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Abstract: In this paper, we investigate partitions of highly symmetrical discrete structures called
cycloids. In general, a mixed hypergraph has two types of hyperedges. The vertices are colored in
such a way that each C-edge has two vertices of the same color, and each D-edge has two vertices of
distinct colors. In our case, a mixed cycloid is a mixed hypergraph whose vertices can be arranged
in a cyclic order, and every consecutive p vertices form a C-edge, and every consecutive q vertices
form a D-edge in the ordering. We completely determine the maximum number of colors that can be
used for any p ≥ 3 and any q ≥ 2. We also develop an algorithm that generates a coloring with any
number of colors between the minimum and maximum. Finally, we discuss the colorings of mixed
cycloids when the maximum number of colors coincides with its upper bound, which is the largest
cardinality of a set of vertices containing no C-edge.

Keywords: coloring; circular hypergraph; mixed hypergraph
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1. Introduction

Many processes in different areas of science, technology, engineering, etc., have a
circular nature and are modeled by circular structures using graphs and hypergraphs. They
are important tools in finding optimal solutions to optimization problems (see [1] for a
fresh random example).

In this paper, we investigate partitions of highly symmetrical discrete circular struc-
tures called cycloids. The general idea is that elements of the structure (called vertices)
are placed in cyclic ordering, and intervals of elements in the ordering have a specified
cardinality, and all are present. In this model, elements of a structure can be in a number
of discrete states called colors. The partitions and restrictions on them are studied using
the language of mixed hypergraph coloring, specifically termed as colorings, of complete
(p, q)-uniform circular mixed hypergraphs of order n.

1.1. Mixed Hypergraphs and Their Coloring Parameters

The structure class of mixed hypergraphs was introduced in the mid-1990s [2,3]. The
first decade of the theory is summarized in the monograph [4], and a regularly updated
list of publications is maintained on the website [5]. Below, we give some basic definitions.

A mixed hypergraph is a triple H = (X, C,D), where X is the vertex set, and C and
D are set systems over X. The members of C and D are termed C-edges and D-edges,
respectively; their role is distinguished via vertex coloring. Throughout, we shall assume
that X is finite, |X| = n, X = {x0, x1, . . . , xn−1}, and all C- and D-edges have size at least 2.

A proper k-coloring ofH is a mapping ϕ : X → {1, . . . , k} such that
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• every C-edge contains two (or more) vertices with a common color;
• every D-edge contains two (or more) vertices with distinct colors.

Some members of this rich structure class are uncolorable; H is said to be colorable
if it admits at least one proper coloring. Various constructions of uncolorable mixed
hypergraphs are described in [6].

Assume from now on thatH is colorable. A strict k-coloring ofH is a proper k-coloring
that uses all the k colors. The feasible set ofH is defined as

Φ(H) := {k | H has a strict k-coloring}.

The lower chromatic number χ(H) is the smallest element of Φ(H), and the upper
chromatic number χ(H) is the largest element of Φ(H). If C = ∅, then χ = |X|, and we
obtain the classical notion of proper vertex coloring, which directly generalizes from graphs
to hypergraphs as studied since the mid-1960s. On the other hand, if D = ∅, then χ = 1,
and we obtain a coloring notion termed C-coloring. Its equivalents and particular cases
have been studied under several names in various contexts; perhaps the earliest occurrence
of the concept is published by Sterboul in [7]. The literature of C-coloring is surveyed in [8].
Evidently, uncolorable hypergraphs with C = ∅ or D = ∅ do not exist.

The feasible set is gap-free if it contains all integers between χ and χ; that means
Φ(H) = {k | χ(H) ≤ k ≤ χ(H)}. The first mixed hypergraphs with gaps in their feasible
sets were discovered in [9]. (With a related terminology, it is also said that the chromatic
spectrum of H is gap-free (or, continuous). By definition, the chromatic spectrum of H
is a vector of dimension |X|, whose kth entry is the number of partitions generated by
strict k-colorings.)

1.2. Circular Mixed Hypergraphs

A mixed hypergraph is called circular if its vertices can be arranged in a cyclic or-
der, (x1, . . . , xn), such that all C- and D-edges consist of consecutive vertices. In partic-
ular, the complete (p, q)-uniform circular mixed hypergraph of order n, which we denote by
KC(n; p, q), is the mixed hypergraphH = (X, C,D) with

C = Cp := {xixi+1 . . . xi+p−1 | 0 ≤ i ≤ n− 1},
D = Dq := {xixi+1 . . . xi+q−1 | 0 ≤ i ≤ n− 1},

where the subscript addition is meant modulo n. Throughout, we shall assume p ≥ 3
because C2 would make the entire X monochromatic andH uncolorable if D 6= ∅.

