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Abstract: In a Hadamard manifold, let the VIP and SVI represent a variational inequality problem
and a system of variational inequalities, respectively, where the SVI consists of two variational
inequalities which are of symmetric structure mutually. This article designs two parallel algorithms
to solve the SVI via the subgradient extragradient approach, where each algorithm consists of two
parts which are of symmetric structure mutually. It is proven that, if the underlying vector fields are
of monotonicity, then the sequences constructed by these algorithms converge to a solution of the
SVI. We also discuss applications of these algorithms for approximating solutions to the VIP. Our
theorems complement some recent and important ones in the literature.
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1. Introduction

Suppose that the operator F is a self-mapping on a real Hilbert space (H, 〈·, ·〉). Let the
set C ⊂ H be nonempty, convex, and closed. Consider the classical variational inequality
problem (VIP) of finding a point z̄ ∈ C s.t.:

〈Fz̄, x− z̄〉 ≥ 0 ∀x ∈ C. (1)

It is well known that variational inequalities like VIP (1) have played an important
role in the study of economics, transportation, mathematical programming, engineering
mechanics, etc. Let F be L-Lipschitzian with constant L > 0. Given ` ∈ (0, 1

L ). In 1976,
Korpelevich’s extragradient rule was first introduced in [1] for solving VIP (1). For any
initial v0 ∈ C, let the sequence {vl} be generated by{

zl = PC(vl − `Fvl),
vl+1 = PC(vl − `Fzl) ∀l ≥ 0,

(2)

where PC is the metric projection of H onto C. To the most of our knowledge, Korpelevich’s
extragradient rule has become one of the best effective numerical methods for the VIP and
related optimization problems. Moreover, many authors improved it in various kinds of
ways; see, e.g., [2–11] and references therein, to name but a few.

In 2008, Ceng et al. [8] considered the following system of variational inequalities
(SVI): find (p∗, q∗) ∈ C× C s.t.{

〈p∗ − q∗ + `1F1q∗, p− p∗〉 ≥ 0 ∀p ∈ C,
〈q∗ − p∗ + `2F2 p∗, q− q∗〉 ≥ 0 ∀q ∈ C,

(3)

Symmetry 2021, 13, 1496. https://doi.org/10.3390/sym13081496 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://doi.org/10.3390/sym13081496
https://doi.org/10.3390/sym13081496
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13081496
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13081496?type=check_update&version=2


Symmetry 2021, 13, 1496 2 of 18

where Fk is a self-mapping on H and `k is a positive constant for k = 1, 2. It is clear that the
SVI (3) consists of two variational inequalities which are of symmetric structure mutually.
It is worth mentioning that the SVI (3) has been transformed into the following fixed-point
problem (FPP).

Lemma 1 (see [8], [Lemma 2.1]). A pair (p∗, q∗) ∈ C× C, is a solution of SVI (3) if and only
if p∗ is a fixed point of the mapping G := PC(I − `1F1)PC(I − `2F2), i.e., p∗ ∈ Fix(G), where
q∗ = PC(I − `2F2)p∗.

In terms of Lemma 1, Ceng et al. [8] suggested and analyzed a relaxed extragradient
algorithm for solving SVI (3). In 2011, the subgradient extragradient rule was first proposed
in [6] for solving VIP (1), where the second projection onto C is replaced by the projection
onto a half-space: 

ql = PC(pl − ξFpl),
Cl = {y ∈ H : 〈pl − ξFpl − ql , y− ql〉 ≤ 0},
pl+1 = PCl (pl − ξFql) ∀l ≥ 0,

with constant ξ ∈ (0, 1
L ). The above rule is more advantageous and more subtle than the

rule (2) in the case when C is a feasible set with a complex structure and the calculation of
projection onto C is oppressively time-squandering.

In 2018, Yang et al. [12] designed the modified subgradient extragradient rule for
solving VIP (1). For any given λ0 > 0, u0 ∈ H and µ ∈ (0, 1), let the sequences {ul} and
{vl} be generated by

vl = PC(ul − ςl Ful),
Cl = {y ∈ H : 〈ul − ςl Ful − vl , y− vl〉 ≤ 0},
ul+1 = PCl (ul − ςl Fvl) ∀l ≥ 0,

where ςl+1 is chosen as

ςl+1 =

{
min{ µ(‖ul−vl‖2+‖ul+1−vl‖2)

2〈Ful−Fvl ,ul+1−vl〉
, ςl}, if 〈Ful − Fvl , ul+1 − vl〉 > 0,

ςl , otherwise.

It was proven in [12] that {ul} and {vl} converge weakly to a solution of VIP (1).
On the other hand, suppose that C is a nonempty, convex and closed subset of a

Hadamard manifoldM, and A :M→ TM is a vector field, that is, Au ∈ TuM∀u ∈ M.
In 2003, Németh [13] introduced the new VIP of finding u∗ ∈ C s.t.:

〈Au∗, exp−1
u∗ u〉 ≥ 0 ∀u ∈ C, (4)

where exp−1 is the inverse of an exponential map. The solution set of VIP (4) is denoted by
S. Subsequently, some rules and methods are extended from Euclidean spaces to Rieman-
nian manifolds because of some important advantages of the extension; see, e.g., [14–17].
Furthermore, inspired by the SVI (3) and the multiobjective optimization problem in [17],
Ceng et al. [18] introduced a system of multiobjective optimization problems (SMOP) in a
Hadamard manifold and invented a parallel proximal point rule for solving the SMOP.

It is remarkable that the research works on the algorithms for VIP (4) are mainly
focused on a proximal point algorithm [19] and Korpelevich’s extragradient rule [20]. Very
recently, Chen et al. [9] suggested the modified Tseng’s extragradient method to solve
VIP (4). Moreover, their results gave an affirmative answer to the open question put forth
in [21].
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Let C be a nonempty closed convex subset of a Hadamard manifoldM, and Ak :M→
TM be a vector field for k = 1, 2, i.e., Aku ∈ TuM∀u ∈ M. According to problems (3) and
(4), Ceng et al. [22] introduced the new SVI of finding (u∗, v∗) ∈ C× C s.t.{

〈exp−1
v∗ u∗ + µ1 A1v∗, exp−1

u∗ u〉 ≥ 0 ∀u ∈ C,
〈exp−1

u∗ v∗ + µ2 A2u∗, exp−1
v∗ v〉 ≥ 0 ∀v ∈ C,

(5)

where constants µ1, µ2 ∈ (0, ∞), and exp−1 is the inverse of exponential map. In particular,
if A1 = A2 = A and u∗ = v∗, then SVI (5) reduces to VIP (4).

In this paper, we design two parallel algorithms to solve the SVI (5) via the subgradient
extragradient approach, where each algorithm consists of two parts which have a mutually
symmetric structure. It is proven that, if the underlying vector fields are of monotonicity,
then the sequences constructed by these algorithms converge to a solution of the SVI (5).
We also discuss applications of these algorithms to the approximation of solutions to the
VIP (4). Our results improve and extend the corresponding results announced in [8,9,12,22].

The remainder of the paper is arranged below. Some preliminary concepts, notations,
important lemmas, and propositions in Riemannian geometry are recalled in Section 2. It is
remarkable that one can find most of them in every textbook about Riemannian geometry
(e.g., [23]). Two new parallel algorithms based on the modified subgradient extragradient
approach [12] are proposed for SVI (5), and some convergence theorems are proved in
Section 3.

2. Preliminaries

LetM indicate a simply connected and finite-dimensional differentiable manifold.
A differentiable manifoldM endowed with a Riemannian metric is called a Riemannian
manifold. We denote by TυM the tangent space of M at υ ∈ M, by 〈·, ·〉υ the scalar
product on TυM with the associated norm ‖ · ‖υ, where the subscript υ is sometimes
omitted, and by TM := ∪υ∈MTυM the tangent bundle ofM, which is actually a manifold.
Let γ : [a, b]→M be a piecewise smooth curve joining υ to ω (i.e., γ(a) = υ and γ(b) = ω),
we define the length l(γ) =

∫ b
a ‖γ

′(t)‖dt. Then, the Riemannian distance d(υ, ω), which
induces the original topology onM, is defined by minimizing this length over the set of
all such curves joining υ to ω.

