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Abstract: The classic structure of a bacteriophage is commonly characterized by complex symmetry.
The head of the structure features icosahedral symmetry, whereas the tail features helical symmetry.
The phage virion protein (PVP), a type of bacteriophage structural protein, is an essential material
of the infectious viral particles and is responsible for multiple biological functions. Accurate iden-
tification of PVPs is of great significance for comprehending the interaction between phages and
host bacteria and developing new antimicrobial drugs or antibiotics. However, traditional exper-
imental approaches for identifying PVPs are often time-consuming and laborious. Therefore, the
development of computational methods that can efficiently and accurately identify PVPs is desired.
In this study, we proposed a multi-classifier voting model called iPVP-MCV to enhance the predictive
performance of PVPs based on their amino acid sequences. First, three types of evolutionary features
were extracted from the position-specific scoring matrix (PSSM) profiles to represent PVPs and
non-PVPs. Then, a set of baseline models were trained based on the support vector machine (SVM)
algorithm combined with each type of feature descriptors. Finally, the outputs of these baseline
models were integrated to construct the proposed method iPVP-MCV by using the majority voting
strategy. Our results demonstrated that the proposed iPVP-MCV model was superior to existing
methods when performing the rigorous independent dataset test.

Keywords: phage virion protein; machine learning; support vector machine; position-specific scor-
ing matrix

1. Introduction

The bacteriophages, also known informally as phages, are a form of viruses that
infect and replicate within bacteria and archaea. Bacteriophages are among the most
common and diverse entities on Earth, usually found wherever bacteria exist. Their
interactions with microbial communities profoundly influence microbial ecology and
biogeochemical cycling in various ecosystems [1]. The classic structure of a bacteriophage
is commonly characterized by complex symmetry. The head of the structure features
icosahedral symmetry, whereas the tail features helical symmetry. Recently, it has been
shown that the abundant bacteriophages existing in the human gut microbiota heavily
impact human metabolism and immunity [2], with evident therapeutic implications for
some diseases [3]. Bacteriophages are composed of proteins that encapsulate a DNA or
RNA genome [4]. They replicate within the bacterium following the injection of the genome
into bacterial cytoplasm. Owing to their properties, no toxicity for human cells, harmless to
normal flora, and their potential against antibiotic-resistant bacteria, phages are expected
to become an alternative to antibiotics [5].

Bacteriophage proteins are fundamental materials of the infectious viral particles and
are responsible for important biological functions in the interaction between bacteriophages
and host cells. They are divided into two categories: structural proteins, also called phage
virion proteins (PVPs), and nonstructural proteins, also called phage non-virion proteins
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(non-PVPs). PVPs recognize the host, bind to its surface receptors, and deliver the phage’s
genome into the host’s cell, while non-PVPs play crucial roles in the biological process of
viral genome replication and expression [6–8]. The accurate identification of PVPs will not
only contribute to further comprehending the molecular mechanisms of phage genetics but
also be helpful in the development of antimicrobial drugs [9]. However, it is often quite
expensive and time-consuming to annotate new PVPs based on the current experimental
methods, such as mass spectrometry, protein arrays, and electron microscopy [10,11].
Therefore, with the explosive extension of protein sequence data, there is an urgent need to
exploit computational methods to identify PVPs.

