these overdetermined ARMA model orders, the goal was to determine the correct ARMA
model order using BPNN and compare its results with AIC and BIC. Another purpose
was to study whether the effects of different order determination methods under random
parameters were consistent. Model identification using the AIC and BIC was performed
using functions in MATLAB R2017a.

Figure 7 is a stacked area diagram of the order estimation results. Figure 7 shows that
the order estimation accuracy of BPNN is above 90%, AIC is below 10%, and the results
of BIC are unstable. Comparing Figure 7a,b, the judgment results of BPNN and AIC are
relatively stable, while the judgment efficiency of BIC criteria is significantly reduced and
affected by the change of coefficients. For Figure 7c, the judgment effect of the BIC is
basically the same as that of the AIC, and there is no obvious change in the BPNN. For
the same model, the correct rate of BPNN is the highest, and the AIC is the lowest. The
BIC is somewhere in between, but it is more sensitive to changes in model coefficients. For
different ARMA models, the order estimation results of BPNN under different coefficients
are relatively stable and accurate. In addition, the accuracy of the BIC is significantly
reduced when the ARMA order is higher. For example, in ARMA (4, 2), its judgment effect
is almost the same as that of the AIC. The influence of the change of order on different
judgment criteria is analyzed in detail in Section 4.3. On the whole, the judgment result of
BPNN has obvious advantages.
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Table 1. ARMA coefficient.

(a) ARMA (1, 2)

Number φ1 θ1 θ2

1 0.68598 0.52501 0.30802
2 0.64442 0.31632 0.25568
3 0.6858 0.52559 0.43188
4 0.69234 0.16724 0.36293
5 0.64172 0.40218 0.26578
6 0.69125 0.10683 0.69129
7 0.67355 0.13828 0.39175
8 0.58189 0.44822 0.29035
9 0.65346 0.5068 0.37852

10 0.65751 0.46853 0.31898
11 0.57612 0.55828 0.1989
12 0.5549 0.5677 0.36828
13 0.57328 0.16801 0.40967
14 0.62506 0.11917 0.45852
15 0.64303 0.12413 0.6465
16 0.66412 0.18832 0.58978
17 0.52794 0.59022 0.20596
18 0.65484 0.54687 0.44928
19 0.50026 0.14956 0.65269
20 0.57071 0.65167 0.23093
21 0.51364 0.23927 0.27787
22 0.58889 0.18203 0.58252
23 0.5552 0.19295 0.54223
24 0.66197 0.22495 0.50503
25 0.69481 0.31173 0.66661

(b) ARMA (2, 3)

Number φ1 φ2 θ1 θ2 θ3

1 0.56187 0.11088 0.31731 0.10306 0.44403
2 0.29368 0.22157 0.17051 0.27467 0.32838
3 0.19265 0.66323 0.48151 0.26584 0.21114
4 0.28469 0.26203 0.227 0.20943 0.46187
5 0.12039 0.54207 0.12816 0.50777 0.13457
6 0.50685 0.18235 0.11274 0.22457 0.43534
7 0.25565 0.66183 0.12575 0.16069 0.66979
8 0.24022 0.26447 0.26283 0.27753 0.25457
9 0.30066 0.25647 0.25259 0.10025 0.44024

10 0.23385 0.27877 0.29301 0.36222 0.33182
11 0.52257 0.24083 0.26788 0.29762 0.27343
12 0.37619 0.15621 0.30297 0.13064 0.25225
13 0.29519 0.36147 0.11577 0.21734 0.46065
14 0.41579 0.42125 0.18491 0.10473 0.568
15 0.25602 0.57018 0.13555 0.14648 0.5147
16 0.37881 0.45223 0.18419 0.21338 0.48166
17 0.33787 0.31189 0.20047 0.27474 0.24118
18 0.40362 0.45338 0.2618 0.2151 0.3823
19 0.15286 0.38683 0.51148 0.15672 0.16223
20 0.39763 0.16128 0.14097 0.29433 0.26854
21 0.32716 0.51292 0.1052 0.14028 0.63252
22 0.22749 0.28874 0.16985 0.16377 0.46749
23 0.41344 0.43832 0.42688 0.23569 0.27483
24 0.26962 0.64428 0.50579 0.25514 0.10056
25 0.62415 0.11642 0.21241 0.23787 0.27413
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Table 1. Cont.