Suppose that the Levi–Civita connection ∇ is associated with the Riemannian metric
and the smooth curve γ lies inM. A vector field X is referred to as being parallel along γ
iff ∇γ′X = 0. In case γ′ itself is parallel along γ, γ is known as a geodesic, and, in this case,
‖γ′‖ is constant. It is remarkable that this notion is different from the corresponding one in
the calculus of variations—in particular, if ‖γ′‖ = 1, γ is referred to as being normalized.
A geodesic joining υ to ω inM is called minimal if its length equals d(υ, ω).

LetM be a Riemannian manifold. M is referred to as being complete iff for each
υ ∈ M all geodesics emanating from υ are defined for all t ∈ R := (−∞, ∞). Using the
Hopf–Rinow Theorem, we infer that, ifM is complete, each pair of points inM can be
joined by a minimal geodesic. In the meantime, (M, d) becomes a complete metric space
and bounded closed subsets are compact ones inM.

We denote by Pγ,.,. the parallel transport on the tangent bundle TM along γ w.r.t. ∇,
defined by

Pγ,γ(b),γ(a)(υ) = V(γ(b)) ∀a, b ∈ R, υ ∈ Tγ(a)M,

where V is the unique vector field such that ∇γ′(t)V = 0 for each t and V(γ(a)) = υ. Then,
for any a, b ∈ R, Pγ,γ(b),γ(a) is an isometry from Tγ(a)M to Tγ(b)M. For the convenience,
we will write Pω,υ instead of Pγ,ω,υ in the case where γ is a minimal geodesic joining υ to ω.

Let M be complete. An exponential map expυ : TυM → M at υ is defined by
expυ ω = γω(1, υ) for each ω ∈ TυM, where γ(·) = γω(·, υ) is the geodesic starting at υ
with velocity υ. Then, expυ tω = γω(t, υ) for each real number t. It is worth emphasizing
that the mapping expυ is differentiable on TυM for each υ ∈ M. The exponential map has
inverse exp−1

υ :M→ TυM, i.e., φ = exp−1
υ ω, and the geodesic is the unique shortest path



Symmetry 2021, 13, 1496 4 of 18

with ‖ exp−1
υ ω‖ = ‖ exp−1

ω υ‖ = d(υ, ω), where d(υ, ω) is the geodesic distance between υ
and ω inM.

A set D ⊂M is referred to as being convex if, for every y, z ∈ K, the geodesic joining
y to z lies in D, i.e., if γ : [a, b]→M is a geodesic satisfying y = γ(a) and z = γ(b), then
γ((1− t)a + tb) ∈ D ∀t ∈ [0, 1]. From now on, we denote by D a nonempty closed convex
set inM, and by PD the projection ofM onto D, i.e.,

PD(y) = {y0 ∈ D : d(y, y0) ≤ d(y, z) for all z ∈ D} ∀y ∈ M.

A real-valued function f defined on M is referred to as being convex if, for each
geodesic γ ofM, the composite function f ◦ γ : R→ R is convex, i.e.,

( f ◦ γ)(sa + (1− s)b) ≤ s( f ◦ γ)(a) + (1− s)( f ◦ γ)(b) ∀a, b ∈ R, s ∈ [0, 1].

A Hadamard manifoldM is a complete simply connected Riemannian manifold of
non-positive sectional curvature. IfM is a Hadamard manifold, then exp−1

υ :M→ TυM
is a diffeomorphism for each υ ∈ M and, if υ, ω ∈ M, then there exists a unique minimal
geodesic joining υ to ω. Next, we always assume thatM is a Hadamard manifold.

Proposition 1 (see [23]). Let υ ∈ M. Then, expυ : TυM→M is a diffeomorphism, and, for
any points υ, ω ∈ M, there exists a unique normalized geodesic joining υ to ω, which is actually a
minimal geodesic.

The above proposition shows thatM is diffeomorphic to the Euclidean space Rm.
Then,M has the same topology and differential structure as Rm. Moreover, Hadamard
manifolds and Euclidean spaces have some similar geometrical properties.

Definition 1 (see [20]). Let X (M) be the set of all single-valued vector fields V :M→ TM s.t.
V(υ) ∈ TυM∀υ ∈ M and the domainD(V) of V is defined byD(V) = {υ ∈ M : V(υ) 6= ∅}.
Let V ∈ X (M). Then, V is referred to as being pseudomonotone if, for each υ, ω ∈ D(V),

〈V(υ), exp−1
υ ω〉 ≥ 0 ⇒ 〈V(ω), exp−1

ω υ〉 ≤ 0.

A geodesic triangle ∆(p1, p2, p3) of a Riemannian manifold is a set consisting of three
points p1, p2 and p3, and three minimal geodesics γi joining pi to pi+1, with i = 1, 2, 3(mod3).

Proposition 2 (see [23] (Comparison theorem for triangles)). Suppose that ∆(p1, p2, p3) is
a geodesic triangle. Ones denote, for each i = 1, 2, 3(mod3), by γi : [0, li] → M, the geodesic
joining pi to pi+1, and put li = L(γi), and αi := ∠(γ′i(0),−γ′i−1(li−1)). Then,

(i) α1 + α2 + α3 ≤ π;
(ii) l2

i + l2
i+1 − 2lili+1 cos αi+1 ≤ l2

i−1;
(iii) li+1 cos αi+2 + li cos αi ≥ li+2.
According to the distance and the exponential map, inequality (ii) in Proposition 2 can be

rewritten as

d2(pi, pi+1) + d2(pi+1, pi+2)− 2〈exp−1
pi+1

pi, exp−1
pi+1

pi+2〉 ≤ d2(pi−1, pi),

owing to the fact that

〈exp−1
pi+1

pi, exp−1
pi+1

pi+2〉 = d(pi, pi+1)d(pi+1, pi+2) cos αi+1. (6)

Lemma 2 (see [24]). Let u0 ∈ M and {un} ⊂ M s.t. un → u0. Then, the following holds:
(i) exp−1

un
v→ exp−1

u0
v and exp−1

v un → exp−1
v u0 for all v ∈ M.

(ii) If yn ∈ TunM and yn → y0, then y0 ∈ Tu0M.
(iii) Given pn, qn ∈ TunM and p0, q0 ∈ Tu0M, if pn → p0 and qn → q0, then 〈pn, qn〉 →

〈p0, q0〉.
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(iv) For each υ ∈ Tu0 M, the map F : M → TM, defined by F(u) = Pu,u0 υ ∀u ∈ M, is
continuous onM.

For each u ∈ M and C ⊂ M, there is only a point u0 ∈ C satisfying d(u, u0) ≤
d(u, v) ∀v ∈ C. Then, the unique point is known as the projection of u onto the convex set
C, denoted by PC(u).

Proposition 3 (see [25]). For each u ∈ M, the following inequality holds:

〈exp−1
PC(u)

u, exp−1
PC(u)

v〉 ≤ 0 ∀v ∈ C.

Proposition 4 (see [20]). Let C ⊂ M be closed and convex. Then, the metric projection PC is
nonexpansive, i.e., d(PC(p), PC(q)) ≤ d(p, q) ∀p, q ∈ M.

Lemma 3 (see [21]). Assume thatM is of constant curvature, u ∈ M and $ ∈ TuM. Then,
Lu,$ := {v ∈ M : 〈exp−1

u v, $〉 ≤ 0} is convex.

Lemma 4 (see [20]). Suppose that C is a nonempty closed convex subset of a Hadamard manifold
M. Then, d2(PC(p), q) ≤ d2(p, q)− d2(p, PC(p)) ∀p ∈ M, q ∈ C.

Lemma 5 (see [13]). Let A be a continuous and monotone vector field on C, given z ∈ C. Then,
〈Az, exp−1

z υ〉 ≥ 0 ∀υ ∈ C ⇔ 〈Aυ, exp−1
υ z〉 ≤ 0 ∀υ ∈ C.

It is easy from Proposition 3 to see that the following hold:

Proposition 5 (see [20]). The following assertions are equivalent:
(i) u∗ solves the VIP (4);
(ii) u∗ = PC(expu∗(−β0 Au∗)) for some β0 > 0;
(iii) u∗ = PC(expu∗(−βAu∗)) for all β > 0;
(iv) r(u∗, β) = 0, with r(u∗, β) = exp−1

u∗ [PC(expu∗(−βAu∗))].

The following two lemmas play a crucial role in the convergence derivation of
the algorithms.

Lemma 6 (see [26]). Suppose that ∆(u, v, w) is a geodesic triangle inM, a Hadamard manifold.
Then, ∃u′, v′, w′ ∈ R2 s.t.

d(u, v) = ‖u′ − v′‖, d(v, w) = ‖v′ − w′‖ and d(w, u) = ‖w′ − u′‖.