Circular mixed hypergraphs have been generalized in two different directions, struc-
turally in [10] and in terms of color-bounding functions in [11]. The following result, which
follows from both Theorem 9 of [10] and Theorem 6 of [11], is important in the current context.

Theorem 1 ([10,11]). If a circular mixed hypergraph H is colorable, then its feasible set Φ(H)
is gap-free.

A systematic study of circular mixed hypergraph coloring was carried out in the
papers [12,13], with emphasis on χ in the former and on χ in the latter. Combining
some results from those works, the following theorem can be stated for complete circular
mixed hypergraphs.

Theorem 2 ([12,13]). Disregarding the unique exception of (p, q) = (3, 2) with n ≥ 3 odd, all
KC(n; p, q) are colorable for all p ≥ 3 and all q ≥ 2. Moreover, the lower chromatic number is 2 if
q ≥ 3 or n is even, and it is 3 if q = 2 and n ≥ 3 is odd.

For any n ≥ 5 odd, KC(n; 3, 2) is uncolorable but not minimal uncolorable. As was
found in [12], KC(n; 3, 2) contains minimal uncolorable circular mixed hypergraph Fn as a
partial sub-hypergraph. The smallest example F5 is shown in Figure 1.
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Figure 1. The minimal uncolorable circular mixed hypergraph F5.

Recent works deal with KC(n; p, p), namely [14] proves χ = b n
2 c for p = q = 3, and

the main theorem of [15] gives n− s− 1 ≤ χ ≤ n− s if p = q > 3, where s denotes the
“sieve number”. We shall give the definition and some comments on this parameter in the
concluding section.

At the end of the paper [15], its authors raise the problem of determining the feasible
set of KC(n; p, q) for all p and q. Due to Theorem 1, this reduces to computing the upper
chromatic number for all 3-tuples n, p, q. In the present work, we completely solve this
problem as follows.

Theorem 3 (Main Theorem). For any integers n ≥ p ≥ 3 and q ≥ 2, the upper chromatic
number of KC(n; p, q) is as given in Table 1.

The cases with n < p are rather simple; we list them for completeness in the follow-
ing assertion.

Proposition 1. If 1 ≤ n < p, then

Φ(KC(n; p, q)) =


{1, . . . , n}, 1 ≤ n < q;
{2, . . . , n}, n ≥ q, n even or q > 2;
{3, . . . , n}, n ≥ q = 2, n odd.

Table 1. The upper chromatic number of KC(n; p, q) for n ≥ p ≥ 3 and q ≥ 2.

p q n χ Remark

3 2 n odd — uncolorable
3 2 n even n− n

p−2 + 2 = 2
≥ 3 ≥ 2 n = p n− 1 = p− 1 for

(p, q) 6= (3, 2)

4 2 n even n− n
p−2 + 1 = n

2 + 1
5 2 n = 10 n− d n

p−2e+ 1 = 7 = n− b n
3 c

4 2 n odd n− d n
p−2e = n−1

2
5 2 10 6= n ≥ 6 n− d n

p−2e = b 2n
3 c

p ≥ 6 2 n > p n− d n
p−2e

p ≥ 3 q ≥ 3 n > p n− d n
p−1e

Definition 1. The color classes X1, . . . , Xk of a strict k-coloring ϕ : X → {1, . . . , k} are defined
as the sets Xi = ϕ−1(i), i = 1, . . . , k.
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Remark 1. If ϕ is a strict coloring of a mixed hypergraphH with k = χ(H) colors and with color
classes X1, . . . , Xk, then χ(H) = n−∑k

i=1(|Xi| − 1).

1.3. Structure of the Paper

For the sake of completeness, we include proofs also for simple cases that might be
left to the reader. These are given in Section 2, which covers all combinations of parameters
satisfying n ≤ 2p− 2. From then on, n ≥ 2p− 1 will be assumed. In Section 3, we introduce
the notion of the types of color classes and a weighting for monochromatic vertex pairs,
which provides a basis for later proofs. Section 4 includes the proof of the Main Theorem
for q ≥ 3 and describes a coloring algorithm based on the “sieve number”, a parameter
closely related to the upper chromatic number. Section 5 deals with q = 2 and completes
the proof of the Main Theorem. In Section 6, we characterize a special case of mixed
cycloids, the so-called C-perfect mixed cycloids, and give concluding remarks.

