
symmetryS S

Article

An Implementation Suite for a Hybrid Public
Key Infrastructure

Jason Chia 1,*, Swee-Huay Heng 2,* , Ji-Jian Chin 3 , Syh-Yuan Tan 4 and Wei-Chuen Yau 5

����������
�������

Citation: Chia, J.; Heng, S.-H.; Chin,

J.-J.; Tan S.-Y.; Yau W.-C. An

Implementation Suite for a Hybrid

Public Key Infrastructure. Symmetry

2021, 13, 1535. https://doi.org/

10.3390/sym13081535

Academic Editors: José Carlos R.

Alcantud and Mihai Postolache

Received: 22 June 2021

Accepted: 17 August 2021

Published: 20 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Engineering, Multimedia University, Selangor 63100, Malaysia
2 Faculty of Information Science and Technology, Multimedia University, Melaka 75450, Malaysia
3 Faculty of Computing and Informatics, Multimedia University, Selangor 63100, Malaysia;

jjchin@mmu.edu.my
4 School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK;

syh-yuan.tan@newcastle.ac.uk
5 School of Electrical and Computer Engineering, Xiamen University Malaysia, Sepang 43900, Malaysia;

wcyau@xmu.edu.my
* Correspondence: 1161300548@student.mmu.edu.my (J.C.); shheng@mmu.edu.my (S.-H.H.)

Abstract: Public key infrastructure (PKI) plays a fundamental role in securing the infrastructure of
the Internet through the certification of public keys used in asymmetric encryption. It is an industry
standard used by both public and private entities that costs a lot of resources to maintain and secure.
On the other hand, identity-based cryptography removes the need for certificates, which in turn
lowers the cost. In this work, we present a practical implementation of a hybrid PKI that can issue
new identity-based cryptographic keys for authentication purposes while bootstrapping trust with
existing certificate authorities. We provide a set of utilities to generate and use such keys within
the context of an identity-based environment as well as an external environment (i.e., without root
trust to the private key generator). Key revocation is solved through our custom naming design
which currently supports a few scenarios (e.g., expire by date, expire by year and valid for year).
Our implementation offers a high degree of interoperability by incorporating X.509 standards into
identity-based cryptography (IBC) compared to existing works on hybrid PKI–IBC systems. The
utilities provided are minimalist and can be integrated with existing tools such as the Enterprise Java
Bean Certified Authority (EJBCA).

Keywords: digital certificates; identity-based cryptography; public key infrastructure; X.509

1. Public Key Infrastructure

Public key infrastructure (PKI) provide a means to verify authenticity and encrypt
messages sent over insecure channels [1,2]. It has become an industry standard because
it secures the use of asymmetric cryptography against man-in-the-middle attacks, which
solves the key distribution problem [3]. Briefly, a PKI is used to generate and distribute
digital certificates which bind random-looking public keys to a public name of the owner.
The PKI used in the industry today typically consist of a chain of trust, depicted in Figure 1.
A chain of trust enables users who trust a root trust to then further trust certificates which
are issued by the root. The intermediary CA is “trusted” by users because they trust the
root, which vouches for the intermediary by issuing them a certificate; users will then
trust certificates issued by the intermediary. This hierarchical nature enables businesses to
setup their own private PKI, which provide a multitude of authentication services for their
day-to-day operations (e.g., code signing, file server authentication, etc.) [4].

Symmetry 2021, 13, 1535. https://doi.org/10.3390/sym13081535 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-3627-2131
https://orcid.org/0000-0001-9809-6976
https://orcid.org/0000-0003-1182-1210
https://orcid.org/0000-0003-4059-6358
https://doi.org/10.3390/sym13081535
https://doi.org/10.3390/sym13081535
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13081535
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13081535?type=check_update&version=2


Symmetry 2021, 13, 1535 2 of 28

Figure 1. Chain of trust. The root CA is self-certified.

Figure 2 illustrates the process of obtaining and using a digital certificate for to
authenticate the communication between an Alice and Bob. To obtain a digital certificate,
Bob first presents identifying documents and a certificate signing request (CSR) to a
registration authority (RA). Upon validation of the documents, the RA forwards the CSR
to a CA for signing, which then generates the digital certificate for Bob. When Alice
wants to communicate with Bob, she first requests Bob’s certificate from a public directory
and checks whether the certificate is authentically signed by a trusted CA. This process
establishes the authenticity of Bob’s public key which Alice then uses for communication.
To skip this process would make Alice and Bob susceptible to a man-in-the-middle attack.
Notably, the process is time consuming and poses an additional overhead on Alice’s side
(i.e., the client side) [5].

Figure 2. Public key infrastructure.



Symmetry 2021, 13, 1535 3 of 28

In contrast to the conventional PKI, identity-based cryptography (IBC) eliminates
the need for certificates altogether by creating public keys which are not random looking.
Essentially, in identity-based cryptosystems, the public key is a publicly verifiable string
which can be used for encryption and verification [6]. Figure 3 depicts an identity-based
cryptosystem, where the process of certificate validation is no longer necessary. This is
because Bob’s public key is now their identity, through which Alice can easily verify this
fact without the need for a digital certificate. In the case of an IBC, a private key generator
(PKG) replaces the role of a CA by generating a user key corresponding to the identity of
the user.

A study by Bai has also found other advantages of an IBC environment against a
PKI environment, primarily on lesser bandwidth, lower computational requirements,
lower storage space demand and the ability to perform decryption/verification offline [7].
However, revocation becomes an issue if the private key for Bob is leaked. The identity
“bob@mmu.edu.my” can never be used again unless the PKG regenerates its master keys.
As mentioned by Bai, the delivery of user private keys (UPK) also poses an issue, since in a
PKI setting, users may opt to generate the private key privately and only transmit the CSR
across to the RA for certification.

Figure 3. Identity-based cryptosystem.

1.1. Motivation

PKI and IBC are suitable for different scenarios. PKI systems are favorable in systems
where key leakages are common (e.g., Internet) while IBC systems are suitable for closed
systems (e.g., corporate intranets). Due to the hierarchical nature of PKI with chain of trust,
companies may establish their own PKI and maintain certificates of internal services and
users that can also be used externally. This would be very costly for companies with a
lot of employees and internal services, as most commercial PKI charge for their services
based on the number of users. Recently, a sizeable workforce has switched over to working
remotely due to the COVID-19 pandemic. This has spurred organizations to begin using
PKI to secure their employee’s remote VPN connection (a VPN or virtual private network
connection allows employees to access an organization’s network securely from their home
through a “network tunnel”. Traditionally, users would logon to a VPN using a username–
password combination, which is risky because bad password hygiene could easily [8]
expose the VPN to seasoned password crackers) [9]. It is reasonable to expect that in order
to address such a surge in demand, the development of a hybrid PKI system built as a
hierarchical extension to include IBC would be useful for the IT infrastructure of various
organizations. In addition to maintaining trust in PKI established by the IT industry, a
hybrid PKI–IBC system would enjoy the following benefits:



Symmetry 2021, 13, 1535 4 of 28

1. Cost effectiveness: an organization can communicate securely both internally and
externally with the cost of only one digital certificate, where the cost is independent
of the number of staff in the organization. This benefit can never be achieved using
conventional PKI in which each staff is required to possess an individual certificate to
authenticate their own public key;

2. Simple key management: inherited from the distinctive certificate-less feature of
IBC, PKG can go offline upon issuing the user private key for users. Users can
then communicate in a peer-to-peer manner in contrast to PKI users who need to
communicate with CA to verify the authenticity of their peer’s digital certificates.