The triangle ∆(u′, v′, w′) is called the comparison triangle of ∆(u, v, w), which is unique up
to isometry ofM. The following result can be proved by using element geometry. This is also a
direct application of the Alexandrov’s Lemma in R2 (see [27]). It explains the relationship between
two triangles ∆(u, v, w) and ∆(u′, v′, w′) involving angles and distances between points.

Lemma 7 (see [28]). Let ∆(u, v, w) be a geodesic triangle in a Hadamard manifold M and
∆(u′, v′, w′) its comparison triangle.

(i) Assume that α, β, γ (resp., α′, β′, γ′) are three angles of ∆(u, v, w) (resp., ∆(u′, v′, w′)) at
three vertices u, v, w (resp., u′, v′, w′). Then, the inequalities hold: α ≤ α′, β ≤ β′ and γ ≤ γ′.

(ii) Assume that the point z lies in the geodesic joining u to v and z′ is its comparison point in
the interval [u′, v′] satisfying d(z, u) = ‖z′ − u′‖ and d(z, v) = ‖z′ − v′‖. Then, the inequality
holds: d(z, w) ≤ ‖z′ − w′‖.
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Definition 2 (see [9]). A vector field f defined on a complete Riemannian manifoldM is referred
to as being Lipschitzian if ∃L(M) = L > 0 s.t.

d( f (υ), f (ω)) ≤ Ld(υ, ω) ∀υ, ω ∈ M. (7)

Besides the above concept, if for each υ0 ∈ M, ∃L(υ0) > 0 and ∃σ = σ(υ0) > 0 s.t. (7)
holds, with L = L(υ0), for all υ, ω ∈ Bσ(υ0) := {z ∈ M : d(υ0, z) < δ}, then f is said to be
locally Lipschitzian.

Finally, by the similar inference to that of transforming SVI (3) into the FPP in [8], we
obtain the following.

Lemma 8 (see [22], [Lemma 5]). A pair (p∗, q∗) ∈ C× C is a solution of SVI (5) if and only if
p∗ is a fixed point of the mapping G := PC(expI(−µ1 A1))PC(expI(−µ2 A2)), i.e., p∗ ∈ Fix(G),
where q∗ = PC(expI(−µ2 A2))p∗.

3. Algorithms and Convergence Criteria

In this section, inspired by the algorithms in [9], we suggest two new parallel algo-
rithms for solving VIP (5) on Hadamard manifolds via the modified subgradient extragra-
dient approach in [12].

From now on, the following assumptions are always adopted:

Hypothesis 1 (H1). The solution set of SVI (5), denoted by S , is nonempty.

Hypothesis 2 (H2). A1, A2 :M→ TM are vector fields, i.e., Aku ∈ TuM∀u ∈ M for k = 1, 2.)

Hypothesis 3 (H3). A1 and A2 both are monotone, i.e., for k = 1, 2, 〈Akx− Aky, exp−1
y x〉 ≥

0 ∀x, y ∈ M.

Hypothesis 4 (H4). A1 and A2 both are Lipschitzian with constants L1, L2 > 0, i.e., for k =
1, 2, ∃Lk > 0 s.t.

d(Akx, Aky) ≤ Lkd(x, y) ∀x, y ∈ M.

Next, we recall the notion of Fejér convergence and related result.

Definition 3 (see [29]). Suppose that X is a complete metric space and C ⊂ X is a nonempty
set. Then, a sequence {xl} ⊂ X is referred to as being Fejér convergent to C, if d(xl+1, y) ≤
d(xl , y) ∀y ∈ C, l ≥ 0.

Proposition 6 (see [24]). Suppose that X is a complete metric space and C ⊂ X is a nonempty
set. Let {xl} ⊂ X be Fejér convergent to C and assume that any cluster point of {xl} belongs in C.
Then, {xl} converges to a point of C.

3.1. The First Parallel Algorithm

Algorithm 1 is the first parallel algorithm for the SVI.
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Algorithm 1: The first parallel algorithm for the SVI.

Initialization: Given x0 ∈ M arbitrarily. Let µk,0 > 0 and λk ∈ (0, 1) for k = 1, 2.
Iteration Steps: Compute xn+1 below:
Step 1. Compute{

z̃n = PC(expxn
(−µ2,n A2xn)),

yn = PC(expzn
(−µ1,n A1zn)).

Step 2. Construct{
C2,n = {x ∈ M : 〈exp−1

z̃n
xn − µ2,n A2xn, exp−1

z̃n
x〉 ≤ 0},

C1,n = {x ∈ M : 〈exp−1
yn

zn − µ1,n A1zn, exp−1
yn

x〉 ≤ 0},
and calculate{

zn = PC2,n(expxn
(−µ2,n A2z̃n)),

xn+1 = PC1,n(expzn
(−µ1,n A1yn)).

Step 3. Calculate
µ2,n+1 =

 min{ λ2(d2(xn ,z̃n)+d2(zn ,z̃n))

2〈A2xn−A2 z̃n ,exp−1
z̃n zn〉

, µ2,n} if 〈A2xn − A2z̃n, exp−1
z̃n

zn〉 > 0,

µ2,n otherwise.

µ1,n+1 =

{
min{ λ1(d2(zn ,yn))+d2(xn+1,yn)

2〈A1zn−A1yn ,exp−1
yn xn+1〉

, µ1,n} if 〈A1zn − A1yn, exp−1
yn

xn+1〉 > 0,

µ1,n otherwise.

(8)

Again, put n := n + 1 and go to Step 1.

In particular, putting A1 = A2 = A in Algorithm 1, we obtain the following algoritm
(Algorithm 2) for solving VIP (4).

Algorithm 2: The first parallel algorithm for the VIP.

Initialization: Given x0 ∈ M arbitrarily, let µk,0 > 0 and λk ∈ (0, 1) for k = 1, 2.
Iteration Steps: Compute xn+1 below:
Step 1. Compute{

z̃n = PC(expxn
(−µ2,n Axn)),

yn = PC(expzn
(−µ1,n Azn)).

Step 2. Construct{
C2,n = {x ∈ M : 〈exp−1

z̃n
xn − µ2,n Axn, exp−1

z̃n
x〉 ≤ 0},

C1,n = {x ∈ M : 〈exp−1
yn

zn − µ1,n Azn, exp−1
yn

x〉 ≤ 0},
and calculate{

zn = PC2,n(expxn
(−µ2,n Az̃n)),

xn+1 = PC1,n(expzn
(−µ1,n Ayn)).

Step 3. Calculate
µ2,n+1 =

 min{ λ2(d2(xn ,z̃n)+d2(zn ,z̃n))

2〈Axn−Az̃n ,exp−1
z̃n zn〉

, µ2,n} if 〈Axn − Az̃n, exp−1
z̃n

zn〉 > 0,

µ2,n otherwise.

µ1,n+1 =

{
min{ λ1(d2(zn ,yn))+d2(xn+1,yn)

2〈Azn−Ayn ,exp−1
yn xn+1〉

, µ1,n} if 〈Azn − Ayn, exp−1
yn

xn+1〉 > 0,

µ1,n otherwise.
Again, put n := n + 1 and go to Step 1.

Lemma 9. For k = 1, 2, the sequence {µk,n} generated by Algorithm 1 is a monotonically
decreasing one with lower bound min{ λk

Lk
, µk,0}.

Proof. It is clear that {µk,n} is a monotonically decreasing sequence for k = 1, 2. Since
Ak is a Lipschitzian mapping with constant Lk > 0 for k = 1, 2, in the case of 〈A2xn −
A2z̃n, exp−1

z̃n
zn〉 > 0, we have

λ2(d2(xn, z̃n) + d2(zn, z̃n))

2〈A2xn − A2z̃n, exp−1
z̃n

zn〉
≥ 2λ2d(xn, z̃n)d(zn, z̃n))

2d(A2xn, A2z̃n)d(zn, z̃n)
≥ λ2d(xn, z̃n)

L2d(xn, z̃n)
=

λ2

L2
. (9)
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Thus, the sequence {µ2,n} has the lower bound min{ λ2
L2

, µ2,0}. In a similar way, we

can show that {µ1,n} has the lower bound min{ λ1
L1

, µ1,0}.

Corollary 1. For k = 1, 2, the sequence {µk,n} generated by Algorithm 2 is a monotonically
decreasing one with lower bound min{ λk

L , µk,0}.