2. Some Simple Cases: n ≤ 2p − 2

Here, we describe the solution for some fairly obvious combinations of the parameters.
The next list deals with the cases of Proposition 1 and the first three lines of Table 1. After
that, we consider the range p + 1 ≤ n ≤ 2p− 2 in the case of q ≥ 3.

Note that n < p means C = ∅, and then no monochromatic pair of vertices is required
to occur, i.e., χ = n.

• For 1 ≤ n < min(p, q), we have D = ∅; therefore, every color assignment to the
vertices is a proper coloring, hence Φ(KC(n; p, q)) = {1, . . . , n}.

• For q ≤ n < p, if n is even or q > 2, the color assignment ϕ : X → {1, 2}, defined as
ϕ(xi) = 1 + i (mod 2) for all 0 ≤ i < n, is a proper 2-coloring, and any number of
vertices may be recolored with their private colors to obtain proper colorings with
more colors, hence Φ(KC(n; p, q)) = {2, . . . , n}.

• For q = 2 < n < p with n odd, D needs at least 3 colors, and the assignment
ϕ(xi) = 1 + i (mod 2) for 0 ≤ i ≤ n − 2 with ϕ(xn−1) = 3 is a proper 3-coloring.
Furthermore, here, we have the option to introduce private colors to any number of
vertices, hence Φ(KC(n; p, q)) = {3, . . . , n}.

• If p = 3 and q = 2, then ϕ(xi−1) 6= ϕ(xi) 6= ϕ(xi+1) due to the D-edges, but the C-
edges {xi−1, xi, xi+1} have to contain some color twice; thus, ϕ(xi−1) = ϕ(xi+1) must
hold for all i. This is impossible if n is odd—i.e., the hypergraph is uncolorable—and
forces the 2-coloring with alternating colors if n is even.

• For n = p ≥ 3, the coloring ϕ(xi) = i for i = 1, . . . , n− 1 with ϕ(x0) = 2 is feasible
unless (p, q) = (3, 2). Consequently, Φ(KC(p; p, q)) = {2, . . . , p− 1} if p is even or
q ≥ 3, and Φ(KC(p; p, q)) = {3, . . . , p− 1} if p ≥ 5 is odd and q = 2.

Proposition 2. If p + 1 ≤ n ≤ 2p− 2 and q ≥ 3, then Φ(KC(n; p, q)) = {2, . . . , n− 2}.

Proof. Since p ≥ 3, we have n ≥ 4. Then the partial assignment ϕ(x0) = ϕ(x1) = 1,
ϕ(xbn/2c) = ϕ(xbn/2c+1) = 2 properly colors all C-edges. Then all the other vertices can get
their private colors; therefore, χ = n− 2. The feasible set is gap-free by Theorem 1, and the ear-
ler assignment ϕ(xi) = 1 + i (mod 2) is a proper 2-coloring. Hence, the assertion follows.

3. Types of Color Classes

Assuming n ≥ 2p− 1, in this section, we introduce a weight associated with monochro-
matic pairs of vertices that are not far from each other in the circular order. These weights
will be the main tool for proving tight upper bounds on the upper chromatic number.

Basic Definitions

We define the distance between two vertices xi and xj as

d(xi, xj) := min(|i− j|, n− |i− j|).
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Assume for the moment that a proper coloring ϕ ofH is also at hand. We say that xi
and xj are related if ϕ(xi) = ϕ(xj) and d(xi, xj) < p. It will be convenient to view related
vertex pairs in the order (xi, xj) such that

j = i + d(xi, xj) (mod n).

This order is unique because |i− j| = n/2 would hold only if n ≤ 2p− 2, which has
already been handled in Proposition 2 and is disregarded here. For |i− j| 6= n/2, we shall
write i <n j to express that j = i + d(xi, xj) (mod n) holds, i.e., walking around the cycle
modulo n, the path from i to j is shorter than that from j to i.

Assuming i <n j, the vertices xi and xj are said to form a next-related pair if they are
related, and there does not exist any l such that they are related to xl and l is “between”
i and j, that is d(xi, xj) = d(xi, xl) + d(xl , xj). By definition, every C-edge must contain a
related pair; then, it also contains a next-related pair. Therefore, it suffices to verify a proper
coloring for the C-edges by restricting attention to the next-related pairs.

In this way, a proper coloring ϕ may contain two basic types of color classes:

• path-class: a sequence xi1 , . . . , xim of vertices such that xij+1 is next-related to xij for
all j = 1, . . . , m− 1, but xi1 and xim either are not related at all, or they are related in
the direction from i1 to im, i.e., i1 <n im.