(c) ARMA (4, 2)

Number φ1 φ2 φ3 φ4 θ1 θ2

1 0.1173 0.14669 0.11194 0.28898 0.26858 0.27696
2 0.10356 0.38866 0.27642 0.22115 0.34628 0.58485
3 0.19003 0.10435 0.16407 0.19478 0.35867 0.35484
4 0.19558 0.17231 0.18333 0.40822 0.52755 0.18906
5 0.19987 0.1165 0.12641 0.47265 0.52957 0.18639
6 0.16881 0.14111 0.4436 0.1778 0.26526 0.59525
7 0.1385 0.1794 0.1131 0.42791 0.35514 0.29305
8 0.12084 0.26884 0.13637 0.38152 0.37562 0.20007
9 0.14009 0.1314 0.14363 0.50568 0.35714 0.21889

10 0.11697 0.17643 0.19267 0.19714 0.57655 0.28871
11 0.32149 0.14979 0.13027 0.35725 0.19231 0.45819
12 0.11596 0.1146 0.29422 0.22075 0.6898 0.30744
13 0.19825 0.2323 0.111 0.12595 0.107 0.58112
14 0.15196 0.10187 0.22066 0.45185 0.23608 0.36163
15 0.27141 0.1968 0.15257 0.28422 0.57048 0.39562
16 0.11062 0.22939 0.37438 0.25847 0.68981 0.19552
17 0.14397 0.10805 0.39279 0.15033 0.1266 0.458
18 0.19712 0.20237 0.28527 0.12375 0.23074 0.68393
19 0.18443 0.1625 0.10434 0.32789 0.33492 0.2104
20 0.4223 0.19247 0.11811 0.21622 0.22415 0.35038
21 0.11076 0.26585 0.42486 0.11908 0.16995 0.58259
22 0.15044 0.19221 0.14957 0.19805 0.38759 0.4243
23 0.11706 0.13743 0.14761 0.14352 0.10387 0.51243
24 0.17383 0.1815 0.17688 0.30087 0.55079 0.35127
25 0.23135 0.23691 0.10951 0.37275 0.13111 0.42879
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4.2. Different Length

In Section 4.1, we discussed the effect of each judgment criterion under different
coefficients. Next, we study the effect of the length of the time series on the accuracy. We
selected a set of representative coefficients from the three models in Section 4.1, where
ARMA (1, 2) selected the 13th group, ARMA (2, 3) selected the 21st group, and ARMA
(4, 2) selected the 9th group. Then, we simulated 100 different responses with time series
lengths of 200, 400, 600, 800, and 1000. The expressions of the three models are shown in
Equation (11).

ARMA(1, 2) : Xt = Zt + 0.5733Xt−1 + 0.1680Zt−1 + 0.4097Zt−2

ARMA(2, 3) : Xt = Zt + 0.3272Xt−1 + 0.5129Xt−2 + 0.1052Zt−1 + 0.1403Zt−2 + 0.6325Zt−3

ARMA(4, 2) : Xt = Zt + 0.1401Xt−1 + 0.1314Xt−2 + 0.1436Xt−3 + 0.5057Xt−4 + 0.3571Zt−1 + 0.2189Zt−2

(11)

The model order estimation results are presented in Figure 8. From Figure 8, we can
find that the BPNN can provide accurate order estimates for each length of the signal in
models of different orders and the accuracy rate is above 90%. The accuracy of AIC and
BIC has a certain upward trend with the increase of sequence length, while the estimated
result of BIC can reach 90% under certain models. In Figure 8a,b, the judgment effect of the
BIC and the BPNN is basically the same in the case of a long sequence. From Figure 8c,
we can clearly find that the judgment result of the BPNN is much more accurate than the
AIC and the BIC under the high-order model. In Figure 8c, the accuracy of AIC and BIC is
below 40%. Similar to Section 4.2, the BIC performs better under low-order models than
high-order models. In addition, we find that the accuracy of the AIC is low, but the effect is
relatively stable under different models.

 

3 

   
(a) (b) (c) 

 
 
 
 
 

Figure 8. Comparison of the correct number of estimation methods for each order under different sequence length:
(a) ARMA (1, 2), (b) ARMA (2, 3), (c) ARMA (4, 2).