In a few years of recent, several sequence-based computational methods have been de-
veloped to predict PVPs, including PVPred [12], PVP-SVM [13], PhagePred [14], Pred-BVP-
Unb [15], PVPred-SCM [16], Meta-iPVP [17], and so on [18–22]. For instance, Feng et al. [19]
constructed a benchmark dataset with 99 PVPs and 208 non-PVPs and applied a naïve
Bayes (NB) classifier to predict PVPs by using amino acid composition (AAC) and dipep-
tide composition (DPC). Based on jackknife cross-validation (CV), their method could
distinguish the PVPs from the non-PVPs with an accuracy (ACC) of 79.15% [19]. In 2018,
Manavalan et al. [13] developed a support vector machine (SVM)-based classifier, namely
PVP-SVM, which extracted AAC, DPC, atomic composition (ATC), physicochemical prop-
erties (PCP), and chain–transition–distribution (CTD) as preliminary input features and
then performed a feature selection protocol to identify the optimal features. PVP-SVM
achieved an ACC of 79.80% when tested on the independent dataset [13]. Subsequently,
Arif et al. [15] proposed an unbiased predictor called Pred-BVP-Unb for PVPs prediction,
which utilized three protein encoding strategies, i.e., composition and translation (CT), split
AAC, and bi-profile position-specific scoring matrix (PSSM). In addition, they applied the
synthetic minority oversampling technique to reduce the bias of the unbalanced benchmark
dataset and employed the recursive feature elimination algorithm to select the optimal
feature subset [15]. Pred-BVP-Unb obtained the highest ACC value of 83.06% on the same
independent dataset with PVP-SVM [15]. Recently, Charoenkwan et al. [16] developed
an interpretable PVPs classifier named PVPred-SCM in a systematic manner based on the
scoring card method combined with DPC, with an ACC of 77.66% on the independent
dataset. Later, the same research group [17] first established a balanced benchmark dataset
which contained 313 PVPs and 313 non-PVPs, and then explored a meta-predictor termed
Meta-iPVP to distinguish whether a query protein is a PVP or not. Meta-iPVP adopted
seven feature encodings and four machine learning algorithms to construct the final en-
semble classifier, which performed well on the independent test. Many other reports about
the computational identification of PVPs can be seen in the recent review articles [23–25].

As we all know, PSSM profiles, which represent the evolutionary information of pro-
tein sequence, have been widely applied and proved to have a remarkable contribution
to protein function and attribute predictions [26]. However, it appears that evolutionary
features derived from the PSSM profile have rarely been used to identify PVPs. Thus,
there is still room for further improvement in PVPs prediction by extracting more effective
evolutionary features from the PSSM profile. To this end, we present an ensemble model,
called iPVP-MCV, to increase the annotation levels of PVPs by combining PSSM profiles
and a multi-classifier voting scheme. The overall framework of the iPVP-MCV method is il-
lustrated in Figure 1. First, three types of feature encodings were utilized to convert protein
sequences into fixed-length feature vectors, including PSSM-AAC, PSSM-composition, and
DP-PSSM. Second, these features were input into the baseline SVM classifiers to perform
the prediction. Finally, iPVP-MCV integrated the outputs of these baseline models to
predict whether the query protein was a PVP or not by using the majority voting strat-
egy. Experimental results from the independent dataset test indicated that iPVP-MCV
performed better than most of the current existing methods and could serve as a useful
tool to help enhance the prediction performance of PVPs.
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Figure 1. The overall framework of the proposed iPVP-MCV model. First, the query protein sequence was converted into
its PSSM profile by running the PSI-BLAST program against the UniRef50 database. Second, three types of evolutionary
features were extracted from the PSSM profile to characterize the query protein. Third, these features were input into the
baseline SVM classifiers to perform the prediction. Finally, the outputs of three baseline models were integrated to predict
whether the query protein was a PVP or not by using the majority voting strategy.

2. Materials and Methods
2.1. Datasets

A reliable and high-quality benchmark dataset is crucial for training and verifying
the proposed prediction model. In this study, the benchmark dataset, which contained
the training subset (termed D1_Train) and the independent subset (termed D1_Test), was
directly collected from previous work to validate the proposed model [13]. Specifically,
the training dataset contained 208 non-PVPs and 99 PVPs, while the independent dataset
included 64 non-PVPs and 30 PVPs.

To objectively assess the robustness of the proposed method, another dataset con-
structed by Charoenkwan et al. [17] was further studied. This dataset first expanded the
benchmark dataset and then randomly divided it into two parts: The first one included
250 PVPs and 250 non-PVPs (termed D2_Train), which was applied to train the model and
perform the CV; and the other one consisted of 63 PVPs and 63 non-PVPs (termed D2_Test),
which was used for the independent test.

The main reasons why we adopted the above two benchmark datasets were as fol-
lows: (i) they were extracted from the Universal Protein Resource (UniProt) [27]; (ii) they
eliminated the sequences with nonstandard letters, such as “B”, “X”, or “Z”, and (iii) they
removed protein sequences with more than 40% similarity to avoid misleading results with
the overestimated ACC.