• cycle-class: a sequence xi1 , . . . , xim of vertices such that xij+1 is next-related to xij for
all j = 1, . . . , m− 1; moreover, xi1 is also next-related to xim in the direction from im to
i1, i.e., im <n i1.

In either case, a color class of size m “loses” m− 1 colors, in accordance with Remark 1.

Proposition 3. Let ϕ : X → {1, . . . , k} be a proper vertex coloring of H.

(i) The number of C-edges properly colored by a related pair xi, xj is precisely p− d(xi, xj).
(ii) If Xi = {xi1 , . . . , xim} is a path-class, then the number of C-edges properly colored by Xi

is at most ∑m−1
i=1 (p − d(xi, xj)) ≤ (m − 1)(p − 1), with exactly (m − 1)(p − 1) if and

only if m = 2 and d(xi, xj) = 1. Moreover, if q = 2, then the upper bound is at most
(m− 1)(p− 2).

(iii) If Xi = {xi1 , . . . , xim} is a cycle-class, then the number of C-edges properly colored by Xi is
at most mp− n, with equality if and only if any two related vertex pairs are next-related.

Proof. (i) There are exactly p − d(xi, xj) C-edges in the family Cp, which contains the
vertex pair xi, xj, for any 1 ≤ d(xi, xj) ≤ p.

(ii) An upper bound is obtained by summing the formula of (i) for the next-related
pairs in Xi. We have m− 1 terms, and each of them is at most p− 1. To yield (m− 1)(p− 1),
each summand has to be p− 1, which needs neighbor vertices. In the presence of more
than two consecutive vertices xi, xi+1, xi+2, this computation would count the C-edge
xi, . . . , xi+p−1 twice because p ≥ 3. If q = 2, the distance between the next-related vertices
is at least 2; hence, each of the m− 1 terms in the upper bound is at most p− 2.

(iii) In the case of a cycle-class, we have to add p− d(xm, x1) to the sum of (ii). Then
p occurs m times, and the sum of the d(xi, xj) terms is equal to n because the next-related
pairs form a complete cycle. If xi and xj with i <n j are related but not next-related, then
xi, . . . , xi+p−1 is properly colored by more than one pair of vertices.

Corollary 1. The average number of properly colored C-edges losing one color is

• at most, p− 1 if Xi is a path-class;
• at most, p− 2 if Xi is a path-class and q = 2;
• at most, p− n−p

m−1 if Xi is a cycle-class of size m− 1.

Based on this observation, we assign colors to some of the vertices.
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Definition 2. In a vertex coloring ϕ : {x1, . . . , xn} → {1, . . . , k} we say that ϕ(xj) is a repeated
color, and xj is a repeating vertex, if there is an index l with 1 ≤ l < j and ϕ(xj) = ϕ(xl). The
weight of a repeated color ϕ(xj), or of the repeating vertex xj, is defined as

• p− 1 if q ≥ 3 and xj is in a path-class;
• p− 2 if q = 2 and xj is in a path-class;
• p− n−p

m−1 if Xi is in a cycle-class of size m− 1.

If all C-edges are properly colored, the weight sum taken over the repeating vertices
is at least n; hence, the following inequalities are valid:

Corollary 2. Let ϕ : X → {1, . . . , k} be a strict k-coloring of KC(n; p, q). Assume that
X1, . . . , Xj are path-classes and Xj+1, . . . , Xk are cycle-classes.

(i) For any q, we have

(p− 1) ·
j

∑
i=1

(|Xi| − 1) + p ·
m

∑
i=j+1

|Xi| ≥ (k− j + 1) · n .

(ii) If q = 2, then

(p− 2) ·
j

∑
i=1

(|Xi| − 1) + p ·
m

∑
i=j+1

|Xi| ≥ (k− j + 1) · n .

4. Proofs for q ≥ 3

In this section, we first prove the Main Theorem in the case of q ≥ 3. Then, in the
second part, we point out a relation with the parameter called the sieve number, and based
on it, we present an algorithm that properly colors KC(n; p, q) with any number of colors
that belong to the feasible set.

4.1. The Upper Chromatic Number

The value n − d n
p−1e for the upper chromatic number is stated in the last line of

Table 1. Equivalently, it means that in every proper coloring of KC(n; p, q), there occur at
least d n

p−1e repeating vertices and that this bound is best possible. First, we show the easier
part, the lower bound:

χ(KC(n; p, q)) ≥ n− d n
p− 1

e .