Symmetry 2021, 13, 1543 12 of 19

4.3. Different Order

In this section, we fixed the maximum AR and MA orders at 5 (AR (1–5) and MA
(0–5)). We performed 100 Monte Carlo simulations on these 30 models and used the AIC,
BIC, and BPNN to estimate the order. In Section 4.1, we found that the coefficient affects
the estimate of the order. In order to make the results more representative, we randomized
the coefficients of each model and met the conditions of causality and invertibility. In
Section 4.2, we already knew that the length of the time series would affect the estimation
of the order, so we set the length of the series to 1000 for better performance of all the
methods. The setting of coefficient randomization can better study the effect of BPNN order
estimation under different models. The length of the time series can make the accuracy of
the AIC and the BIC higher, so as to better compare with the estimation results of the BPNN.

Figure 9 shows the order estimation results of different models. In Figure 9, the
accuracy of BPNN is generally above 90%. The accuracy of the BIC is above 70% when
the order is small, but it does not work well under higher-order models. Although the
accuracy of the AIC is below 30%, the result is relatively stable. Combined with the
present conditions, the order estimation of BPNN can have a prominent performance under
random coefficient and different model orders. Another point worth noting is that when
the order of the model is higher, only the BPNN can obtain satisfactory estimation results.
From this example, it can be found that BPNN still has an excellent estimation effect, even
though the ARMA model has mathematical symmetry.
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Hossain et al., 2020, simulated physiological systems through ARMA and BPNN. As
with their findings, the BPNN always shows an accuracy rate of more than 90% under
different conditions. However, we found that AIC and BIC accuracy were low in our study,
which may be due to a different coefficient selection. This may be because we did not have
too much human intervention in the choice of coefficients.
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5. Application
5.1. High Formwork Safety Monitoring System

The high formwork safety monitoring system is a solution for real-time automatic
safety monitoring of many major safety risk points during the pouring construction process
of the tall formwork support system. The system uses wireless automatic networking,
high-frequency continuous sampling, real-time data analysis and on-site sound and light
alarms. There are four main components of the high formwork safety monitoring system:
collector, analyzer, cloud platform, and client. The collector is responsible for sampling and
uploading sensor data; the analyzer networks the collector, transfers the data, alerts, and
uploads the data to the cloud platform; the cloud platform is responsible for data storage,
display, early warning, data analysis, and other functions on the server; the client mainly
implements the remote configuration of the data display and monitoring system on the
cloud platform. The structure monitored in this paper has obvious symmetry, and the
arrangement of the measuring points is also symmetrical and orderly. The composition of
the high formwork safety monitoring system is shown in the Figure 10. Figure 11 shows
the 3D model of the high formwork and the installation scheme of the instrument. Table 2
lists the instrument-related parameters.
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Table 2. The instrument-related parameters.

Wireless Receiver Wireless Inclinometer Wireless Load Meter Wireless Displacement Meter

Version WH-GNSS WH-WTS WH-WLS WH-WDS
Communication interface 10 M, RS232 NBTOT NB-IOT/LORA NBTOT

Power consumption <20 uA <60 uA <60 uA <60 uA

Positioning accuracy Plane: ±3 mm
Elevation: ±5 mm ±0.01◦ 0.05 0.2%F·S

Operating temperature −30~70 ◦C −40~85 ◦C −20~65 ◦C −20~65 ◦C
Producer HUAHEIOT HUAHEIOT HUAHEIOT HUAHEIOT
Country China China China China

5.2. Application in Stress Sequence

In the past, the ARMA model was often used to remove the noise of the time series
to obtain the trend of the series [39–41]. These documents select a number of different
ARMA models to process the time series and obtain the optimal solution by comparing
the results. Selecting a model through the results often takes more time when the amount
of data is large, and an accurate estimation of the order can reduce the workload and
facilitate the batch processing of data. In this subsection, we demonstrate that the proposed
model order selection method based on BPNN can be used to analyze stress sequences.
The time series we analyzed comes from a part of the stress change of the high formwork
system. According to the loading status of the system, the stress change of the high
formwork can be divided into the loading phase and load stabilization phase. For the
stress time series in the use phase, the ARMA model generally satisfies the requirements
of the series causality. If the time series contains data in the loading phase, then we often
need to perform nonlinear processing (differential) on the data to meet the requirements
of causality. The accurate processing of monitoring data results is an indispensable part
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of the high formwork safety monitoring system. Based on the initial data collected by the
high formwork safety monitoring system in the actual project, this paper discusses the
specific application of the proposed method in the post-processing of monitoring data.
In the following, we use two examples to verify the effect of the order selection method
proposed earlier.