2.2. Feature Extraction Algorithms
2.2.1. PSSM Profiles

A growing number of studies have found that evolutionary information embedded
in the PSSM profiles highly represents the sequence information [28]. The PSSM profile
of a query protein with the length of L can be represented as an L × 20 matrix, which
was generated by performing the PSI-BLAST search against the UniRef50 [29] database
with three iterations and a threshold value of 0.001 [30]. The (i, j)th element in the matrix
denotes the log odds of amino acid type j to appear at position i of the protein sequence. To
facilitate the further analysis, the elements of the PSSM profile were normalized between 0
and 1 using the following formula:

f (x) =
1

1 + e−x . (1)

The original and standardized PSSM profiles are respectively denoted as follows:

S =
[
si,j
]
(1 ≤ i ≤ L, 1 ≤ j ≤ 20), (2)
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M =
[
mi,j
]
(1 ≤ i ≤ L, 1 ≤ j ≤ 20). (3)

2.2.2. PSSM-AAC

AAC is a commonly used feature descriptor that computes the fractions of the 20
standard amino acid residues in each protein sequence [31]. The PSSM-AAC features
derived from the PSSM profile can be defined as:[

M1, M2, M3, . . . , M20
]
, (4)

where Mj =
1
L

L
∑

i=1
mi,j(1 ≤ j ≤ 20).

Note that the AAC features based on the sequence (termed Seq-AAC) can be calculated
by the following formula:

vj =
cj

L
(1 ≤ j ≤ 20), (5)

where cj is the number of amino acid of type j in the query protein sequence.

2.2.3. PSSM-Composition

PSSM-composition transforms the PSSM profile into a 20× 20 matrix by summing up
all rows for each naturally occurring amino acid type [32]:

Ri =
L

∑
k=1

rk × δk, (6)

where {
δk = 1, if pk = ai
δk = 0, if pk 6= ai

(1 ≤ i ≤ 20) , (7)

Ri represents the ith row of the converted matrix, rk denotes the kth row of the
normalized PSSM profile, pk denotes the kth amino acid in the original sequence, and ai
denotes the ith of 20 standard amino acids. Finally, a 400-dimensional numeric vector was
generated by flattening the 20× 20 matrix.

2.2.4. DP-PSSM

DP-PSSM is a similarity-based protein descriptor that reflects the hidden sequential
order information in the real number and can avoid the cancellation of positive and negative
terms in the average process [33]. The whole process is described below.

First, the original PSSM profile S was normalized to a matrix T by using the following
three equations:

meani =
1

20

20

∑
k=1

si,k, (8)

stdi =

√
∑20

k=1(si,k −meani)
2

20
, (9)

Ti,j =
si,j −meani

stdi
. (10)

Second, a 40-dimensional feature vector T′ was generated by computing the average
of positive and negative terms in each column of the normalized matrix T, as shown in the
Formulas (11) and (12):

T′ =
[

TP
1 , TN

1 , TP
2 , TN

2 , . . . , TP
20, TN

20

]
, (11)



Symmetry 2021, 13, 1506 5 of 11

where  TP
j = 1

NPj
∑ Ti,j, if Ti,j ≥ 0

TN
j = 1

NNj
∑ Ti,j, if Ti,j < 0

(1 ≤ j ≤ 20) , (12)

NPj and NNj represent the numbers of positive and negative terms in the jth column
of the matrix T, respectively.

Third, a feature vector G′ with the dimension of 20× (α× 2) was obtained by calcu-
lating the average of squared differences between entries corresponding to amino acids at
the positions i and i + k in each column of matrix T, as shown below:

G′ = [G1, G2, . . . , G20], (13)

where
Gj =

[
∆P

1,j, ∆N
1,j, ∆P

2,j, ∆N
2,j, . . . , ∆P

α,j, ∆N
α,j

]
(1 ≤ j ≤ 20), (14)

∆P
k,j =

1
NDPj

∑
(

Ti,j − Ti+k,j

)2
, if Ti,j − Ti+k,j ≥ 0

∆N
k,j =

−1
NDNj

∑
(

Ti,j − Ti+k,j

)2
, if Ti,j − Ti+k,j < 0

(1 ≤ k ≤ α) , (15)

NDPj and NDNj are the numbers of positive and negative terms of Ti,j−Ti+k,j (1 ≤ i ≤ L),
respectively.