3. Database-less: Certificates are not necessary in IBC, thus no certificate database
storage is required.

1.2. Problem Statement

Operating a private PKI to secure internal communications is a costly endeavor due
to the use of digital certificates [5]. IBC is a lightweight alternative that alleviates much
of the cost because it does not require digital certificates. However, IBC is not suitable for
external communication because users from external domains do not inherently trust the
PKG. In this work, we aim to address the incompatibility of PKI and IBC through what
we call a hybrid PKI system. Such a system allows the external communication of the
organization to derive their security from the low-cost IBC system by piggybacking on the
trust established by a PKI.

1.3. Organization

We introduce PKI and state the problem we aim to tackle in Section 1. In Section 2,
we present the existing literature on this topic and state our contribution in Section 3. Our
methods and plan for implementation is presented in Section 4. In Section 5, we present
the architecture of a hybrid PKI. In Section 6, we briefly discuss and state the algorithms
which are used in our implementation. We show screen captures of the functionality and
the features of our work in Section 7. A comparison with existing works is performed in
Section 8, followed by our conclusion of this work in Section 9.

2. Existing Works

The earliest idea of a hybridized PKI dates back to 2005. Price and Mitchell [10]
proposed a total integration of IBC with PKI. One of their findings indicates that back-
ward compatibility issues are due to the certification policy standard for X.509. Their
proposed solution includes stating policy statements in a cross-domain certificate issued
by the trust authority (TA) of an IBC or just generating new identity-based keys for the
conventional certificate user which eliminates the benefits of a lightweight and low-cost
trust infrastructure. We note that these concerns are moot if the IBC end-users will not use
their identity-based keys for further certificate issuance. Chen et al. extended Price and
Mitchell’s work in 2007 with a design specific to Active Networks only [11].

Lee proposed a different idea of having both PKI and IBC together instead of complete
integration, known as Unified PKI [12]. Unified PKI uses certificate-less cryptography
instead of IBC and assumes the availability of key privacy services. Tan et al. introduced a
true PKI–IBC hybrid, whereby the trust authority contains both a private key generator
(PKG) for identity-based keys and a conventional CA [13]. Their work integrates with
the popular open source PKI software Enterprise Java Bean Certificate Authority (EJBCA),
with their IBC modules built-in as command line extensions to the existing EJBCA software.
However, their approach binds the CA wishes to have a hybrid trust infrastructure to use
EJBCA instead of other software (i.e., OpenCA, NSS).

In 2016, Reimair et al. presented a solution for PKI on a multi-device user, known
as the Cryptographic Service Interoperability Layer or CrySIL [14]. While the solution
was intended to solve a different problem, namely to address the storage of cryptographic
keys across various devices, they proposed that it could be used to emulate IBE/ABE



Symmetry 2021, 13, 1535 5 of 28

(ABE stands for attribute-based encryption, which is a more general form of identity-based
encryption, in that the public key of a user is a set of attributes instead of an identity string)
systems [15] using X.509 standard.

The current trend for PKI is to move towards a decentralized block-chain-based system
to mitigate the effects of the single point of failure on the CA [16], in addition to privacy
preservation concerns [17]. For instance, a trust enhancement scheme by Chen et al. [18] at-
tempts to transfer some authority of the CA to a decentralized block-chain, while Chiu et al.
proposed a decentralized PKI-based on the Ethereum block-chain to better alleviate privacy
concerns for users of the PKI [19]. While these studies are progressive for PKI development,
there is a gap in addressing the integration of PKI and IBC systems.

3. Our Contribution

We propose a design and implementation for a hybrid PKI framework that has the
following features:

1. Independent of the underlying software used by the CA.
2. Users from domains issued by the CA can decrypt/verify identity-based encrypted/

signed messages from users on the hybrid PKI’s domain.

Essentially, we introduced an extension to existing PKI infrastructures instead of
a replacement, allowing our design to be easily adapted into available PKIs. This is
key because PKI has been an industrial standard and is key to security and networking
infrastructures in many organizations, thus replacing a PKI would thus be very costly.
We note that our extension should be protected the same way that a PKI is protected: a
compromise in the PKG of the extension should warrant revocations of relevant keys from
the issuing CA, similarly to the compromise of a PKI warranting the revocation of its issued
certificate by a CA further up the chain of trust. Ideally, the management of the hybrid PKI
should follow the same policy as the management of a conventional PKI.

The hybrid PKI that we propose will be especially beneficial in the following scenarios:

• An organization wants to have an IBC security environment in their organization
without an existing conventional PKI.

• An organization wants to reduce the cost incurred by end-user certificates generated by
conventional PKI by replacing end-user certificates in the organization with IBC solutions.

In each of the scenarios above, we make a basic assumption that communication
within the organization will be using IBC, while communication with external entities
not in the organization would employ conventional PKI. Figure 4 visualizes that in any
case, an internal user should be able to verify communication from another internal user
as well as to verify communication from an external user which could either be using the
IBC from their own organization or conventional PKI to communicate, respectively. Our
communication model ensures backward compatibility with existing PKI.

In addition, we also implement additional plugins for Web browsers and the popular
email client Mozilla Thunderbird to facilitate the use of the hybrid PKI framework.



Symmetry 2021, 13, 1535 6 of 28

Figure 4. Communication model: the intra-domain communication may rely directly on IBC, but
the inter-domain channel requires a combination of PKI/IBC methods to function correctly.

4. Methodology

As it stands, the best way to design such a system is to design a modular compo-
nent for a PKG back-end service. This allows other software to easily integrate with the
PKG service and thus achieve PKI software independence. In addition, the PKG service
can also be deployed on different hardware, allowing hardware units to be created and
deployed separately.

Another benefit of designing from a purely back-end module is that security develop-
ers can easily extend its features to incorporate their methods of access control and other
front-end utilities. We stress again that our design merely provides an extension to existing
PKI infrastructure and leaves access control up to the policies of the existing CAs.

The design shall employ platform-independent programming languages such as
Python or Java. Similarly to Tan’s existing work [13] on EJBCA, we chose the Java pro-
gramming language as it also comes with plethora of choices in terms of cryptographic
libraries. Two cryptographic libraries were chosen and used, namely Bouncy Castle [20]
(BC) and Apache Milagro Crypto Library [21] (AMCL). We chose BC due to its capability
on X.509 certificate manipulation and AMCL due to some elliptic curve cryptographic
(ECC) primitives that were missing on BC.

5. Architecture

Figure 5 refers to the back-end system architecture. The CA is modeled as a black box
because we make no assumptions on the underlying PKI software. The PKG back-end
service is able to interact with Web interfaces and the CA directly. The back-end module is
interfaced by a socket server (i.e., transmission control protocol (TCP) or user datagram
protocol (UDP) sockets) which listens only on the local network interfaces of the machine
(i.e., localhost). Security developers would then build access control or Web application
software which connects to the back-end module via network sockets and interacts with
the PKG.



Symmetry 2021, 13, 1535 7 of 28

Figure 5. Back-end system architecture. The front-end, admin and user Web interfaces can be custom
built to interact with the service.