Lemma 10. Let {xn} and {zn} be the sequences generated by Algorithm 1. Then, the sequences
{xn} and {zn} are bounded, provided for all (p, q) ∈ S and n ≥ n0,

(1− µ2,n
µ2,n+1

λ2)d2(xn, z̃n) + (1− µ1,n
µ1,n+1

λ1)d2(zn, yn)

+ 2µ2,n〈A2 p, exp−1
p z̃n〉+ 2µ1,n〈A1 p, exp−1

p yn〉 ≥ 0,
(1− µ2,n+1

µ2,n+2
λ2)d2(xn+1, z̃n+1) + (1− µ1,n

µ1,n+1
λ1)d2(zn, yn)

+ 2µ2,n+1〈A2q, exp−1
q z̃n+1〉+ 2µ1,n〈A1q, exp−1

q yn〉 ≥ 0.

Proof. Take a fixed (p, q) ∈ C × C arbitrarily. Then, from the monotonicity of A2, we
get 〈A2z̃n − A2 p, exp−1

p z̃n〉 ≥ 0, which hence yields 〈A2z̃n, exp−1
p z̃n〉 ≥ 〈A2 p, exp−1

p z̃n〉.
That is, 〈A2z̃n, exp−1

zn
z̃n + exp−1

p zn〉 ≥ 〈A2 p, exp−1
p z̃n〉 ∀n ≥ 0. Thus, it immediately

follows that

〈A2z̃n, exp−1
zn

p〉 ≤ 〈A2z̃n, exp−1
zn

z̃n〉 − 〈A2 p, exp−1
p z̃n〉 ∀n ≥ 0. (10)

By the definition of C2,n, we have 〈exp−1
z̃n

xn − µ2,n A2xn, exp−1
z̃n

zn〉 ≤ 0. Then,

〈exp−1
z̃n

xn − µ2,n A2z̃n, exp−1
z̃n

zn〉
= 〈exp−1

z̃n
xn − µ2,n A2xn, exp−1

z̃n
zn〉+ µ2,n〈A2xn − A2z̃n, exp−1

z̃n
zn〉

≤ µ2,n〈A2xn − A2z̃n, exp−1
z̃n

zn〉.
(11)

Now, by fixing n ≥ 0, we consider the geodesic triangle ∆(xn, z̃n, p) and its comparison
triangle ∆(x′n, z̃′n, p′). Then, d(xn, p) = d(x′n, p′), d(z̃n, p) = d(z̃′n, p′), and d(xn, z̃n) =
d(x′n, z̃′n). Recall from Algorithm 1 that zn = PC2,n(expxn

(−µ2,n A2z̃n)). The comparison
point of z′n is PC2,n(x′n − µ2,n A2z̃′n). Thus, in ∆(x′n, z̃′n, p′), (10) and (11) can be rewritten as

〈A2z̃′n, p′ − z′n〉+ 〈A2 p′, z̃′n − p′〉 ≤ 〈A2z̃′n, z̃′n − z′n〉, (12)

〈x′n − µ2,n A2z̃′n − z̃′n, z′n − z̃′n〉 ≤ µ2,n〈A2x′n − A2z̃′n, z′n − z̃′n〉. (13)

Then, by Lemma 7 (ii), (10) and Lemma 4, we have

d2(zn, p) ≤ d2(z′n, p′) = ‖PC2,n(x′n − µ2,n A2z̃′n)− p′‖2

≤ ‖x′n − µ2,n A2z̃′n − p′‖2 − ‖x′n − µ2,n A2z̃′n − z′n‖2

= ‖x′n − p′‖2 − ‖x′n − z′n‖2 + 2µ2,n〈A2z̃′n, p′ − z′n〉
≤ ‖x′n − p′‖2 − ‖x′n − z′n‖2 + 2µ2,n(〈A2z̃′n, z̃′n − z′n〉 − 〈A2 p′, z̃′n − p′〉)
= ‖x′n − p′‖2 − ‖x′n − z̃′n + z̃′n − z′n‖2 + 2µ2,n(〈A2z̃′n, z̃′n − z′n〉 − 〈A2 p′, z̃′n − p′〉)
= ‖x′n − p′‖2 − ‖x′n − z̃′n‖2 − ‖z̃′n − z′n‖2

+ 2〈x′n − µ2,n A2z̃′n − z̃′n, z′n − z̃′n〉 − 2µ2,n〈A2 p′, z̃′n − p′〉
= d2(x′n, p′)− d2(x′n, z̃′n)− d2(z̃′n, z′n)
+ 2〈x′n − µ2,n A2z̃′n − z̃′n, z′n − z̃′n〉 − 2µ2,n〈A2 p′, z̃′n − p′〉

= d2(xn, p)− d2(xn, z̃n)− d2(z̃n, zn)
+ 2〈x′n − µ2,n A2z̃′n − z̃′n, z′n − z̃′n〉 − 2µ2,n〈A2 p′, z̃′n − p′〉.

(14)

Consider the geodesic triangle ∆(a, b, c) and its comparison triangle ∆(a′, b′, c′). Then,
set a = exp−1

z̃n
xn − µ2,n A2z̃n and b = exp−1

z̃n
zn, (resp., a′ = x′n − µ2,n A2z̃′n − z̃′n and
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b′ = z′n − z̃′n). Let β and β′ denote the angles at c and c′, respectively. Then, β ≤ β′

by Lemma 7 and so cos β′ ≤ cos β. Then, by Proposition 2 and Lemma 6, we have

〈a′, b′〉 = ‖a′‖‖b′‖ cos β′ ≤ ‖a′‖‖b′‖ cos β = ‖a‖‖b‖ cos β = 〈a, b〉.

Hence,
〈〈x′n − µ2,n A2z̃′n − z̃′n, z′n − z̃′n〉 ≤ 〈exp−1

z̃n
xn − µ2,n A2z̃n, exp−1

z̃n
zn〉. (15)

Similarly, we get 〈−2µ2,n A2 p′, z̃′n− p′〉 ≤ 〈−2µ2,n A2 p, exp−1
p z̃n〉. This together with (14)

and (15) imply that

d2(zn, p) ≤ d2(xn, p)− d2(xn, z̃n)− d2(z̃n, zn)
+ 2〈x′n − µ2,n A2z̃′n − z̃′n, z′n − z̃′n〉 − 2µ2,n〈A2 p′, z̃′n − p′〉
≤ d2(xn, p)− d2(xn, z̃n)− d2(z̃n, zn)

+ 〈exp−1
z̃n

xn − µ2,n A2z̃n, exp−1
z̃n

zn〉 − 2µ2,n〈A2 p, exp−1
p z̃n〉.

(16)

Combining (11) and (16), we get

d2(zn, p) ≤ d2(xn, p)− d2(xn, z̃n)− d2(z̃n, zn)

+ 〈exp−1
z̃n

xn − µ2,n A2z̃n, exp−1
z̃n

zn〉 − 2µ2,n〈A2 p, exp−1
p z̃n〉

≤ d2(xn, p)− d2(xn, z̃n)− d2(z̃n, zn)

+ 2µ2,n〈A2xn − A2z̃n, exp−1
z̃n

zn〉 − 2µ2,n〈A2 p, exp−1
p z̃n〉

= d2(xn, p)− d2(xn, z̃n)− d2(z̃n, zn)

+ 2 µ2,n
µ2,n+1

µ2,n+1〈A2xn − A2z̃n, exp−1
z̃n

zn〉 − 2µ2,n〈A2 p, exp−1
p z̃n〉.

(17)

By the definition of µ2,n, if 〈A2xn − A2z̃n, exp−1
z̃n

zn〉 > 0, then

2
µ2,n

µ2,n+1
µ2,n+1〈A2xn − A2z̃n, exp−1

z̃n
zn〉 ≤

µ2,n

µ2,n+1
λ2(d2(xn, z̃n) + d2(zn, z̃n));

in the case of 〈A2xn − A2z̃n, exp−1
z̃n

zn〉 ≤ 0, it is clear that

2
µ2,n

µ2,n+1
µ2,n+1〈A2xn − A2z̃n, exp−1

z̃n
zn〉 ≤ 0 ≤ µ2,n

µ2,n+1
λ2(d2(xn, z̃n) + d2(zn, z̃n)).

Thus,

d2(zn, p) ≤ d2(xn, p)− d2(xn, z̃n)− d2(z̃n, zn)
+

µ2,n
µ2,n+1

λ2(d2(xn, z̃n) + d2(zn, z̃n))− 2µ2,n〈A2 p, exp−1
p z̃n〉

= d2(xn, p)− (1− µ2,n
µ2,n+1

λ2)d2(xn, z̃n)− (1− µ2,n
µ2,n+1

λ2)d2(z̃n, zn)− 2µ2,n〈A2 p, exp−1
p z̃n〉.