Finally, the DP-PSSM descriptor was defined as a 40 + 40× α dimensional feature
vector by combining the generated T′ and G′.

In this study, the value of the parameter α was set to 4, and we obtained a 200-dimensional
numeric vector for each protein sequence. The experimental results of parameter selection
are listed in Supplementary Table S1.

2.3. Support Vector Machine

Support vector machine (SVM), which is considered one of the most robust prediction
algorithms [34], has been successfully used to solve the protein classification problems
in bioinformatics [35,36]. Theoretically, SVM maps the training examples into a high-
dimensional space and then finds an optimal hyperplane that maximized the margin
between two classes. New test examples that are mapped into the same high-dimensional
space will be predicted based on which side of the hyperplane they fall into. In addition to
solving the linear classification problem, SVM can efficiently handle the non-linear problem
by using the kernel trick. Due to its better performance, the radial basis kernel function
(RBF) was adopted in this work. The effectiveness of the RBF-based SVM depends on
the values of the kernel parameter γ and the regularization parameter C. In this study,
to avoid overfitting to the testing set, we only performed a grid search method to select
the best parameters C ∈

{
2−5, 2−3, . . . , 213, 215} and γ ∈

{
23, 25, . . . , 2−13, 2−15} of each

SVM-based PVPs predictor on the training set by using the nested 10-fold CV.

2.4. Performance Evaluation

In this study, the proposed method was rigorously validated based on three widely
used validation tests: the 10-fold CV, the jackknife CV, and the independent test. All results
were reported by applying the four performance measurements: sensitivity (SN), specificity
(SP), accuracy (ACC), and Matthew’s correlation coefficient (MCC), formulated as follows:

SN =
TP

TP + FN
, (16)

SP =
TN

TN + FP
, (17)

ACC =
TP + TN

TP + FP + TN + FN
, (18)
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MCC =
(TP× TN)− (FN × FP)√

(TP + FN)× (TN + FP)× (TP + FP)× (TN + FN)
, (19)

where TP, FP, TN, and FN represent the instances of true positive, false positive, true
negative, and false negative, respectively. Moreover, we exploited a receiver operating
characteristic (ROC) curve to illustrate the diagnostic ability of the proposed method. The
ROC curve was created by plotting the true positive rate (TPR) against the false positive
rate (FPR) at various threshold settings. Note that TPR and FPR were equal to SN and
1-SP, respectively. The area under the ROC curve (AUC) was also calculated for the model
evaluation. The high value of AUC means that the model has a good performance.

3. Results and Discussion
3.1. Performance Comparison of Various Classifiers

In this section, five commonly used machine learning algorithms, including SVM, ran-
dom forest (RF), extreme gradient boosting machine (XGB), extremely randomized trees (ERT),
and NB, were adopted to compare their performance for the PVP’s prediction by using three
different feature encoding methods. All the experiments were performed on the D1_Train
dataset by utilizing the jackknife CV, and the results are illustrated in Figures 2 and 3.

Figure 2. Prediction results of different classifiers with different features.

Figure 3. Cont.
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Figure 3. The ROC curves of different classifiers using different features. (a) ROC curves based on the DP-PSSM descriptor.
(b) ROC curves based on the PSSM-AAC descriptor. (c) ROC curves based on the PSSM-composition descriptor.

As can be seen from Figure 2, the SVM, ERT, RF, and XGB classifiers obtained satisfac-
tory ACC values with three different encoding schemes, while the NB algorithm performed
worse in this task. Specifically, the SVM classifier reached the highest ACC values based on
the PSSM-AAC and PSSM-composition descriptors and showed comparable performance
with the XGB model when combined with the DP-PSSM encoding method. Accordingly,
the SVM algorithm was selected as the final predictor in the subsequent analysis due to its
robustness. In addition, the models based on the PSSM-AAC and DP-PSSM descriptors
performed slightly better than the ones based on the PSSM-composition descriptor. This
suggested that these three types of features may provide important clues for the identifi-
cation of PVPs, and the predictive ability could be further improved by constructing the
ensemble model. Furthermore, the ROC curves associated with these models were plotted
in Figure 3, which led to similar conclusions as Figure 2.