The back-end service holds a set of master private keys for user private key generation
as well as a conventional cryptographic key (i.e., RSA, ECDSA) shown in Figure 6: The
conventional key (ckey) is used to generate the appropriate cryptographic message syntax
or CMS for its master public keys (MPK). The CMS proves to external verifiers that the
master public key is legitimate and is sanctioned by a root trust (i.e., a mutually trusted
CA). In other words, external/inter-domain users would first validate a CMS against a root
trust, obtain the master public key from it if it is found to be valid, and then only perform
identity-based verification/encryption. To interact with the back-end, a client (i.e., Web
server or an access control middle-ware) first initiates a socket connection to the back-end,
then sends in the payload containing a JSON (JSON or Javascript Object Notation is a
popular format for communicating semi-structured data) formatted service request as well
as the parameters. Table 1 shows a list of functionalities provided by the back-end module.

5.1. Intra-Domain Communication

Suppose domain A contains a PKG as well as users Alice and Victor. Alice would like
to sign a document for Victor to verify. Alice and Victor are both organizational members
of domain A and thus received their private keys from the domain A’s PKG. Alice and
Victor intrinsically trust domain A’s PKG, as they are using private keys derived from it.

Alice would sign the document with her identity-based private key and send the
document along with the signature to Victor, which can then verify her signature along
with domain A’s PKG. Since Victor trusts domain A’s PKG, verification is straightforward
as described by the underlying identity-based signature protocol. This interaction is shown
in Figure 7.

5.2. Inter-Domain Communication

Suppose domain A contains a PKG and user Alice, while domain B contains another
PKG and user Bob. Alice would like to sign a document for Bob to verify. Alice and Bob are
from different organizations and do not intrinsically trust the each other’s PKG, as either
could be impersonators. A naive approach would be to simply let the CA of domain A issue
a X.509 certificate for Alice, which Bob could then verify that Alice is indeed from domain
A. This is the current solution for the organization with a private PKI. However, this would
mean that the organization would need a linear amount of certificates corresponding to its
employees who wish to communicate externally.



Symmetry 2021, 13, 1535 8 of 28

Figure 6. Keys on the back-end key-store. Note that the CMS is for external users to validate the
authenticity of the PKG (see Section 5.2); internal users would simply use the MPK without needing
to obtain the CMS from the PKG.

Table 1. Back-end TCP service functions for key-store management.

Function Description Service

Create key-store Initialize a new key-store. Key-stores are used to contain
master secret keys which are used to derive user keys from
user identities. Each key-store is protected with a master
password and consists of a conventional key (known as
the ckey).

kmnew

Create CSR Creates a certificate signing request for the ckey in the
key-store. The ckey is used to sign master public keys.

kmcsr

Add certificate Register a certificate of ckey signed by a certificate au-
thority. This certificate is presented along with the signed
master public key in the form of a cryptographic message
syntax (CMS).

kmncr

View certificate Obtain the certificate of the ckey in PEM format. kmvcr

List key-alias List out the master key aliases available in the key-store. kaget

Load key-store This service must be called ONCE on every startup to load
the key-store into memory.

kmlod

Create master key Create a new master key pair, each master key is protected
with a master key password independently from the key-
store password

mskini

Delete master key Delete a master key mskdel



Symmetry 2021, 13, 1535 9 of 28

Table 1. Cont.

Function Description Service

Derive user private key Derive a user private key given a user ID. An available
option to encrypt the user private key is a password which
is supplied.

uskder

Get master public key Obtain a master public key of a corresponding key alias. mpkget

Get signed master public
key

Obtain a signed master public key in the form of a CMS. mpkcms

Figure 7. Intra-domain communication. Example shown here is for signing/verification, but it
works with encryption/decryption as well. In the case of encryption/decryption, Alice would
encrypt with Victor’s identity “Victor@domainA” and Victor would decrypt with their user key
victor@domainA.usk.

To overcome this, the CA of domain A only issues a X.509 certificate for a key-pair
known as the certification key or “CKey”. Figure 6 shows that the CKey is issued by
the CA, which in turn is responsible for generating the CMS statements for the MPK in
the key-store. Note that based on X.509 standards, the CMS contains a certificate chain
up to the root CA. In other words, if Bob receives the CMS, he would be able to achieve
two things:

1. Verify that domain A is a legal domain;
2. Obtain that domain A’s authentic MPK.

Thus, our inter-domain communication flow shown in Figure 8 works as follows: Alice
would first request a CMS statement from domain A’ PKG and then send it to Bob. Bob
from domain B would then verify the validity of the CMS statement using a certificate from
a CA that he trusts. If domain A’s PKG is legitimate and the CKey certificate is obtained
from a mutually trusted CA, Bob would successfully verify the CMS. Upon verification, Bob
can unpack the CMS, obtaining domain A’s MPK from it. The rest of the communication
follows that of intra-domain communication, as the successful verification of the CMS
established trust to domain A’s PKG and its master public keys.

In the case that domain A and domain B do not share the same CA which issued their
CKey, as long as either PKG is issued by a globally trusted CA (e.g., DigiCert Global Root
CA), users from either domain can verify the CMS statements and establish trust with the



Symmetry 2021, 13, 1535 10 of 28

opposite PKG. In the case that an external user does not belong to any organization (e.g.,
public user), that user can also verify the CMS just as one would verify certificates when
browsing the Web.

Figure 8. Inter-domain communication. Steps 3–5 are needed for Bob to establish trust of domain A
and the MPK it receives.

6. Identity-Based Cryptography

In this work, we consider multiple identity-based cryptographic schemes into our
hybrid PKI implementation suite. In total, we incorporate the same IBS schemes that were
supported by Tan et al.’s work in 2014 and include an additional IBE scheme to provide
message encryption capabilities to our system. We provide brief reasons as to why the
schemes were chosen to be incorporated in the following sections.

6.1. RSA Identity-Based Signatures

The RSA identity-based signature (IBS) scheme proposed by Kiltz et al. [22] was
incorporated into our work. The scheme was proven secure against existential forgery
under chosen message attack in the random oracle model based on the difficulty of the RSA
problem. The RSA IBS scheme is included because of the widespread use of the RSA-based
key pairs in PKI; existing formats such as PKCS#1 can be re-used to store the MPK. The four
algorithms of RSA IBS are shown in Algorithms 1–4.

6.2. Schnorr Identity-Based Signatures (DSA IBS)

Schnorr IBS, proposed by Galindo and Garcia in 2009 [23], is another scheme incor-
porated into our work. This IBS was proven secure against existential forgery under the
chosen message attack in the random oracle model based on the difficulty of the discrete
logarithm problem. We chose to include DSA IBS because DSA-based key pairs, similarly
to RSA-based ones, are also industry standard and have undergone much standardization.
For instance, the format for storing DSA public keys, ANSI X9.57, can be re-used to store
the MPK. The four algorithms of Schnorr IBS are shown in Algorithms 5–8.



Symmetry 2021, 13, 1535 11 of 28

6.3. Elliptic Curve Schnorr Identity-Based Signatures (ECDSA IBS)

Similarly to Tan et al. [13], we convert Schnorr IBS to be usable with elliptic curves.
The main reason for doing so is to provide an additional option of having shorter key
sizes, in addition to ECDSA being an industry standard. The X9.62 standard for ECDSA
signatures is re-used to store the MPK. The algorithms mainly follow Algorithms 5–8
in Section 6.2. A notable difference is that instead of doing arithmetic over an integer,
ECSchnorr performs its operations over an elliptic curve. This means that for a finite
group with prime order, q is now an elliptic curve G with a prime order q and arithmetic
operations are performed on an additive group instead of a multiplicative one.