(18)

In a similar way, we get

d2(xn+1, q)
≤ d2(zn, q)− (1− µ1,n

µ1,n+1
λ1)d2(zn, yn)− (1− µ1,n

µ1,n+1
λ1)d2(yn, xn+1)− 2µ1,n〈A1q, exp−1

q yn〉. (19)

Note that the limit limn→∞
µk,n

µk,n+1
λk = λk ∈ (0, 1) for k = 1, 2. Hence, there exists

n0 ≥ 0 such that µk,n
µk,n+1

λk ∈ (0, 1) ∀n ≥ n0 for k = 1, 2.
Next, we restrict (p, q) ∈ S . Then, substituting (18) for (19) with q := p, we obtain

that, for all n ≥ n0,

d2(xn+1, p) ≤ d2(xn, p)− (1− µ2,n
µ2,n+1

λ2)d2(z̃n, xn)− 2µ2,n〈A2 p, exp−1
p z̃n〉

− (1− µ1,n
µ1,n+1

λ1)d2(yn, zn)− 2µ1,n〈A1 p, exp−1
p yn〉

= d2(xn, p)− (1− µ2,n
µ2,n+1

λ2)d2(z̃n, xn)− (1− µ1,n
µ1,n+1

λ1)d2(yn, zn)

− 2µ2,n〈A2 p, exp−1
p z̃n〉 − 2µ1,n〈A1 p, exp−1

p yn〉.
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This, together with the assumptions, guarantees that d(xn+1, p) ≤ d(xn, p) ∀n ≥ n0.
Thus, the sequence {xn} is bounded.

In the same way, substituting (19) for (18) with n := n + 1 and p := q, we obtain that,
for all n ≥ n0,

d2(zn+1, q) ≤ d2(zn, q)− (1− µ1,n
µ1,n+1

λ1)d2(yn, zn)− 2µ1,n〈A1q, exp−1
q yn〉

− (1− µ2,n+1
µ2,n+2

λ2)d2(z̃n+1, xn+1)− 2µ2,n+1〈A2q, exp−1
q z̃n+1〉

= d2(zn, q)− (1− µ2,n+1
µ2,n+2

λ2)d2(z̃n+1, xn+1)− (1− µ1,n
µ1,n+1

λ1)d2(yn, zn)

− 2µ2,n+1〈A2q, exp−1
q z̃n+1〉 − 2µ1,n〈A1q, exp−1

q yn〉.

This, together with the assumptions, guarantees that d(zn+1, q) ≤ d(zn, q). Thus, the
sequence {zn} is bounded.

Corollary 2. Let the sequences {xn} and {zn} be generated by Algorithm 2. Then, {xn} and {zn}
both are bounded sequences.

Proof. We denote by S the solution set of VIP (4). Take a fixed p ∈ S arbitrarily. Notic-
ing A1 = A2 = A, we deduce from (18) and (19) that, for each n ≥ n0, d(xn+1, p) ≤
d(xn, p), d(zn+1, p) ≤ d(zn, p), and

d2(xn+1, p) ≤ d2(xn, p)− (1− µ2,n
µ2,n+1

λ2)d2(xn, z̃n)− (1− µ2,n
µ2,n+1

λ2)d2(z̃n, zn)

− (1− µ1,n
µ1,n+1

λ1)d2(zn, yn)− (1− µ1,n
µ1,n+1

λ1)d2(yn, xn+1).

Hence, {xn} and {zn} both are bounded sequences. Moreover, it is clear that, for all
n ≥ n0,

(1− µ2,n
µ2,n+1

λ2)d2(xn, z̃n) + (1− µ2,n
µ2,n+1

λ2)d2(z̃n, zn)

+ (1− µ1,n
µ1,n+1

λ1)d2(zn, yn) + (1− µ1,n
µ1,n+1

λ1)d2(yn, xn+1)

≤ d2(xn, p)− d2(xn+1, p).

Since limn→∞
µi,n

µi,n+1
λi = λi ∈ (0, 1) for i = 1, 2, we conclude that d(xn, z̃n) →

0, d(z̃n, zn)→ 0, d(zn, yn)→ 0 and d(yn, xn+1)→ 0 as n→ ∞.

Theorem 1. Let the sequences {xn} and {zn} be generated by Algorithm 1. Suppose that the
conditions in Lemma 10 hold. Then, {(xn, zn)} converges to a solution of SVI (5) provided
limn→∞{d(xn, yn) + d(zn, z̃n)} = 0.

Proof. First of all, by Lemma 9, we have µj := limn→∞ µj,n ≥ min{ λj
Lj

, µj,0} for j = 1, 2.

Moreover, by Lemma 10, we know that {zn} and {xn} both are bounded, and that, for all
n ≥ n0,

d(zn+1, q) ≤ d(zn, q) and d(xn+1, p) ≤ d(xn, p) ∀(p, q) ∈ S .

Noticing limn→∞{d(xn, yn) + d(zn, z̃n)} = 0 (due to the assumption), we deduce that
{z̃n} and {yn} both are bounded. We define the sets S1, S2 as follows:

S1 = {p ∈ C : ∃q ∈ C s.t. (p, q) ∈ S} and S2 = {q ∈ C : ∃p ∈ C s.t. (p, q) ∈ S}.

From Definition 3, we know that {xn} and {zn} are Fejér convergent to S1 and S2,
respectively. Let p̄ be a cluster point of {xn}. Then, there exists a subsequence {xnk} ⊂ {xn}
such that limk→∞ xnk = p̄. From the boundedness of {zn}, we might assume that znk → q̄
as k → ∞. Since limn→∞{d(xn, yn) + d(zn, z̃n)} = 0, we obtain that z̃nk → q̄ and ynk → p̄.
In addition, noticing {

z̃nk = PC(expxnk
(−µ2,nk A2xnk )),

ynk = PC(expznk
(−µ1,nk A1znk )),
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by Proposition 3, we infer that, for all x ∈ C,

0 ≤ 〈exp−1
xnk

z̃nk + µ2,nk A2xnk , exp−1
z̃nk

x〉
= 〈exp−1

xnk
z̃nk , exp−1

z̃nk
x〉+ µ2,nk 〈A2xnk , exp−1

z̃nk
x〉

= 〈exp−1
xnk

z̃nk , exp−1
z̃nk

x〉+ µ2,nk 〈A2xnk , exp−1
z̃nk

xnk 〉+ µ2,nk 〈A2xnk , exp−1
xnk

x〉,
(20)

and

0 ≤ 〈exp−1
znk

ynk + µ1,nk A1znk , exp−1
ynk

x〉
= 〈exp−1

znk
ynk , exp−1

ynk
x〉+ µ1,nk 〈A1znk , exp−1

ynk
x〉

= 〈exp−1
znk

ynk , exp−1
ynk

x〉+ µ1,nk 〈A1znk , exp−1
ynk

znk 〉+ µ1,nk 〈A1znk , exp−1
znk

x〉.
(21)

Note that limk→∞{d(xnk , ynk ) + d(znk , z̃nk )} = 0, the subsequences {ynk}, {z̃nk} are
bounded, and limn→∞ µj,n = µj > 0 for j = 1, 2. Letting k→ ∞, we take the limits in (20)
and (21) and hence get{

0 ≤ 〈exp−1
p̄ q̄, exp−1

q̄ x〉+ µ2〈A2 p̄, exp−1
q̄ p̄〉+ µ2〈A2 p̄, exp−1

p̄ x〉,
0 ≤ 〈exp−1

q̄ p̄, exp−1
p̄ x〉+ µ1〈A1q̄, exp−1

p̄ q̄〉+ µ1〈A1q̄, exp−1
q̄ x〉.

Therefore, {
〈exp−1

q̄ p̄ + µ1〈A1q̄, exp−1
p̄ x〉 ≥ 0 ∀x ∈ C,

〈exp−1
p̄ q̄ + µ2〈A2 p̄, exp−1

q̄ x〉 ≥ 0 ∀x ∈ C.
(22)

This leads to ( p̄, q̄) ∈ S , and hence p̄ ∈ S1. Thus, by Proposition 6, we obtain that
xn → p̄ as n→ ∞.