Indeed, for j = 0, 1, . . . , d n
p−1e − 1, assign color j + 1 to the vertices xj(p−1) and

xj(p−1)+1; this is feasible unless n ≡ 1 (mod (p− 1)) because the 2d n
p−1e vertices are all

distinct. If n ≡ 1 (mod (p− 1)) and p ≥ 4, the simple modification ϕ(xn−2) = ϕ(xn−1) =
n−1
p−1 + 1 can be done. Finally, if p = 3 and n is odd, we recolor the last possible monochro-
matic pair xn−3, xn−2 as ϕ(xn−3) = ϕ(xn−2) = 1. These coloring patterns properly color
all C-edges without creating any monochromatic D-edges. The number of colors can then
be maximized by assigning a private new color to each vertex that has not been colored so
far. This yields the claimed lower bound on χ.

The matching upper bound

χ(KC(n; p, q)) ≤ n− d n
p− 1

e .

will be derived from the observations of the preceding section, estimating the number
of repeated colors. For this, let ϕ be a proper coloring with χ colors and color classes
X1, . . . , Xχ. If all Xi are path-classes, then it immediately follows from Corollary 2(i) that
the number ∑χ

i=1(|Xi| − 1) of repeated colors is at least d n
p−1e. The same conclusion holds

if the weight of every repeated color in the cycle-classes is at most p− 1.
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Assume that this is not the case, i.e., there is a cycle-class, say of size m, such that
the weight p− n−p

m−1 of its repeating vertices is larger than p− 1. Since all parameters are
integers, this equivalently means

m− 1 ≥ n− p + 1 .

Moreover, since we already have a coloring with n− d n
p−1e colors, for a better lower

bound, it is also necessary that the number m− 1 of lost colors be strictly smaller than
d n

p−1e. However, we would then have

n− p + 2 ≤ d n
p− 1

e ≤ n
p− 1

+
p− 2
p− 1

,

n ·
(

1− 1
p− 1

)
≤ (p− 2) ·

(
1 +

1
p− 1

)
,

n ≤ p ,

which is impossible because we have n ≥ 2p− 1. This contradiction completes the proof
for q ≥ 3.

4.2. The Sieve Number and a Coloring Algorithm

As introduced in [16], in a mixed hypergraph H, a subfamily Σ ⊆ C of C-edges is a
sieve if for every pair of vertices x, y ∈ X and every pair of different C-edges C, C′ ∈ Σ the
following implication holds:

{x, y} ∈ C ∩ C′ ⇒ {x, y} ∈ D.

The maximum cardinality of a sieve inH is the sieve-number, denoted by s(H).
Algorithm 1 below will properly color the vertices ofH = (X, Cp,Dq), with n > p and

p, q ≥ 3, provided that (p, q) 6= (3, 3).
The main idea of the algorithm is to construct a maximum sieve Σ and then color the

vertices to satisfy all coloring constraints.
In general circular mixed hypergraphs, the intersection of two different C-edges of a

sieve can only be empty, a common vertex, or two common vertices forming a D-edge. Let
us call the intersection of two arbitrary C-edges good if and only if this intersection is empty,
or a single vertex, or two vertices forming a D-edge. Otherwise, the intersection of two
arbitrary C-edges is bad. Due to our particular family of hypergraphs, namely with q ≥ 3,
D-edges of size 2 do not occur; hence, we will always have a good nonempty intersection
with a single vertex.

Algorithm 1. (Modified Algorithm from [15]).

INPUT: H = (X, Cp,Dq) = KC(n; p, q), n = |X|, n > p, p, q ≥ 3, both not equal to 3,
and X = {x0, x1, . . . , xn−1}

OUTPUT: A proper coloring c = (c(x0), c(x1), . . . , c(xn−1)) of KC(n; p, q)

LetH = (X, C,D) be a circular mixed hypergraph and C0 one of its C-edges.

1. Construction of a maximum sieve Σ through C0. Let Σ = {C0}, where C0 = {x0, x1, . . .,
xp−1}. Choose the C-edge C1 nearest to C0, having a “good intersection”. So, C1 =
{xp−1, . . . , x2p−2}. Let C2 have smallest distance from C1 (measured in the cyclic
order of the host cycle). Choose C3 nearest to C2, etc. Thus, a maximum sieve
Σ = {C0, C1, ..., Cs−1} is obtained so that no new Cs can be found.

2. Assigning colors to some vertices of Σ. The vertices of the C-edge Ci with p vertices are
denoted by xi

0, xi
1, . . . , xi

p−1 according to the cyclic order of the host cycle. Next, we
assign colors to some vertices of the C-edges of Σ in the following way, where the
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coloring is denoted by c. Assign color 1 to the last two vertices x0
p−1 and x0

p−2. We

then color some vertices of C1, . . . , Cs−1 in the following way: Color xi
p−2 and xi

p−1 a

new color c(xi−1
p−1) + 1.