6.4. Boneh–Franklin Identity-Based Encryption

Our work also includes the first practical IBE scheme that was designed by Boneh and
Franklin in 2001 [24]. We chose Boneh and Franklin’s IBE scheme as it is an efficient and a
pioneering IBE scheme, aside from providing confidentiality for user messages in contrast
to the previously chosen IBS schemes that provides authenticity. The implemented scheme
FullIdent due to Boneh and Franklin [24] is chosen-cipher-text secure (CCA) based on the
difficulty of the bilinear Diffie-Hellman problem. The algorithms of the scheme are shown
in Algorithms 9–12.

Algorithm 1 RSA IBS setup.

1: procedure SHIBS.SETUP(1k)

2: (N, e, d) $←− Krsa(1k)
3: Select H1 : {0, 1}∗ → Z∗N
4: Select H2 : {0, 1}∗ → Z∗e
5: Return mpk← (N, e, H1, H2); msk← d

Algorithm 2 RSA IBS user private key generation.

1: procedure SHIBS.USKGEN(ID, msk)
2: H1(ID)dmod N → s
3: Return usk← s

Algorithm 3 RSA IBS signing.

1: procedure SHIBS.SIGN(msg, usk)

2: r $←− Z∗N and re mod N → R
3: H2(R ‖ msg) mod N → x
4: srx mod N → y
5: Return σ← (R, y)

Algorithm 4 RSA IBS verification.

1: procedure SHIBS.VERIFY(msg, σ, ID, mpk)
2: H2(R ‖ msg) mod N → x′

3: Return ye ?
= H1(ID) · Rx′ mod N

Algorithm 5 DSA IBS setup.

1: procedure SCIBS.SETUP(1k)
2: Select primes p, q such that q|p− 1

3: g $←− Z∗p; a $←− Z∗q and ga mod p → A
4: Select H : Z∗p × {0, 1}∗ → Z∗q
5: Return mpk← (g, A, H); msk← a



Symmetry 2021, 13, 1535 12 of 28

Algorithm 6 DSA IBS user private key generation.

1: procedure SCIBS.USKGEN(ID, msk)

2: r $←− Z∗q and gr mod p → R
3: r + a · H(R, ID) mod q → s
4: Return usk← R, s

Algorithm 7 DSA IBS signing.

1: procedure SCIBS.SIGN(msg, usk)

2: t $←− Z∗q and gt mod p → T
3: t + s · H(T, ID ‖ msg) mod q → u
4: Return σ← (T, u, R)

Algorithm 8 DSA IBS verification.

1: procedure SCIBS.VERIFY(msg, σ, ID, mpk)
2: H(R, ID)→ c1 and H(T, ID ‖ msg)→ c2

3: Return gu ?
= T(RAc1)c2 mod p

Algorithm 9 Boneh–Franklin IBE setup.

1: procedure BFIBE.SETUP(1k)
2: Select P ∈ G1; e : G1 ×G2 → GT

3: a $←− Z∗q and aP→ A
4: Select H1 : {0, 1}∗ → G1 and H2 : G2 → {0, 1}n

5: Select H3 : {0, 1}n × {0, 1}n → Z∗q
6: Select H4 : {0, 1}n → {0, 1}n

7: Return mpk← (P, A, H1, H2); msk← a

Algorithm 10 Boneh–Franklin IBE user private key generation.

1: procedure BFIBE.USKGEN(ID, msk)
2: H1(ID)→ C
3: aC → S
4: Return usk← S

Algorithm 11 Boneh–Franklin IBE encryption.

1: procedure BFIBE.ENCRYPT(msg, ID, mpk)

2: H1(ID)→ C and σ
$←− {0, 1}n

3: r $←− H3(σ, msg) and E← e(C, A)
4: Return c← (rP, σ⊕ H2(rE), msg⊕ H4(σ)

Algorithm 12 Boneh–Franklin IBE decryption.

1: procedure BFIBE.DECRYPT(c, usk)
2: Parse c→ (U, V, W)
3: If U /∈ G∗1 Then Return ⊥
4: E← e(S, U) and σ← V ⊕ H2(E)
5: M←W ⊕ H4(σ) and r ← H3(σ, M)
6: If U 6= rP Then Return ⊥
7: Return msg← M



Symmetry 2021, 13, 1535 13 of 28

7. Implementation

The hybrid PKI back-end module is implemented as a Java socket server which listens
exclusively on local network interfaces. The reason is to decouple from access control
mechanisms and allow certificate authorities to implement and extend their own with their
own access and certification policies.

7.1. Web Interface Example

To demonstrate the capabilities of the back-end module, we coded a minimalist front-
end using PHP which allows interaction with the back-end, with some of the screen-shots
shown in Figures 9–11. The advantage of modular decoupling is that certificate authorities
can have their own business logic in their front-end and only issue service calls to the
back-end based on their requirements. To interact with the module, an application from the
local machine opens a network socket to localhost and sends in a service request payload,
shown by a snippet of our code in Figure 12.

In fact, the user who wishes to only use a PKG without any front-end from the
command line may also opt to use a popular network utility tool known as netcat to open a
simple network socket (i.e., TCP socket) and issue out a service call. An example is shown
in Figure 13.

Figure 9. Minimalist front-end to the hybrid PKI module. This is a demo to illustrate the use-cases of
the hybrid PKI back-end.

Figure 10. CSR generation. The generated CSR is sent to a CA for certification: it is used for
inter-domain CMS generation by the PKG.



Symmetry 2021, 13, 1535 14 of 28

Figure 11. User key derivation. In this demo interface, an admin specifies which master key to
be used to derive the user key for alice@mmu.edu.my along with an expiry mode (see Section 7.2).
A user password may also be supplied for user key encryption using PKCS#8.

Figure 12. Example of issuing a service request in PHP to obtain a certificate signing request. A TCP
socket connection is established to the back-end server and sends the service request in JSON format.



Symmetry 2021, 13, 1535 15 of 28

Figure 13. Using the back-end module with existing tools. The popular networking utility tool
netcat is used to establish a connection to the back-end server and perform a uskder or user key
derivation service request with the arguments passed in JSON format.

7.2. User Key Expiry

While key revocation is an ongoing problem for IBC, an idea has been put forwarded
by Boneh and Franklin that users periodically renew their keys by appending the current
time period to the user’s key, forcing the user to request a new key every period (e.g.,
monthly, yearly). Bolyreva et al. proposed using fuzzy identity-based systems [25] to over-
come this problem [26]; however, their solutions are more fitting for fuzzy IBC, requiring
multiple user keys instead of conventional identity-based cryptography. Previously, in
the hybrid PKI work by Tan et al., they employed a similar idea to Boneh and Franklin’s
method of appending a time period to the public identity; however, they treat the time
period as an expiry date instead [13].

We adopted Tan et al.’s idea and extended it to include Boneh and Franklin’s version.
We introduce two additional arguments when generating a user’s private key, namely
an expiry mode and an expiry value. The following is an example of a public identity
generated by our hybrid PKI system.

alice@mmu.edu.my2023<y

The public identity above is for “alice@mmu.edu.my” which is valid for all years
earlier than 2023. A user public key must take the form of:

<user id><expiry value><expiry mode>

The following are a list of supported expiry modes:

1. Expire on year. <y

• Upon creation, specify how many years (integer) the user private key will be
valid for, starting from the current year.