3.2. Performance Comparison between the Base Models and the Ensemble Models

In this section, we assessed the performance of six SVM-based models on the D1_Train
dataset by using the jackknife CV, including four base models with different feature en-
codings (i.e., Seq-AAC, PSSM-AAC, DP-PSSM, and PSSM-composition) and two ensemble
models with different integration strategies (one was multi-feature fusion, and the other
one, multi-classifier voting). The four metrics, including ACC, sensitivity (SN), speci-
ficity (SP), and Matthew’s correlation coefficient (MCC), were applied to evaluate the
performance of these models, and the corresponding results are reported in Table 1.

Table 1. Prediction results of different models on the D1_Train dataset.

Model ACC SN SP MCC

Seq-AAC 0.795 0.677 0.851 0.529
PSSM-AAC 0.857 0.798 0.885 0.676
DP-PSSM 0.840 0.687 0.913 0.625

PSSM-composition 0.834 0.737 0.880 0.619
All PSSM features 0.847 0.727 0.904 0.644

iPVP-MCV 0.879 0.778 0.928 0.720

As shown in Table 1, three PSSM-based models were superior to the one based on
the Seq-AAC descriptor in terms of ACC, SN, SP, and MCC, which reconfirmed that the
evolutionary information in the form of PSSM profiles may be more informative than the
sequence information alone when tested on the PVPs identification. Among three PSSM-
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based models, the PSSM-AAC model achieved the best ACC value (0.857), the DP-PSSM
model obtained the highest SP value (0.913), and the PSSM-composition model could bear
comparison with the DP-PSSM model in terms of SN. In addition, we attempted to further
improve the prediction performance of PVPs by using two different ensemble methods.
The first one constructed an SVM model by fusing three PSSM-based feature spaces, which
outperformed the DP-PSSM model and the PSSM-composition model in terms of ACC and
MCC but lagged behind the PSSM-AAC model. The second one (i.e., iPVP-MCV) combined
the outputs of three individual SVM models into a final prediction by the majority vote,
which performed better than the other predictors listed in Table 1 in terms of ACC (0.879),
SP (0.928), and MCC (0.720). This suggested that the multi-classifier voting strategy was
superior to the multi-feature fusion strategy for this task. The possible cause could be
that either redundant or irrelevant features existed in the fused feature space and had an
adverse effect on the prediction of PVPs.

3.3. Performance Comparison with Existing Methods

To objectively assess the performance of iPVP-MCV, we made fair comparisons with
several existing methods on the two benchmark datasets by using the same validation
schemes with previous works [13,17]. These methods included Feng et al.’s method [19],
PVPred [12], PVP-SVM [13], Tan et al.’s method [21], PVP-SCM [16], and Meta-iPVP [17].
For this experiment, the jackknife CV was first performed on the D1_Train dataset to verify
the performance of iPVP-MCV, and then the iPVP-MCV model trained with the D1_Train
dataset was examined on the D1_Test dataset. Moreover, we carried out the 10-fold CV on
the D2_Train dataset to validate the robustness of iPVP-MCV. The iPVP-MCV model trained
with the D2_Train dataset was further evaluated on the D2_Test dataset. The prediction
results of our method and several existing models were documented in Tables 2 and 3. Note
that the prediction values were collected from the previous studies [15–17]. The results of
two validation tests on the two training datasets were also listed in Supplementary Table
S2 and the ROC curves of iPVP-MCV classifier on the independent testing datasets were
illustrated in Supplementary Figure S1.

Table 2. Performance comparison on the D1_Train and D1_Test datasets.

Validation Methods ACC SN SP MCC

Jackknife CV

Feng et al.’s method [19] 0.792 0.758 0.808 0.546
PVPred 0.850 0.758 0.894 0.655

PVP-SVM 0.870 0.737 0.933 0.695
iPVP-MCV 0.879 0.778 0.928 0.720

Independent test

PVPred 0.713 0.600 0.765 0.357
Tan et al.’s method [21] 0.755 0.700 0.781 0.464

PVPred-SCM 0.777 0.767 0.781 0.523
PVP-SVM 0.798 0.667 0.859 0.531
iPVP-MCV 0.840 0.667 0.922 0.621

Table 3. Performance comparison on the D2_Train and D2_Test datasets.