3. Fixing the vertices to satisfy the C-condition. In step 2, we started coloring with the vertex
x0

p−1 ∈ C0, proceeded along the host cycle, and ended with coloring of the vertices
of Cs−1.
Let V(Σ) denote the set of vertices belonging to edges of Σ.

(a) If V(Σ) = X and xs−1
p−1 = x0

0, all C-conditions are satisfied.

(b) If V(Σ) = X and xs−1
p−1 6= x0

0, assign c(x0
0 = x0) = 1 and then all C-conditions

are satisfied.
(c) If V(Σ) 6= X and s− 1 = 0, assign 1 to x0; otherwise, assign c(xs−1

p−1) + 1 to x0

and xn−1.

4. Assign pairwise different colors to the remaining vertices of X. The cycloid is now
colored with c(H) = n − s or c(H) = n − s − 1 colors, as shown in [15]. Let M
denote this number. These may be values that reach χ(H) and near the upper bound
found in [13].

5. Downshifting colors: Let k be the number of colors desired, 2 < k < M. To construct a
coloring using precisely k colors, start with the obtained coloring and do the following:

(a) If more than s+ 1 colors are used, recolor all vertices with the largest color, a color
1 less. If this coloring violates the D-condition, recolor the unmodified, adjacent,
previous vertex (or pair of vertices in the case which xi

p−1 is the previous vertex)
a color 1 less at each violated interval.

(b) Repeat the above until the desired number of colors k is used for k ≥ s + 1.
(c) If k = s colors are desired, perform (b) until s + 1 colors is obtained. Then begin

with C1 and color x1
p−1 and x1

p−2 both 1. Then, for all vertices assigned s + 1,
recolor these vertices 2. Now, s colors are used.

(d) If k < s, use (b) and (c) to get to s colors. Then begin with C2 and color x2
p−1 and

x2
p−2 both 1. Then, for all vertices not assigned 1 or 2, recolor these vertices 1 less

than the color already assigned. Repeat this process with C3, C4, and so on until
the desired number of colors is met.

6. End.

Again from [15], we have:

Lemma 1. ForH=(X, Cr,Dr), r > 3, the sieve number is s(H) = b n
r−1c.

Since q > 2, the D-edges of KC(n; p, q) have no effect on the sieve number; therefore,
s(H) = b n

p−1c forH=(X, Cp,Dq) with p, q ≥ 3. As such, χ(H) = n− s or n− s− 1 agrees
with Table 1 with n− s or n− s− 1 operating the same as n− d n

p−1e.
Additionally, it should be noted that the algorithm has a runtime O(n2) as the worst-

case scenario will have a runtime of kn, where k is an integer dependent on the number of
colors required and χ > n/2.

5. Proofs for q = 2

Similar to the case of q ≥ 3, here, the basic approach is also to analyze the possible
weight distributions in proper vertex colorings of KC(n; p, 2). The situation with q = 2 is
more complicated, however, than what we have seen with the previous larger q because, in
some cases, the path-classes are not sufficient for an optimal coloring.

As we wrote in the introduction, the case of p = 3 is well understood; therefore, we
only consider p ≥ 4 here. First, we describe some constructions and then prove that they
are optimal. Table 1 shows that the general rule is χ = n− d n

p−2e, except for p = 4 if n is
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even, and p = 5 in the particular case of n = 10, which has χ = n− d n
p−2e+ 1. This means

d n
p−2e repeated colors or d n

p−2e − 1 in the exceptional cases.

5.1. Coloring Constructions

Recall that in the current case of q = 2, neighbor vertices cannot get the same color.

5.2. General Case p ≥ 5

For j = 0, 1, . . . , d n
p−2e − 1, assign color j + 1 to the vertices xj(p−2) and xj(p−2)+2; this

is feasible unless n ≡ 2 (mod (p− 2)) because p− 2 ≥ 3, and so, the 2d n
p−1e vertices are

all distinct (we view xn+1 := x1 if n ≡ 1 (mod (p− 2))). If n ≡ 2 (mod (p− 2)), we set
ϕ(xn−2) = 1. After that, assign a private color to each vertex that has not been colored so
far. We obtain a proper coloring with d n

p−2e repeated colors for every n ≥ 2p− 1.