• The key is considered expired if the current year is greater than or equal to the
year specified on the public identity.

• Examples:

(a) alice@mmu.edu.my2023<y. If the current year is 2020, this key is created
with expiry value y = 3 and is only valid for year 2020, 2021 and 2022.

2. Valid for year. =y

• Upon creation, specify the year (integer from 1000 to 9999) in which the key is
valid for.

• The key is considered expired if the current year is not equal to the year specified
on the public identity.

• Examples:

(a) bob@mmu.edu.my2020=y. The key is created with expiry value y = 2020
and is only valid for the year 2020.

3. Expire on day. <d

• Upon creation, specify how many days (integer) the user private key will be
valid for, starting from the current day.

• The key is considered expired if the current day is greater than or equal to the
date (format YYYYMMDD) on the public identity.



Symmetry 2021, 13, 1535 16 of 28

• Examples:

(a) bob@mmu.edu.my20210201<d. If the current date is 20201203, the key is
created with expiry value d = 60 and is only valid until 1 February 2021.

Apparently, support for other expiry mode can also be easily incorporated by adding
to the application logic (i.e., expiry on month YYYYMM<m or valid on month YYYYMM=m).
The verifier or encryptor would then simply parse the mode and interpret regardless of
whether a key has expired.

7.3. Browser Plugin and Email Plugin

To supplement the use of the hybrid PKI system, a browser plugin and email plugin
prototype were also developed. The browser plugin features several use-cases such as
page verification over an insecure HTTP channel and Web log in using IBS, while the email
plugin has IBE features, where a user can send an email to the corresponding recipient and
encrypting the email with the recipient’s email address.

The plugins provide user functionality to sign/decrypt and to verify/encrypt. It is
unable to generate user keys nor setup the MPK. These applications only aim to enhance
the hybrid PKI ecosystem and are non essential to the use of the back-end system.

7.3.1. Firefox Browser Plugin

Figures 14 and 15 show a screen-shot of the Firefox plugin menu bar and options
page, respectively. The plugin allows users to generate identity-based signature as well
as to verify one as shown in Figures 16 and 17, respectively. In addition, pages that are
signed with IBS schemes can also be verified without HTTPs, shown as a proof of concept
in Figure 18.

The plugin stores user private keys in their encrypted form, prompting for user
password each time the user private key is required (e.g., signing or decryption). This
works in synergy with the back-end module which generates password-encrypted user
private keys based on PKCS#5. The plugin uses the Javascript library for AMCL [21] and
jsrsasign [27]. It can be ported to other browsers (e.g., Chrome) with only modifications
to the user interface application programming interface (API) function calls which differs
between one browser and another (the MDN Web Docs introduced the browser extension
API that is uniform across platforms with only minute differences, allowing easy cross-
platform extension building).

Figure 14. Browser plugin menu action. The user can perform IBS signing or verification through
this plugin. If a website also uses the hybrid PKI suite, the user may also perform log in using the
plugin with their user key.



Symmetry 2021, 13, 1535 17 of 28

Figure 15. Browser plugin option page. The user can add user keys or MPKs to the plugin, which can
then be used to perform IBS operations such as signing/verification and even log in onto websites
that are using IBC as a means for entity authentication.

Figure 16. Browser plugin IBS generating an example. The user signs a plain-text message using the
plugin. The signature is in the form of a JSON Web signature (JWS).

Figure 17. Browser plugin IBS verifying an example. The user verifies a JWS, which supports
message recovery and obtains the signed message as well as the signer’s public identity.

Figure 18. HTML page authentication over HTTP with IBS. If a website uses the hybrid-PKI suite,
users may authenticate the HTML page using the browser plugin without using conventional
PKI certificates.



Symmetry 2021, 13, 1535 18 of 28

7.3.2. Verify-Only Server

The hybrid PKI system also features a verify-only server (VOS) that can be deployed
for servers running Websites that would like to have an IBS log in functionality. The VOS
performs IBS verification and is interfaced the same way as the back-end module. This
means that Web applications can be combined with the plugin to provide an IBS-based log
in using only the user private key.

Figure 19 shows an example instance of logging in with IBS. The Web application
samples a random challenge in which the user has to perform an IBS on. The plugin
simplifies this process and allows the user to log in to company Web apps with their hybrid
PKI system.

Figure 19. Example of website log in with browser plugin using IBS. An example website that uses
the VOS can be logged into using the browser plugin. The server needs not store any passwords.
The server only needs to store a list of identities (e.g., a white-list) that are allowed to log in as well as
the MPK. When a user attempts to log in, the website can challenge with a random nonce for the user
to perform IBS, which they then verify using the signer’s identity and their white-list.

7.3.3. Thunderbird Mail IBE Plugin

We also show proof of concept for IBE on the popular email client Thunderbird.
Figure 20 shows a user’s email encrypted with IBE before they send it out. The plugin
allows encryption and decryption linked to the recipient’s email address.

Figure 20. Email encryption with Thunderbird Hybrid PKI plugin. The user uses the plugin to
encrypt the contents of the email using the email address of the recipient as the public key: the
recipient can decrypt the email using their user key if their email address matches.



Symmetry 2021, 13, 1535 19 of 28

8. Comparison with Previous Similar Works

We compare our system with state of the art PKI–IBC hybrid frameworks which
supports the use cases mentioned under Section 3 in terms of features. We consider the
efficiency comparison separately due to the heterogeneity of the very few existing PKI–IBC
hybrid frameworks that exists in the literature. It is difficult to reproduce the claimed
efficiency of the various PKI–IBC hybrid frameworks, some of which do not have any
implementation [10,12].

We compare our system with Price and Mitchell’s work [10], Lee’s Unified PKI
(UPKI) [12], Tan et al.’s original enhanced PKI [13] and IBE/ABE services using X.509
presented by Reimair et al. [15]. We note several key differences and improvement over
their work in Table 2. The new hybrid PKI module is a realization of past frameworks
and an improvement over Tan et al.’s work in terms of features and conforms to more
PKCS standards than its predecessor. This work also provides a means to allow external
communication which follows the method as described by Lee’s UPKI framework, utilizing
a CMS containing the MPK of a domain A to bootstrap trust on users of domain B should
they share the same ancestor in their trust hierarchy. Another big advantage provided by
this work is the detachment process from existing PKI software, whereby companies may
freely choose whichever PKI software they desire to easily integrate with the hybrid PKI
module. The main difference between the solution proposed by Reimair et al. and ours is
the storage of user keys: their idea requires the user key to be centrally stored on a security
module (SM) which manages the key database. To sign/decrypt documents, users would
perform the service request to the SM in order to obtain the signature or plain-text.

Table 2. Comparison with previous similar works.

Aspect Price and Mitchell [10] UPKI [12] Tan et al. [13] Reimair et al. [15] This Work

Software/service
dependency

Ind. Ind. EJBCA CrySIL [14] Ind.