Validation Methods ACC SN SP MCC

10-fold CV
Meta-iPVP 0.846 0.860 0.832 0.698
iPVP-MCV 0.864 0.852 0.876 0.728

Independent test

PVPred 0.730 0.892 0.663 0.505
PVP-SVM 0.746 0.816 0.701 0.505

PVPred-SCM 0.714 0.745 0.690 0.432
Meta-iPVP 0.817 0.889 0.746 0.642
iPVP-MCV 0.833 0.889 0.778 0.671
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As shown in Table 2, the proposed iPVP-MCV model, together with the PVP-SVM
model, exhibited the best performance with the ACC value higher than 0.87, the SP value
better than 0.92, and the MCC value near or greater than 0.70 during the jackknife test on
the D1_Train dataset. It is worth mentioning that the PVP-SVM predictor first extracted
multiple features, including AAC, ATC, CTD, DPC, and PCP, to train an SVM model
and then employed a feature selection protocol to remove the noisy features and enhance
the predictive ability. Unlike the PVP-SVM predictor, our method utilized the majority
voting strategy to improve the performance of base classifiers. The comparison results
on the D1_Test dataset also validated the feasibility and effectiveness of two methods for
the prediction of PVPs. In particular, the iPVP-MCV model achieved the highest ACC
(0.840), SP (0.922), and MCC (0.621). Additionally, the best SN value was reached by the
PVPred-SCM model, which adopted the scoring card method in conjunction with DPC to
identify the PVPs.

To further evaluate the robustness of our method, two larger training and testing
datasets were adopted to compare the iPVP-MCV method with the recent Meta-iPVP
method and other existing tools. From Table 3, our model was slightly superior to the
Meta-iPVP model in terms of ACC, SP, and MCC not only on the 10-fold CV but also on
the independent test. The SN values of the two models were also level pegging. It should
be noted that the Meta-iPVP model combined seven sequence-based feature encodings
and four machine learning algorithms to construct a meta-predictor. These experiment
results indicated that ensemble learning methods could indeed obtain better predictive
performance than those based on the single feature encoding or the individual classifier.
Additionally, our method showed substantial improvements for identifying PVPs, which
may be attributed to the helpful evolutionary information extracted from the PSSM profile
and the efficient multi-classifier voting technique. We anticipated that our method could
become a useful tool or at least play a complementary role to existing methods for increasing
the annotation levels of PVPs.

4. Conclusions

The medical and commercial value of PVPs has motivated the development of com-
putational tools that facilitate the accurate annotation of PVPs based on their protein
sequences. In this study, we proposed an ensemble model iPVP-MCV to further enhance
the predictive accuracy of PVPs by using a multi-classifier voting strategy combined with
evolutionary features extracted from the PSSM profile. First, three types of feature de-
scriptors were designed to characterize all the PVPs and non-PVPs from the working
datasets, including PSSM-AAC, PSSM-composition, and DP-PSSM. Second, a set of base-
line models were trained based on each type of feature descriptor. Third, iPVP-MCV
integrated the outputs of these baseline models to perform the prediction of PVPs by
using the majority voting strategy. Finally, both the CV and the independent test were
adopted to verify the performance of iPVP-MCV on the two benchmark datasets. The
comparison results with the existing tools demonstrated that the proposed method was
efficient, robust, and promising for the annotation of PVPs and could serve as an alternative
tool to identify putative PVPs. The source code and all the datasets are freely available at
https://github.com/taigangliu/iPVP-MCV, accessed on 14 August 2021. In the future, we
will develop a user-friendly web server for the public use.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.339
0/sym13081506/s1, Table S1: The performance of DP-PSSM with different α on the D1_Train dataset
using the 10-fold CV, Table S2: Prediction comparison on the D1_Train and D2_Train datasets by using
the 10-fold CV and the jackknife CV, Figure S1: The ROC curves of iPVP-MCV on the independent
testing datasets.
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