5.3. Exception p = 4, n Even

Assign color 1 to every vertex of even index, i.e., ϕ(x0) = ϕ(x2) = . . . = ϕ(xn−2) = 1,
and assign a private color to every vertex of odd index. This coloring uses n/2 + 1 colors,
and every C-edge (now of size 4) contains two vertices of color 1.

5.4. Exception p = 4, n Odd

Assign ϕ(x0) = ϕ(x2) = . . . = ϕ(xn−3) = 1, ϕ(xn−4) = ϕ(xn−2) = 2, ϕ(xn−1) =
ϕ(x1) = 3. After that, assign a private color to each vertex that has not been colored so
far. We obtain a proper coloring with n+1

2 repeated colors for every odd n ≥ 7. Hence, the
number of used colors is n−1

2 .

5.5. Exception p = 5, n = 10

Let ϕ(x0) = ϕ(x2) = ϕ(x5) = ϕ(x7) = 1, and assign a private color to each of the
other six vertices. This coloring uses seven colors, which is more than 2n/3, and every
C-edge (now of size 5) contains two vertices of color 1.

5.6. Tight Upper Bounds

Let ϕ again be a proper coloring with χ colors and color classes X1, . . . , Xχ. In order
to prove the upper bound

χ(KC(n; p, q)) ≤ n− d n
p− 2

e or χ(KC(n; p, q)) ≤ n− d n
p− 2

e+ 1

we determine those cases in which there is a chance to use more colors if a cycle-class also
occurs. For this, it is necessary that the weight p− n−p

m−1 in a cycle-class of size m exceeds
the weight p− 2 in a path-class. For this, we need:

n− p
m− 1

< 2 ,

n− p + 1 ≤ 2m− 2 ,

dn− p + 1
2

e ≤ m− 1 .

Moreover, the number m− 1 of colors repeated so far has to be smaller than d n
p−2e. In

this way, we obtain:

n− p + 3
2

≤ dn− p + 1
2

e+ 1 ≤ (m− 1) + 1 ≤ d n
p− 2

e ≤ n + p− 3
p− 2

.
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Assuming p ≥ 5 for the moment, the two ends of this inequality chain imply

n ≤ p +
p

p− 4
< 2p− 1

for all p ≥ 6, already settled in Section 2. If p = 5, the range 2p− 1 ≤ n ≤ p + p
p−4 means

9 ≤ n ≤ 10. Based on a rounding error, we can exclude n = 9 because then we have
d n−p+1

2 e + 1 = 4 > 3 = d n
p−2e. For n = 10, the number of repeated colors is at least

m − 1 ≥ d n−p+1
2 e = 3; hence, the number of used colors is at most 10− 3 = 7, which

matches the construction described above.
Finally, let p = 4. The distance between two next-related vertices is either 2 or 3

because 1 < q and 4 > p− 1. Assume without loss of generaliy that X1 is a cycle-class.
If there are no next-related pairs at distance 3 in X1, then, of course, n is even; moreover,
|X1| = n/2, and there are n/2− 1 repeating vertices in X1. Hence, χ ≤ n/2 + 1 as claimed.
On the other hand, if xi, xi+3 ∈ X1 are next-related, then the C-edges {xi−1, xi, xi+1, xi+2}
and {xi+1, xi+2, xi+3, xi+4} are not properly colored by X1; moreover, they cannot be prop-
erly colored by just one further repeated color because {xi+1, xi+2} is not allowed to be
monochromatic. In particular, if n is odd and all but one next-related pairs in X1 are at
distance 2, then beside the n−3

2 repeated colors in X1, there must occur two further ones.
Thus, no more than n− n+1

2 = n−1
2 colors can occur.

In other words, if a “jump” xi, xi+3 ∈ X1 occurs, then two additional repeated colors
have to occur in the interval (xi−1, . . . , xi+4). Similarly, if there are two consecutive jumps
xi, xi+3, xi+6 ∈ X1, then three additional repeated colors are needed in (xi−1, . . . , xi+7)
because among the four C-edges with respective first vertices xi−1, xi+1, xi+2, xi+4, which
are not properly colored by X1, only the second and third admit a common monochro-
matic vertex pair (namely {xi+2, xi+4}). More generally, if there are t consecutive jumps
xi, xi+3, . . . , x3t ∈ X1, then, depending on whether they close to a cycle or not,

• there are at least t additional repeated colors if 3t = n;
• there are at least t + 1 additional repeated colors if 3t < n.