Example 1. This example considers a time series that meets the requirements of causality, and
the data is obtained from engineering field measurements. The data includes stress changes at
37 positions, and the sequence used in this example is one of the data. Since the increase in the
length of the sequence has no adverse effects, we intercepted the sequence with a length of 5000,
which is the stress change at the steady stage of the load. We use AIC, BIC, and BPNN to estimate
the best order of the model. As before, regarding the setting of the BPNN, we use 80% of the data
as the training set and the rest as the test set. The parameter settings are also the same as before.
Finally, the ARMA parameters were estimated using the least-squares method for the model order
estimated by the BPNN, the AIC and the BIC.

Figure 12a plots the original data and the sequence obtained by different processing
methods, and the residuals of the different methods are shown in Figure 12b. In order to
better describe the distribution of the data, we draw the envelope of the obtained sequence
and calculate the average width between the upper and lower envelopes. Compared with
the AIC and the BIC, the BPNN method reduces the average width of the envelope by
83.08% and 9.16%. It can be found that the BPNN and BIC have similar and accurate
judgments on sequence trends for the data in this example, while the AIC has a higher
degree of dispersion. In addition, there is no obvious difference in residuals of the three
judgment methods.
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Example 2. The data used in this example includes the loading phase and the load stabilization
phase, and the length of the sequence is 29,610. The setup of the neural network is the same as in
Example 1. The difference from Example 1 is that this time series does not meet the requirements of
causality, so we have performed different processing on it. The differentiated sequence meets the
requirements of causality. Similar to before, we estimated the order of the differenced sequence and
used the ARMA process for fitting. Finally, we restored the sequence [42].

Figure 13 shows the processing results of different judgment methods. The obvious
difference between Figure 12a and 13a is that the sequence of the former is stable, while
the latter has an obvious rising stage, which is why the latter needs to be processed by
difference. Compared with the AIC and the BIC, the BPNN method reduces the average
width of the envelope by 51.91% and 52.14%. Therefore, we find that the BPNN’s analysis
of data trends is more compact than the AIC and the BIC. This shows that the model
obtained by the BPNN for order estimation has a better effect on noise extraction.
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6. Conclusions

This paper proposes a modeling method for the high formwork monitoring data. The
details of establishing the ARMA model and BPNN have been presented, and the algorithm
of model order estimation by BPNN is introduced. Through the method of Monte Carlo
simulation, we studied the accuracy of the three methods under different coefficients,
different sequence lengths, and different model orders. For the actual measured stress
series, we used three methods to estimate the model order and then used the least square
method to estimate the model coefficients. Finally, we applied the established model to the
symmetrical high formwork monitoring data. According to the simulation and application
results, the following conclusions can be made.
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• For each system, the accuracy rate of the proposed model order selection method is
above 90%, and both show better performance than the AIC or the BIC. At the same
time, the BIC criterion is better than the AIC when the model order is lower;

• In the Monte Carlo simulation, changing the model’s coefficients will affect the accu-
racy of the BIC judgment, the instability increases significantly in the higher-order
model. However, the order judgment method of BPNN still has an accuracy rate of
more than 90%;

• The mathematically symmetric ARMA model is more likely to make errors in the
BPNN method, so this type of model needs to be judged in conjunction with the MSE
descent gradient.

• The judgment efficiency of AIC and BIC will increase as the length of the time series
increases. The proposed BPNN order judgment method is not sensitive to the change
of sequence length and has a relatively high accuracy rate;

• For changes in the order of the model, both AIC and BIC are more sensitive. In
particular, the BIC cannot be judged correctly when the model order is high. The
BPNN still maintains a good judgment effect;

• For the measured data used in the paper that meets the requirements of causality,
the judgment effect of BPNN is not significantly different from that of the BIC, but
the AIC is obviously inferior. When the time series does not meet the causality
requirements, we will transform it into a stationary series. The analysis result shows
that the processing result of BPNN increased by about 50%;

• The stress sequence of the high formwork can be processed by the ARMA process
to obtain its change trend and noise sequence. This is feasible for obtaining effective
information on the stress sequence.

Due to the influence of computing resources, the model of all orders is not calculated
when considering sequence coefficients and sequence length. In addition, the model
established in this paper does not consider the impact of accidental factors. We will discuss
the effects of accidental factors on model-building in future studies, and further study the
methods of predicting periodic data.
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