IBS supported N/A N/A Yes No Yes

IBE supported N/A N/A No Yes Yes

ABE supported No No No Yes No

User key format N/A N/A ASCII Unavailable to users, stored
on CrySIL’s security module

PKCS#8

User key encryp-
tion supported

N/A N/A No Yes Yes, PKCS#5

Master public
key format

N/A N/A ASCII ASN.1 DER encoded ASN.1 DER en-
coded

Master key stor-
age

N/A N/A plain-text CrySIL’s security module
key-store

JKS with password
encryption

External domain
communication

PKI (Price and Mitchell
proposed cross-
certification by the
domain’s CA)

PKI No PKI PKI

Interface N/A N/A Command
line

HTTP Network sockets

Key revocation
policy

Re-issue Re-issue Re-issue User key not stored by user Re-issue

Key expiry mode No No Expire on date No Expire on date, year
and valid for year

Key escrow prob-
lem

CL CL Present Present Present

N/A—not available/unspecified as it is only a framework without actual implementation; Ind.—independent; CL—solved using certificate-
less crypto; JKS—Java key-store; ASN.1—Abstract Sytax One notation; DER—distinguished encoding rules.



Symmetry 2021, 13, 1535 20 of 28

8.1. Security Analysis

The PKI–IBC hybrid implementation should be treated the same way one would treat
a PKI, because it is an extension of it. Following this logic, we consider the following
common 3 attacks scenarios on a PKI for the implementations considered under Table 2.
We found by ad hoc reasoning, that in 3 of the scenarios, our implementation is comparably
secure as the implementation presented by Reimair et al. [15].

8.1.1. Scenario 1: Compromised PKG Host

In the scenario depicted in Figure 21, we assume an attacker has obtained root ac-
cess onto the host machine running the PKI–IBC software. For the implementation from
Tan et al. [13], this scenario causes the entire IBC to be compromised because the master
key is in plain-text. For the implementation presented by Reimair et al. [15], the attacker
would gain access to the master keys loaded into memory when a user request for the
signing/decryption because the user keys are generated on-demand. For the same reason,
our implementation would cause the master key to be compromised if a user request for
key generation. If no such requests were to happen while the attacker has root access,
the security of the master keys for both would then rely on the underlying key protec-
tion mechanism.

Admittedly, this is the most powerful practical attack that an attacker can launch,
analogous to an attacker compromising a certificate’s authority.

Figure 21. A scenario where the PKG is compromised.

8.1.2. Scenario 2: Compromised Key-Issuance Channel

In the scenario depicted in Figure 22, we assume that an attacker has obtained root
access onto the servers of the registration authority (RA), who is responsible for validating
user information and subsequently request key issuance. This is exactly the security model
defined for identity-based cryptographic schemes in the literature; an attacker can corrupt
any number of user identities to obtain the corresponding user keys, but still must be
unable to generate new valid user keys of identities which were not previously corrupted
to perform IBC operations correctly (e.g., decryption/signing) [24,28]. It is difficult to
qualitatively analyze the security of the hybrid PKI–IBC system in this scenario because it
depends on the cryptographic scheme in question. In conventional PKI, this is analogous
to an attacker that has compromised a RA and would be able to request a certificate on any
public key of their liking.

This scenario is not applicable for the works of Reimar et al. because user keys are
never issued. While this is advantageous for scenarios as such, the maintenance cost of
having an always present central security module to do decryption/signing for the user is
very costly.



Symmetry 2021, 13, 1535 21 of 28

Figure 22. A scenario where the registration authority is compromised.

8.1.3. Scenario 3: Compromised User Device

In the scenario depicted in Figure 23, we assume an attacker has obtained root access
to the user’s device. We observe that for our implementation and that of Reimair et al.: if
the user does not attempt to perform IBC operations, their keys can still be secure; if the
user performs decryption/signing, the attacker would gain access to the password used to
encrypt the user key, which allows it to obtain the user key. Likewise, for Reimair et al.,
the user would supply identifying information to the central CrySIL module, which is
leaked to the attacker, thereby allowing it to impersonate the user and illegally perform
decryption/signing on behalf of the user.

In conventional PKI, this scenario likely leads to the user key being exposed if it is not
protected; if the user has knowledge of this occurring, they would report a key compromise
to the CA and request for revocation.

Figure 23. A scenario where the user device is compromised.

8.2. Efficiency Analysis

We would like to reiterate that we do not claim to introduce a more efficient PKI–IBC
hybrid framework, but rather a much more inter-operable and feature rich implementation.
However, it is still in our best interest to present the efficiency results of our scheme which
show its practicality. For the security levels used in our analysis, we select our parameters
for 80-bit, 112-bit, 128-bit and 192-bit security per NIST recommendations [29]. For elliptic
curve-based schemes such as ECDSA IBS, the curves secp160r1, secp224r1, secp256r1 and
secp384r1 were chosen to correspond to the security levels.

We briefly discuss the efficiency of the implementation in comparison with existing
implementations (i.e., Tan et al. [13]). As both software were developed on the same
programming language and use the same cryptographic library, we expect the difference in
run-time and memory usage to be minimum. We argue that our implementation is much
more lightweight in terms of memory footprint as it is decoupled with EJBCA’s core library
(While this may not be an issue if an organization is using EJBCA as their PKI software,
an organization that does not use EJBCA would need to install and run EJBCA regardless
of whether they are using it).

8.3. Private Key Generator

Speed is not a main concern as the role of a PKG is to issue keys post identity validation.
As both implementations run on the Java virtual machine and use the same cryptographic



Symmetry 2021, 13, 1535 22 of 28

library (i.e., Bouncy Castle), the difference in run-times between our work and Tan et al.’s
work is negligible. Furthermore, even if there is improvement over theirs, it is insignificant
as user private keys do not need to be issued in real-time (or for the matter of security,
should not be issued in real time upon request).

Table 3 shows the generated key sizes according to the various security levels. We use
the same public ID (e.g., alice@mmu.edu.my) and expiry mode =y to generate all the keys.
We note that IBS based on DSA primitives require larger key sizes because parameters such
as the discrete log parameters prime p and order of group q need to be stored. However,
we can see later, in Section 8.4, that the IBS with DSA primitives has the shortest run-time.
The shortest keys are those of elliptic curve keys due to the fact that the parameter sizes are
shorter and the fact that only the name of the curves are stored (e.g., secp224r1) instead of
storing the actual curve parameters.

While the implementation by Reimair does not need the user to store the keys, the
maintenance of their CrySIL security module (SM) bears a huge cost given that it needs to be
accessible to the user at all times for decryption/signing to occur. The bandwidth required
for their IBE/ABE solution using CrySIL would also be large given that the user would need
to communicate with the SM when it needs to decrypt a message. In contrast, our solution
works even if the PKG were to be removed to form a closed system, in addition to being
more bandwidth efficient as the user need not send a message in for decryption/signing.

Table 3. Generated key sizes (bytes). Results split into encrypted/non-encrypted sizes.