Note that n and t have the same parity. We have |X1| = n−t
2 ; hence, the following

lower bounds can be given by the number of repeated colors:

• (|X1| − 1) + t = n+t−2
2 ≥ n+1

2 if 3t = n, with equality only if t = 3 (as n < 2p− 1
holds for t = 2);

• (|X1| − 1) + (t + 1) = n+t
2 > n/2 for all t > 0 if 3t < n.

This completes the proof for q = 2.

6. Concluding Remarks

In this paper, we considered colorings of complete circular hypergraphs in which the
“intervals” of any p consecutive vertices have to contain two vertices with a common color
and any q consecutive vertices have to contain two distinct colors. The main result is the
complete determination of the largest possible number of colors under these conditions for
any number n of vertices, any p ≥ 3, and any q ≥ 2.

For q ≥ 3, we also designed a procedure that can generate a coloring with any number
of colors between minimum and maximum. The starting point of this algorithm is to
take a sieve of maximum size in the hypergraph under consideration. In the hypergraphs
KC(n; p, q) with q ≥ 3, the sum of the sieve number and the “C-stability number” (see
definition below) is very close to the number of vertices, and the C-stability number is very
close to the upper chromatic number. In the rest of these conclusions, we mention some
properties of circular hypergraphs in which the latter two parameters are equal in every
induced subhypergraph.
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C-Perfect Circular Hypergraphs

In a mixed hypergraphH, a set of vertices is C-independent or C-stable if it contains
no C-edge. The C-stability number αC(H) is the maximum cardinality of a C-stable set ofH.
Always, χ(H) ≤ αC(H) because a set with more distinct colors than αC(H) would assign
different colors to all the vertices of some C-edge. A mixed hypergraphH is C-perfect if
χ(H′) = αC(H′) for every induced subhypergraphH′ ofH, includingH itself.

Several classes of C-perfect and minimal non-C-perfect mixed hypergraphs have been
found. A polystar is a mixed hypergraph with at least two C-edges in which the set Y
of vertices common to all C-edges (center) is nonempty, and every pair in Y forms a D-
edge. When the center consists of one vertex, then the polystar is also called a monostar.
Hence, each polystar in a C-hypergraph is a monostar. A bistar is a mixed hypergraph
in which there exists a pair of distinct vertices common to all C-edges and not forming a
D-edge. Bistars are C-perfect, whereas polystars are not. Among the first minimal non-
C-perfect hypergraphs are the cycloids C p

2p−1, which, in the terminology of this article, is
KC(2p− 1; p, 0), found first in [3]; for the smallest example, see Figure 2.

The characterization of C-perfect circular hypergraphs without D-edges was done
in [17], proving that if no edge is a subset of another edge, the necessary and sufficient
condition for C-perfectness of circular C-hypergraphs is to exclude monostars and cycloids.
The situation with the presence of D-edges becomes more complicated, however, even in
hypergraphs built upon host graphs without cycles, as was shown in [18].

Figure 2. Cycloid C3
5 = KC(5; 3, 0).

Let Sn denote the class of all circular mixed hypergraphs of order n ≥ 7 containing no
induced monostar and no induced covered C-bistar with the following property: there is
an ordering of the C-edges C0, C1, C2, . . . , Cs−1 so that Cj ∪ Cj+1 = X and Cj ∩ Cj+1 induces
a K1 or a K2, 0 ≤ j ≤ s− 1 (indices modulo s). IfH contains no D-edges of size 2, then Sn
is empty for even n, and Sn is the cycloid C p

2p−1 for odd n = 2p− 1. An example for even
n = 2s is H with X = {0, 1, . . . , 2s− 1}, (X,D) is the 2s-cycle, and C = {{0, 1, . . . , s}+
2t | 0 ≤ t ≤ s− 1} indices taken modulo n. A non-uniform example of a hypergraph in S7
would have C = {{0, 1, 2, 3}, {2, 3, 4, 5, 6}, {6, 0, 1}, {1, 2, 3, 4, 5}, {4, 5, 6, 0}}. The following
general characterization of C-perfect circular mixed hypergraphs is proven in [19]:

Theorem 4. A circular mixed hypergraph H is C-perfect if and only if H 6∈ Sn and H does not
contain induced C-monostars and induced covered C-bistars.
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A KC(n; p, q) contains C-monostars if and only if 2p ≤ n. If q = 2, and 2p = n + 1,
it contains covered C-bistars. If q 6= 2, and 2p = n + 1, then KC(n; p, q) ∈ Sn. These
observations lead to the following characterization of C-perfect KC(n; p, q) hypergraphs:

Theorem 5. A mixed cycloid KC(n; p, q) is C-perfect if and only if

2p ≥ n + 2.
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