Next, let q̂ be a cluster point of {zn}. It is known that there exists a subsequence
{zmk} ⊂ {zn} such that limk→∞ zmk = q̂. Using the boundedness of {xn}, we might
assume that xmk → p̂ as k → ∞. Thanks to limn→∞{d(xn, yn) + d(zn, z̃n)} = 0, we obtain
that z̃mk → q̂ and ymk → p̂. Noticing{

z̃mk = PC(expxmk
(−µ2,mk A2xmk )),

ymk = PC(expzmk
(−µ1,mk A1zmk )),

by similar arguments to those of (22), we deduce that{
〈exp−1

q̂ p̂ + µ1〈A1q̂, exp−1
p̂ x〉 ≥ 0 ∀x ∈ C,

〈exp−1
p̂ q̂ + µ2〈A2 p̂, exp−1

q̂ x〉 ≥ 0 ∀x ∈ C.
(23)

This yields ( p̂, q̂) ∈ S , and hence q̂ ∈ S2. Thus, by Proposition 6, we obtain that
zn → q̂ as n→ ∞. Consequently, using the uniqueness of the limit, we infer that {(xn, zn)}
is convergent to a solution ( p̂, q̂) ∈ S of SVI (5).

Theorem 2. Suppose that the sequences {xn} and {zn} both are generated by Algorithm 2. Then,
{xn} and {zn} both converge to a solution of VIP (4).

Proof. Using Definition 3 and Corollary 2, we deduce that {zn} and {xn} both are Fejér
convergent to the same S. Let p̄ be a cluster point of {xn}. It is known that ∃{xnk} ⊂ {xn}
s.t. limk→∞ xnk = p̄. Then, using limk→∞ d(xnk , z̃nk ) = 0, we have limk→∞ z̃nk = p̄. Since
limk→∞ µ2,nk = µ2 and z̃nk = PC(expxnk

(−µ2,nk Axnk )), we obtain p̄ = PC(expp̄(−µ2 Ap̄)).
Hence, by Proposition 3, we get p̄ ∈ S. Thus, from Proposition 6, it follows that xn → p̄
as n → ∞. Similarly, we can infer that zn → q̄ as n → ∞ for some q̄ ∈ S. Using
limn→∞{d(xn, z̃n) + d(z̃n, zn)} = 0, we obtain the desired result.
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3.2. The Second Parallel Algorithm

Algorithm 3 is the second parallel algorithm for the SVI.

Algorithm 3: The second parallel algorithm for the SVI.
Initialization: Given x0, y0, z0, z̃0 ∈ M arbitrarily. Let µk,0 = µk,1 > 0
and λk ∈ (0,

√
2− 1) for k = 1, 2, and compute{

z1 = PC(expx0
(−µ2,0 A2z̃0)),

x1 = PC(expz0
(−µ1,0 A1y0))

and

{
z̃1 = PC(expx1

(−µ2,1 A2y0)),
y1 = PC(expz1

(−µ1,1 A1z̃0)).
Iteration Steps: Compute xn+1 and zn+1 (n ≥ 1) below:
Step 1. Construct{

C2,n = {x ∈ M : 〈exp−1
z̃n

xn − µ2,n A2z̃n−1, exp−1
z̃n

x〉 ≤ 0},
C1,n = {x ∈ M : 〈exp−1

yn
zn − µ1,n A1yn−1, exp−1

yn
x〉 ≤ 0},

and calculate{
zn+1 = PC2,n(expxn

(−µ2,n A2z̃n)),
xn+1 = PC1,n(expzn

(−µ1,n A1yn)).
Step 2. Calculate{

z̃n+1 = PC(expxn+1
(−µ2,n+1 A2yn)),

yn+1 = PC(expzn+1
(−µ1,n+1 A1z̃n)),

where
µ2,n+1 =

{
min{ λ2d(z̃n ,z̃n−1)

d(A2 z̃n ,A2 z̃n−1)
, µ2,n} if d(A2z̃n, A2z̃n−1) 6= 0,

µ2,n otherwise.

µ1,n+1 =

{
min{ λ1d(yn ,yn−1)

d(A1yn ,A1yn−1)
, µ1,n} if d(A1yn, A1yn−1) 6= 0,

µ1,n otherwise.

(24)

Again, put n := n + 1 and go to Step 1.

In particular, putting A1 = A2 = A in Algorithm 3, we obtain the following algorithm
(Algorithm 4) for solving VIP (4).

Algorithm 4: The second parallel algorithm for the VIP.

Initialization: Given x0, y0, z0, z̃0 ∈ M arbitrarily. Let µk,0 = µk,1 > 0
and λk ∈ (0,

√
2− 1) for k = 1, 2, and compute{

z1 = PC(expx0
(−µ2,0 Az̃0)),

z̃1 = PC(expz1
(−µ2,1 Az̃0))

and

{
x1 = PC(expz0

(−µ1,0 Ay0)),
y1 = PC(expx1

(−µ1,1 Ay0)).
Iteration Steps: Compute xn+1 and zn+1 (n ≥ 1) below:
Step 1. Construct{

C2,n = {x ∈ M : 〈exp−1
z̃n

xn − µ2,n Az̃n−1, exp−1
z̃n

x〉 ≤ 0},
C1,n = {x ∈ M : 〈exp−1

yn
zn − µ1,n Ayn−1, exp−1

yn
x〉 ≤ 0}

and calculate{
zn+1 = PC2,n(expxn

(−µ2,n Az̃n)),
xn+1 = PC1,n(expzn

(−µ1,n Ayn)).
Step 2. Calculate{

z̃n+1 = PC(expxn+1
(−µ2,n+1 Ayn)),

yn+1 = PC(expzn+1
(−µ1,n+1 Az̃n)),

where
µ2,n+1 =

{
min{ λ2d(z̃n ,z̃n−1)

d(Az̃n ,Az̃n−1)
, µ2,n} if d(Az̃n, Az̃n−1) 6= 0,

µ2,n otherwise.

µ1,n+1 =

{
min{ λ1d(yn ,yn−1)

d(Ayn ,Ayn−1)
, µ1,n} if d(Ayn, Ayn−1) 6= 0,

µ1,n otherwise.
Again, put n := n + 1 and go to Step 1.
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Lemma 11. For k = 1, 2, the sequence {µk,n} generated by Algorithm 3 is monotonically decreas-
ing with lower bound min{ λk

Lk
, µk,0}.

Proof. It is clear that {µk,n} is monotonically decreasing for k = 1, 2. Note that Ak
is a Lipschitzian mapping with constant Lk > 0 for k = 1, 2. Then, in the case of
d(A2z̃n, A2z̃n−1) 6= 0, we have

λ2d(z̃n, z̃n−1)

d(A2z̃n, A2z̃n−1)
≥ λ2d(z̃n, z̃n−1)

L2d(z̃n, z̃n−1)
=

λ2

L2
.

Consequently, {µ2,n} is the sequence with lower bound min{ λ2
L2

, µ2,0}. Similarly, we can

show that {µ1,n} is the sequence with lower bound min{ λ1
L1

, µ1,0}.

Corollary 3. For k = 1, 2, the sequence {µk,n} generated by Algorithm 4 is monotonically
decreasing with lower bound min{ λk

L , µk,0}.

Lemma 12. Let {xn} and {zn} be the sequences generated by Algorithm 3. Then, the sequences
{xn} and {zn} are bounded, provided for all (p, q) ∈ S and n ≥ n0,

(1− (1+
√

2)λ2µ2,n
µ2,n+1

)d2(zn, z̃n) + (1− (1+
√

2)λ1µ1,n
µ1,n+1

)d2(zn, yn)

+ 2µ2,n〈A2 p, exp−1
p z̃n〉+ 2µ1,n〈A1 p, exp−1

p yn〉 ≥ 0,

(1− (1+
√

2)λ2µ2,n
µ2,n+1

)d2(zn, z̃n) + (1− (1+
√

2)λ1µ1,n
µ1,n+1

)d2(zn, yn)

+ 2µ2,n〈A2q, exp−1
q z̃n〉+ 2µ1,n〈A1q, exp−1

q yn〉 ≥ 0.

Proof. Take (p, q) ∈ C× C arbitrarily. Utilizing the similar arguments to those in the proof
of Lemma 10, we can deduce the following inequality:

d2(zn+1, p) ≤ d2(xn, p)− d2(zn+1, z̃n)− d2(zn, z̃n)

+ 2µ2,n〈A2z̃n−1 − A2z̃n, exp−1
z̃n

zn+1〉 − 2µ2,n〈A2 p, exp−1
p z̃n〉.