Security Level Scheme UPK
Size (Bytes)

Encrypted UPK
Size (Bytes)

MPK
Size (Bytes)

80-bit RSA IBS (1024) 509 659 286
(Legacy) DSA IBS (1024) 895 1037 664

ECDSA IBS (secp160r1) 221 363 140

112-bit RSA IBS (2048) 859 1005 465
DSA IBS (2048) 1627 1764 1204
ECDSA IBS (secp224r1) 258 395 152
Boneh–Franklin IBE (BLS12383) 339 485 245

128-bit RSA IBS (3072) 1208 1350 639
DSA IBS (3072) 2317 2455 1724
ECDSA IBS (secp256r1) 274 416 156
Boneh–Franklin IBE (BLS12461) 379 525 274

192-bit RSA IBS (7680) 2768 2910 1419
DSA IBS (7680) 5405 5543 4048
ECDSA IBS (secp384r1) 339 485 176
Boneh–Franklin IBE (BLS24479) 558 700 448

8.4. Plugins

Signing and verification as well as encryption will be repeatedly used on the plugins
by users of the system, thus we compare the performance run-time of the plugins in terms
of signing and verification. Our test machine is an Intel(R) Core(TM) i7-8750H CPU @
2.2 GHz running on a 64-bit Linux OS with 6 cores and 12 threads. A 64-bit Firefox browser
on version 84.0.1 was used for testing. We recorded the average run-times of the schemes
from 100 runs with increasing message sizes. Figures 24 and 25 show the run-time for
RSA-based IBS in terms of signing and verification, respectively. We see that although
message sizes increase, the run-time is mainly constant as the run-time footprint of the
hashing of messages is negligible compared to the much longer exponentiation run-times.
This trend is consistent throughout the IBS schemes built with other primitives, as shown
in Figures 26–29 for DSA and ECDSA IBS.

Note that the performance is somewhat sluggish as Javascript is not known for itd
speed—especially in terms of a plugin. However, we stress that these run-times are
practical and do not really hinder the workflow of a human using it for signing/verification
purposes, which is the main goal of our work. The average run-time of all IBS schemes
implemented in the plugin, as shown in Figures 30 and 31, indicates that the hybrid PKI



Symmetry 2021, 13, 1535 23 of 28

system is practical in terms of run-times. Notice that the 192-bit results in Figure 31 have
an ECDSA with a shorter run-time than DSA and RSA. We believe that this is due to the
disproportionate increase in parameter sizes for ECDSA versus DSA and RSA: for 128-bit to
192-bit security, ECDSA increases its parameter sizes from 256 bits to 384 bits—a 1.5 times
increase—whereas DSA and RSA had roughly increased by 2.5 times: from 3072 bits to
7680 bits.

In the case of identity-based encryption, only the curves BLS12383 [30], BLS12461 [31] and
BLS24479 [32] are currently used to support 112-bit, 128-bit and 192-bit security, respectively.
We run the same run-time experiment on 64-bit Mozilla Thunderbird on version 78.6.0. We
perform encryption/decryption with a random plain-text increasing in size and show our
results in Figures 32 and 33. The results show the same roughly consistent run-times which
are mostly dominated by a pairing operation during encryption and decryption that are
computationally intensive. A higher encryption run-time is also observed as it requires an
additional point multiplication operation in G2. The email plugin runs on Javascript similar to
the browser plugin.

We aim to support more standardized pairing-friendly curves as well as different
variants of the Boneh–Franklin cryptosystem when public interest increases in our proto-
type. However, as pointed out by Michael Scott, standardization efforts have stalled due to
newer security insights into the true security of curves [33].

Figure 24. RSA IBS signing run-time vs. message size.

Figure 25. RSA IBS verification run-time vs. message size.



Symmetry 2021, 13, 1535 24 of 28

Figure 26. DSA IBS signing run-time vs. message size.

Figure 27. DSA IBS verification run-time vs. message size.

Figure 28. ECDSA IBS signing run-time vs. message size.



Symmetry 2021, 13, 1535 25 of 28

Figure 29. ECDSA IBS verification run-time vs. message size.

Figure 30. Average IBS signing run-time vs. security level.

Figure 31. Average IBS verification run-time vs. security level.



Symmetry 2021, 13, 1535 26 of 28

Figure 32. Email plugin run-time vs. plain-text size.

Figure 33. Email plugin average run-times.

9. Conclusions

In this work, we presented a hybrid PKI framework and showed an implementation
of it along with utilities such as browser and email plugins. The new hybrid PKI system
can be easily interfaced with existing PKI software through common methods to secure
asymmetric cryptographic protocols. In addition, it can also provide identity-based crypto-
graphic capabilities to the security environment. We showed a comparison with the existing
literature and found it to be superior in terms of features provided. In addition, the hybrid
PKI system easily allows secure intra-domain communication as well as external domain
communication, where the authenticity of a PKG has yet to be established. In essence, this
enables the framework to be easily deployed on existing corporations with or without their
own trust infrastructures, replacing the majority of their user certificates and reducing their
operating costs.

Author Contributions: Conceptualization, S.-H.H.; formal analysis, J.C., J.-J.C., S.-Y.T. and W.-C.Y.;
funding acquisition, S.-H.H.; methodology, S.-H.H., J.-J.C., S.-Y.T. and W.-C.Y.; project administration,
S.-H.H.; resources, S.-H.H.; software, J.C.; supervision, S.-H.H., J.-J.C., S.-Y.T. and W.-C.Y.; validation,
J.C., J.-J.C., S.-Y.T. and W.-C.Y.; visualization, J.C.; writing—original draft, J.C.; writing—review and
editing, S.-H.H., J.-J.C., S.-Y.T. and W.-C.Y. All authors have read and agreed to the draft version of
the manuscript.



Symmetry 2021, 13, 1535 27 of 28

Funding: The authors acknowledge the Prototype Research Grant Scheme by the Ministry of
Higher Education of Malaysia (PRGS/2/2019/ICT04/MMU/01/1) in providing financial support
for this work.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: The authors would like to express gratitude to the anonymous reviewers for
their helpful comments on a preliminary version of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Adams, C.; Lloyd, S. Understanding PKI: Concepts, Standards, and Deployment Considerations, 2nd ed.; Addison-Wesley Longman

Publishing Co., Inc.: Boston MA, USA, 2002.
2. Stoianov, N.; Urueña, M.; Niemiec, M.; Machnik, P.; Maestro, G. Integrated security infrastructures for law enforcement agencies.

Multimed. Tools Appl. 2013, 74, 4453–4468. [CrossRef]
3. Diffie, W.; Hellman, M. New Directions in Cryptography. IEEE Trans. Inf. Theor. 2006, 22, 644–654. [CrossRef]
4. Salek, A. Private PKI: Deployment, Automation and Management. Available online: https://www.securitymagazine.com/

articles/93101-private-pki-deployment-automation-and-management (accessed on 2 May 2021).
5. Alrawais, A.; Alhothaily, A.; Cheng, X.; Hu, C.; Yu, J. SecureGuard: A Certificate Validation System in Public Key Infrastructure.

IEEE Trans. Veh. Technol. 2018, 67, 5399–5408. [CrossRef]
6. Shamir, A. Identity-based Cryptosystems and Signature Schemes. In Proceedings of the CRYPTO 84 on Advances in Cryptology;

Springer: New York, NY, USA, 1985; pp. 47–53.
7. Qing-hai, B. Comparative research on two kinds of certification systems of the public key infrastructure (PKI) and the identity

based encryption (IBE). In Proceedings of the Cross Strait Quad-Regional Radio Science and Wireless Technology Conference
(CSQRWC), New Taipei, Taiwan, 23–27 July 2012; pp. 147–150.

8. Wang, C.; Jan, S.T.; Hu, H.; Bossart, D.; Wang, G. The Next Domino to Fall: Empirical Analysis of User Passwords across Online
Services. In Proceedings of the Eighth ACM Conference on Data and Application Security and Privacy; Association for Computing
Machinery: New York, NY, USA, 2018; pp. 196–203.