(25)

We now estimate the term 〈A2z̃n−1− A2z̃n, exp−1
z̃n

zn+1〉 in (25). From (6), the definition
of µ2,n+1 in Algorithm 3, we have

2µ2,n〈A2z̃n−1 − A2z̃n, exp−1
z̃n

zn+1〉 ≤ 2µ2,nd(A2z̃n−1, A2z̃n)d(zn+1, z̃n)

≤ 2µ2,n
λ2d(z̃n−1,z̃n)

µ2,n+1
d(zn+1, z̃n) =

2λ2µ2,n
µ2,n+1

d(z̃n−1, z̃n)d(zn+1, z̃n)

≤ λ2µ2,n
µ2,n+1

( 1√
2

d2(z̃n−1, z̃n) +
√

2d2(zn+1, z̃n)).
(26)

In the meantime, by the fact (a + b)2 ≤ (2 +
√

2)a2 +
√

2b2, we get

d2(z̃n−1, z̃n) ≤ (d(z̃n, zn) + d(zn, z̃n−1))
2 ≤ (

√
2 + 2)d2(z̃n, zn) +

√
2d2(zn, z̃n−1). (27)

From (26) and (27), it follows that

2µ2,n〈A2z̃n−1 − A2z̃n, exp−1
z̃n

zn+1〉
≤ (1+

√
2)λ2µ2,n

µ2,n+1
d2(z̃n, zn) +

λ2µ2,n
µ2,n+1

d2(zn, z̃n−1) +
√

2λ2µ2,n
µ2,n+1

d2(zn+1, z̃n).
(28)

Substituting (28) for (25), we obtain

d2(zn+1, p) ≤ d2(xn, p) + λ2µ2,n
µ2,n+1

d2(zn, z̃n−1)− (1− (1+
√

2)λ2µ2,n
µ2,n+1

)d2(zn, z̃n)

− (1−
√

2λ2µ2,n
µ2,n+1

)d2(zn+1, z̃n)− 2µ2,n〈A2 p, exp−1
p z̃n〉.

(29)
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Adding λ2µ2,n+1
µ2,n+2

d2(zn+1, z̃n) to both sides of (29), we get

[d2(zn+1, p) + λ2µ2,n+1
µ2,n+2

d2(zn+1, z̃n)]

≤ [d2(xn, p) + λ2µ2,n
µ2,n+1

d2(zn, z̃n−1)]− (1− (1+
√

2)λ2µ2,n
µ2,n+1

)d2(zn, z̃n)

− (1−
√

2λ2µ2,n
µ2,n+1

− λ2µ2,n+1
µ2,n+2

)d2(zn+1, z̃n)− 2µ2,n〈A2 p, exp−1
p z̃n〉.

(30)

In a similar way, we get

[d2(xn+1, q) + λ1µ1,n+1
µ1,n+2

d2(xn+1, yn)]

≤ [d2(zn, q) + λ1µ1,n
µ1,n+1

d2(xn, yn−1)]− (1− (1+
√

2)λ1µ1,n
µ1,n+1

)d2(zn, yn)

− (1−
√

2λ1µ1,n
µ1,n+1

− λ1µ1,n+1
µ1,n+2

)d2(xn+1, yn)− 2µ1,n〈A1q, exp−1
q yn〉.

(31)

From limn→∞ µ2,n = µ2 > 0 (due to Lemma 11) and λ2 ∈ (0,
√

2− 1) (due to Algo-
rithm 3), we get

lim
n→∞

(1− (1 +
√

2)λ2µ2,n

µ2,n+1
) = lim

n→∞
(1−

√
2λ2µ2,n

µ2,n+1
− λ2µ2,n+1

µ2,n+2
) = 1− λ2(1 +

√
2) > 0. (32)

Hence, there exists an integer n0 ≥ 0 such that

1− (1 +
√

2)λ2µ2,n

µ2,n+1
> 0 and 1−

√
2λ2µ2,n

µ2,n+1
− λ2µ2,n+1

µ2,n+2
> 0 ∀n ≥ n0. (33)

Next, we restrict (p, q) ∈ S . Assume that, for all n ≥ n0,

(1− (1+
√

2)λ2µ2,n
µ2,n+1

)d2(zn, z̃n) + (1− (1+
√

2)λ1µ1,n
µ1,n+1

)d2(zn, yn)

+ 2µ2,n〈A2 p, exp−1
p z̃n〉+ 2µ1,n〈A1 p, exp−1

p yn〉 ≥ 0.
(34)

Adding (30) to (31) with q := p, we obtain that, for all n ≥ n0,

[d2(zn+1, p) + λ2µ2,n+1
µ2,n+2

d2(zn+1, z̃n)] + [d2(xn+1, p) + λ1µ1,n+1
µ1,n+2

d2(xn+1, yn)]

≤ [d2(xn, p) + λ2µ2,n
µ2,n+1

d2(zn, z̃n−1)] + [d2(zn, p) + λ1µ1,n
µ1,n+1

d2(xn, yn−1)].

This implies that there exists the limit

lim
n→∞
{[d2(zn, p) +

λ2µ2,n

µ2,n+1
d2(zn, z̃n−1)] + [d2(xn, p) +

λ1µ1,n

µ1,n+1
d2(xn, yn−1)]}.

Hence, {d2(zn, p)} and {d2(xn, p)} both are bounded. Therefore, {zn} and {xn} both
are bounded. In addition, again from (30), (31), and (34), we deduce that, for all n ≥ n0,

(1−
√

2λ2µ2,n
µ2,n+1

− λ2µ2,n+1
µ2,n+2

)d2(zn+1, z̃n) + (1−
√

2λ1µ1,n
µ1,n+1

− λ1µ1,n+1
µ1,n+2

)d2(xn+1, yn)

≤ [d2(zn, p) + λ2µ2,n
µ2,n+1

d2(zn, z̃n−1)] + [d2(xn, p) + λ1µ1,n
µ1,n+1

d2(xn, yn−1)]

− {[d2(zn+1, p) + λ2µ2,n+1
µ2,n+2

d2(zn+1, z̃n)] + [d2(xn+1, p) + λ1µ1,n+1
µ1,n+2

d2(xn+1, yn)]},

which, together with (32), leads to

lim
n→∞

d(zn+1, z̃n) = lim
n→∞

d(xn+1, yn) = 0. (35)

Consequently, from the boundedness of {zn} and {xn}, we infer that {z̃n} and {yn}
both are bounded. Moreover, it follows that there exists the limit limn→∞(d2(xn, p) +
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d2(zn, p)) for each (p, q) ∈ S . In a similar way, we also infer that there exists the limit
limn→∞(d2(xn, q) + d2(zn, q)) for each (p, q) ∈ S .

Corollary 4. Let {xn} and {zn} be the sequences generated by Algorithm 4. Then, the sequences
{xn} and {zn} are bounded.

Proof. Let S indicate the solution set of VIP (4) and fix p ∈ S arbitrarily. Noticing A1 =
A2 = A, we deduce from (30) and (31) that

[d2(zn+1, p) + λ2µ2,n+1
µ2,n+2

d2(zn+1, z̃n)] ≤ [d2(xn, p) + λ2µ2,n
µ2,n+1

d2(zn, z̃n−1)]

− (1− (1+
√

2)λ2µ2,n
µ2,n+1

)d2(zn, z̃n)− (1−
√

2λ2µ2,n
µ2,n+1

− λ2µ2,n+1
µ2,n+2

)d2(zn+1, z̃n),

[d2(xn+1, p) + λ1µ1,n+1
µ1,n+2

d2(xn+1, yn)] ≤ [d2(zn, p) + λ1µ1,n
µ1,n+1

d2(xn, yn−1)]

− (1− (1+
√

2)λ1µ1,n
µ1,n+1

)d2(zn, yn)− (1−
√

2λ1µ1,n
µ1,n+1

− λ1µ1,n+1
µ1,n+2

)d2(xn+1, yn).

Since limn→∞(1− (1+
√

2)λkµk,n
µk,n+1

) = limn→∞(1−
√

2λkµk,n
µk,n+1

− λkµk,n+1
µk,n+2

) = 1−λk(1+
√

2) >

0 for k = 1, 2, we know that there exists an integer n0 ≥ 0 such that 1− (1+
√

2)λkµk,n
µk,n+1

> 0

and 1−
√

2λkµk,n
µk,n+1

− λkµk,n+1
µk,n+2

> 0 for all n ≥ n0. Thus, it follows that, for all n ≥ n0,

[d2(zn+1, p) + λ2µ2,n+1
µ2,n+2

d2(zn+1, z̃n)] + [d2(xn+1, p) + λ1µ1,n+1
µ1,n+2

d2(xn+1, yn)]

≤ [d2(zn, p) + λ2µ2,n
µ2,n+1

d2(zn, z̃n−1)] + [d2(xn, p) + λ1µ1,n
µ1,n+1

d2(xn, yn−1)].

This implies that there exists the limit

lim
n→∞
{[d2(zn, p) +

λ2µ2,n

µ2,n+1
d2(zn, z̃n−1)] + [d2(xn, p) +

λ1µ1,n

µ1,n+1
d2(xn, yn−1)]}.

Therefore, {zn} and {xn} both are bounded. Moreover, it is easy to see that limn→∞ d(zn, z̃n)
=limn→∞ d(zn+1, z̃n) = 0 and limn→∞ d(zn, yn) = limn→∞ d(xn+1, yn) = 0.

Theorem 3. Let the sequences {xn}, {zn} be generated by Algorithm 3. Assume that the conditions
in Lemma 12 hold. Then, {(xn, zn)} converges to a solution of SVI (5) provided limn→∞{d(xn, yn)+
d(zn, z̃n)} = 0 and limn→∞{d2(zn, p) + d2(xn, q)} < +∞ for all (p, q) ∈ S .

Proof. First of all, by Lemma 11, we have limn→∞ µk,n = µk > 0 for k = 1, 2. Using
Lemma 12, we obtain the boundedness of the sequences {xn}, {zn}, and the existence of the
limits limn→∞(d2(xn, p) + d2(zn, p)) and limn→∞(d2(xn, q) + d2(zn, q)) for each (p, q) ∈ S .
We observe that, for each (p, q) ∈ S ,

lim
n→∞

(d2(xn, p) + d2(zn, q))

= lim
n→∞

[d2(xn, p) + d2(zn, p) + d2(xn, q) + d2(zn, q)− (d2(zn, p) + d2(xn, q))]

= lim
n→∞

(d2(xn, p) + d2(zn, p)) + lim
n→∞

(d2(xn, q) + d2(zn, q))− lim
n→∞

(d2(zn, p) + d2(xn, q))

< +∞.

We claim that each cluster point of {(xn, zn)} belongs to S . Indeed, since {(xn, zn)}
is bounded, there exists a subsequence {(xmk , zmk )} of {(xn, zn)} converging to (x∗, y∗) ∈
M×M. This means that xmk → x∗ and zmk → y∗. It is clear that ymk → x∗ and z̃mk → y∗

because d(xmk , ymk )→ 0 and d(zmk , z̃mk )→ 0 as k→ ∞. Since C is closed and convex inM,
from {(ymk , z̃mk )} ⊂ C×C, we get (x∗, y∗) ∈ C×C. Taking into account that d(zn, z̃n)→ 0
and d(xn, yn)→ 0 as n→ ∞, we infer from (35) that d(z̃n, z̃n+1)→ 0 and d(yn, yn+1)→ 0
as n→ ∞.
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Noticing that z̃n = PC(expxn
(−µ2,n A2yn−1)) and yn = PC(expzn

(−µ1,n A1z̃n−1)),
from Proposition 3, we get{

〈exp−1
xn

z̃n + µ2,n A2yn−1, exp−1
z̃n

x〉 ≥ 0 ∀x ∈ C,
〈exp−1

zn
yn + µ1,n A1z̃n−1, exp−1

yn
x〉 ≥ 0 ∀x ∈ C.

Hence, we have
0 ≤ 〈exp−1

xn
z̃n, exp−1

z̃n
x〉+ µ2,n〈A2yn−1, exp−1

z̃n
x〉

= 〈exp−1
xn

z̃n, exp−1
z̃n

x〉+ µ2,n〈A2yn−1, exp−1
z̃n−1

x〉+ µ2,n〈A2yn−1, exp−1
z̃n

z̃n−1〉,
0 ≤ 〈exp−1

zn
yn, exp−1

yn
x〉+ µ1,n〈A1z̃n−1, exp−1

yn
x〉

= 〈exp−1
zn

yn, exp−1
yn

x〉+ µ1,n〈A1z̃n−1, exp−1
yn−1

x〉+ µ1,n〈A1z̃n−1, exp−1
yn

yn−1〉.

(36)

Passing to the limits in two inequalities of (36) as n := mk → ∞, we get{
0 ≤ 〈exp−1

x∗ y∗, exp−1
y∗ x〉+ µ2〈A2x∗, exp−1

y∗ x〉 ∀x ∈ C,
0 ≤ 〈exp−1

y∗ x∗, exp−1
x∗ x〉+ µ1〈A1y∗, exp−1

x∗ x〉 ∀x ∈ C.

This means that (x∗, y∗) is a solution to the SVI (5), i.e., (x∗, y∗) ∈ S .
For the rest of the proof, it is sufficient to show that the sequence {(xn, zn)} only has a

cluster point. Indeed, suppose that {(xn, zn)} has at least two cluster points (x̄, ȳ), (x̂, ŷ) ∈
S . Then, there exist two subsequences {(xni , zni )} and {(xmi , zmi )} of {(xn, zn)} such that
{(xni , zni )→ (x̄, ȳ) and (xmi , zmi )→ (x̂, ŷ) as i→ ∞. By Proposition 2, we get

lim
n→∞

(d2(xn, x̂) + d2(zn, ŷ)) = lim
i→∞

(d2(xni , x̂) + d2(zni , ŷ))

≥ lim
i→∞

[d2(xni , x̄) + d2(x̄, x̂)− 2〈exp−1
x̄ xni , exp−1

x̄ x̂〉
+ d2(zni , ȳ) + d2(ȳ, ŷ)− 2〈exp−1

ȳ zni , exp−1
ȳ ŷ〉]

= lim
n→∞

(d2(xn, x̄) + d2(zn, ȳ)) + d2(x̄, x̂) + d2(ȳ, ŷ),

(37)

and
lim

n→∞
(d2(xn, x̄) + d2(zn, ȳ)) = lim

i→∞
(d2(xmi , x̄) + d2(zmi , ȳ))

≥ lim
i→∞

[d2(xmi , x̂) + d2(x̂, x̄)− 2〈exp−1
x̂ xmi , exp−1

x̂ x̄〉
+ d2(zmi , ȳ) + d2(ŷ, ȳ)− 2〈exp−1

ŷ zmi , exp−1
ŷ ȳ〉]

= lim
n→∞

(d2(xn, x̂) + d2(zn, ŷ)) + d2(x̂, x̄) + d2(ŷ, ȳ).

(38)

Combining (37) and (38), we have x̄ = x̂ and ȳ = ŷ.

Theorem 4. Suppose that the sequences {xn} and {zn} both are generated by Algorithm 4. Then,
{xn} and {zn} both converge to a solution of VIP (4).

Proof. By Corollary 4, we know that {xn} and {zn} are bounded. Putting A1 = A2 = A
and p = q ∈ S in (30) and (31), we deduce that{

lim
n→∞

d(zn, z̃n) = lim
n→∞

d(zn+1, z̃n) = 0,

lim
n→∞

d(zn, yn) = lim
n→∞

d(xn+1, yn) = 0.

Thus, it follows that limn→∞ d(zn, zn+1) = limn→∞ d(zn, xn+1) = 0. Note that
d(yn+1, yn) ≤ d(yn+1, zn+1) + d(zn+1, zn) + d(zn, yn) → 0 (n → ∞). Thus, we have
d(xn+1, yn+1) ≤ d(xn+1, yn) + d(yn, yn+1) (n → ∞), and hence limn→∞ d(xn, yn) = 0. In
addition, since d(xn+1, zn+1) ≤ d(xn+1, zn) + d(zn, zn+1) (n → ∞), we get
limn→∞ d(xn+1, zn+1) = 0, and hence limn→∞ d(xn, zn) = 0. Note that the SVI (5) with
A1 = A2 = A has a solution (p, p) ∈ C× C if and only if the VIP (4) has solution p ∈ C.
Therefore, by Theorem 3, we know that {(xn, zn)} converges to a solution (x∗, y∗) ∈ C× C
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to the SVI (5) with A1 = A2 = A. Thus, from limn→∞ d(xn, zn) = 0, it follows that {xn}
and {zn} both are convergent to a solution x∗ = y∗ ∈ C to the VIP (4)
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