9. Trzupek, B. PKI is key to securing a post-Covid remote workforce. Comput. Fraud Secur. 2020, 2020, 11–13. [CrossRef]
10. Price, G.; Mitchell, C. Interoperation Between a Conventional PKI and an ID-Based Infrastructure. In Public Key Infrastructure,

Second European PKI Workshop: Research and Applications; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3545, pp. 73–85.
11. Chen, Q.; Yu, S.; Li, Z. A Cross-Authentication Model for Heterogeneous Domains in Active Networks. In Proceedings of the

2007 IFIP International Conference on Network and Parallel Computing Workshops (NPC 2007), Dalian, China, 18–21 September
2007; pp. 140–143.

12. Lee, B. Unified Public Key Infrastructure Supporting Both Certificate-Based and ID-Based Cryptography; IEEE Publications: Manhattan
NY, USA, 2010; pp. 54–61.

13. Tan, S.; Yau, W.C.; Lim, B.H. An implementation of enhanced public key infrastructure. Multimed. Tools Appl. 2014, 74, 6481–6495.
[CrossRef]

14. Reimair, F.; Teufl, P.; Zefferer, T. CrySIL: Bringing Crypto to the Modern User. In Web Information Systems and Technologies;
Monfort, V., Krempels, K.H., Majchrzak, T.A., Turk, Ž., Eds.; Springer International Publishing: Cham, Switzerland, 2016;
pp. 70–90.

15. Reimair, F.; Feichtner, J.; Teufl, P. Attribute-Based Encryption Goes X.509. In Proceedings of the 2015 IEEE 12th International
Conference on e-Business Engineering, Beijing, China, 23–25 October 2015; pp. 393–400.

16. Rajendran, B. Evolution of PKI ecosystem. In Proceedings of the 2017 International Conference on Public Key Infrastructure and
Its Applications (PKIA), Bangalore, India, 14–15 November 2017; pp. 9–10.

17. Orman, H. Blockchain: The Emperors New PKI? IEEE Internet Comput. 2018, 22, 23–28. [CrossRef]
18. Chen, Y.; Dong, G.; Bai, J.; Hao, Y.; Li, F.; Peng, H. Trust Enhancement Scheme for Cross Domain Authentication of PKI System.

In Proceedings of the 2019 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery
(CyberC), Guilin, China, 17–19 October 2019; pp. 103–110.

19. Chiu, W.Y.; Meng, W.; Jensen, C.D. ChainPKI—Towards Ethash-based Decentralized PKI with Privacy Enhancement. In Proceed-
ings of the 2021 IEEE Conference on Dependable and Secure Computing (DSC), Aizuwakamatsu, Japan, 30 January–2 February
2021; pp. 1–8.

20. The Legion of the Bouncy Castle Inc. Bouncy Castle. Available online: https://www.bouncycastle.org/ (accessed on
10 August 2020).

21. Whitney, J.M. Milagro Introduction. Available online: https://milagro.apache.org/docs/milagro-intro/ (accessed on 13
September 2020).

22. Kiltz, E.; Neven, G.; Joye, M. Identity-Based Signatures. J. Cryptol. JOC 2008, 2, 75.

http://doi.org/10.1007/s11042-013-1532-7
http://dx.doi.org/10.1109/TIT.1976.1055638
https://www.securitymagazine.com/articles/93101-private-pki-deployment-automation-and-management
https://www.securitymagazine.com/articles/93101-private-pki-deployment-automation-and-management
http://dx.doi.org/10.1109/TVT.2018.2805700
http://dx.doi.org/10.1016/S1361-3723(20)30108-1
http://dx.doi.org/10.1007/s11042-014-2119-7
http://dx.doi.org/10.1109/MIC.2018.022021659
https://www.bouncycastle.org/
https://milagro.apache.org/docs/milagro-intro/


Symmetry 2021, 13, 1535 28 of 28

23. Galindo, D.; Garcia, F.D. A Schnorr-Like Lightweight Identity-Based Signature Scheme. In Progress in Cryptology—AFRICACRYPT
2009; Preneel, B., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 135–148.

24. Boneh, D.; Franklin, M. Identity-Based Encryption from the Weil Pairing. In Advances in Cryptology—CRYPTO 2001; Kilian, J., Ed.;
Springer: Berlin/Heidelberg, Germany, 2001; pp. 213–229.

25. Sahai, A.; Waters, B. Fuzzy Identity Based Encryption. Cryptology ePrint Archive, Report 2004/086. 2004. Available online:
https://eprint.iacr.org/2004/086 (accessed on 4 April 2020).

26. Boldyreva, A.; Goyal, V.; Kumar, V. Identity-based encryption with efficient revocation. In Proceedings of the ACM Conference
on Computer and Communications Security, CCS, Alexandria VA, USA, 27–31 October 2008; pp. 417–426.

27. Urushima, K. Jsrsasign. 2012. Available online: https://kjur.github.io/jsrsasign/ (accessed on 12 August 2020).
28. Bellare, M.; Namprempre, C.; Neven, G. Security Proofs for Identity-Based Identification and Signature Schemes. In Advances in

Cryptology—EUROCRYPT 2004; Cachin, C., Camenisch, J.L., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 268–286.
29. Elaine, B. Recommendation for Key Management, Part 1: General, 5th ed.; U.S. Department of Commerce, National Institute of

Standards and Technology: Gaithersburg MD, USA, 2020.
30. Barreto, P.S.L.M.; Lynn, B.; Scott, M. Constructing Elliptic Curves with Prescribed Embedding Degrees. Cryptology ePrint

Archive, Report 2002/088. 2002. Available online: https://eprint.iacr.org/2002/088 (accessed on 8 August 2020).
31. Barbulescu, R.; Duquesne, S. Updating Key Size Estimations for Pairings. Cryptology ePrint Archive, Report 2017/334. 2017.

Available online: https://eprint.iacr.org/2017/334 (accessed on 3 July 2020).
32. Aranha, D.F.; Fuentes-Castañeda, L.; Knapp, E.; Menezes, A.; Rodríguez-Henríquez, F. Implementing Pairings at the 192-

bit Security Level. Cryptology ePrint Archive, Report 2012/232. 2012. Available online: https://eprint.iacr.org/2012/232
(accessed on 7 August 2020).

33. Scott, M. Curves.txt. 2019. Available online: https://github.com/miracl/core/blob/master/curves.txt (accessed on 13 September 2020).

https://eprint.iacr.org/2004/086
https://kjur.github.io/jsrsasign/
https://eprint.iacr.org/2002/088
https://eprint.iacr.org/2017/334
https://eprint.iacr.org/2012/232
https://github.com/miracl/core/blob/master/curves.txt

	Public Key Infrastructure
	Motivation
	Problem Statement
	Organization

	Existing Works
	Our Contribution
	Methodology
	Architecture
	Intra-Domain Communication
	Inter-Domain Communication

	Identity-Based Cryptography
	RSA Identity-Based Signatures
	Schnorr Identity-Based Signatures (DSA IBS)
	Elliptic Curve Schnorr Identity-Based Signatures (ECDSA IBS)
	Boneh–Franklin Identity-Based Encryption

	Implementation
	Web Interface Example
	User Key Expiry
	Browser Plugin and Email Plugin
	Firefox Browser Plugin
	Verify-Only Server
	Thunderbird Mail IBE Plugin


	Comparison with Previous Similar Works
	Security Analysis
	Scenario 1: Compromised PKG Host
	Scenario 2: Compromised Key-Issuance Channel
	Scenario 3: Compromised User Device

	Efficiency Analysis
	Private Key Generator
	Plugins

	Conclusions
	References

