
symmetryS S

Article

Dynamic Priority Real-Time Scheduling on Power Asymmetric
Multicore Processors

Basharat Mahmood 1, Naveed Ahmad 2, Majid Iqbal Khan 1 and Adnan Akhunzada 3,*

����������
�������

Citation: Mahmood, B.; Ahmad, N.;

Khan, M.I.; Akhunzada, A. Dynamic

Priority Real-Time Scheduling on

Power Asymmetric Multicore

Processors. Symmetry 2021, 13, 1488.

https://doi.org/10.3390/

sym13081488

Academic Editor: Iver H. Brevik

Received: 12 July 2021

Accepted: 8 August 2021

Published: 13 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science, COMSATS University Islamabad, Islamabad 46000, Pakistan;
basharatmahmood@comsats.edu.pk (B.M.); majid_iqbal@comsats.edu.pk (M.I.K.)

2 Department of Computing, National University of Computer and Emerging Sciences, FAST-NU,
Islamabad 46000, Pakistan; naveed.ahmad@nu.edu.pk

3 Faculty of Computing and Informatics, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia
* Correspondence: adnan.akhunzada@ums.edu.my

Abstract: The use of real-time systems is growing at an increasing rate. This raises the power
efficiency as the main challenge for system designers. Power asymmetric multicore processors
provide a power-efficient platform for building complex real-time systems. The utilization of this
efficient platform can be further enhanced by adopting proficient scheduling policies. Unfortunately,
the research on real-time scheduling of power asymmetric multicore processors is in its infancy.
In this research, we have addressed this problem and added new results. We have proposed a
dynamic-priority semi-partitioned algorithm named: Earliest-Deadline First with C=D Task Splitting
(EDFwC=D-TS) for scheduling real-time applications on power asymmetric multicore processors.
EDFwC=D-TS outclasses its counterparts in terms of system utilization. The simulation results
show that EDFwC=D-TS schedules up to 67% more tasks with heavy workloads. Furthermore, it
improves the processor utilization up to 11% and on average uses 14% less cores to schedule the
given workload.

Keywords: real-time scheduling; EDF scheduling; semi-partitioned scheduling; power asymmetric
multicore processors

1. Introduction

The use of real-time systems has grown rapidly due to their assorted application
areas ranging from simple household electronics to fully automated industrial control
systems [1,2]. These systems are characterized by temporal constraints, and the fulfillment
of these constraints is considered as necessary as executing the tasks correctly. The temporal
correctness can be effectively achieved by designing efficient task scheduling policies [1,3].
A real-time scheduler decides the execution order of time dependent tasks. Its essential goal
is to schedule tasks so that they can meet their timing constraints. Proficient scheduling
approaches not only improve the system utilization but can also be integrated with other
power management techniques to attain high power efficiency. Dynamic voltage and fre-
quency scaling (DVFS) [4] and memory shut-down [5] are instances of such improvements.
On DVFS enabled processors, supplied voltage and clock frequency are dynamically ad-
justed depending upon the current workload. In this way, the system consumes less power
when the workload is on lower side. Similarly, in memory shut-down technique unused
memory is dynamically shut-down. This also results in reduced energy consumption. Both
DVFS and memory shut-down can be effectively integrated with real-time scheduling to
achieve energy efficiency.

In recent times, real-time applications have grown extensively in complexity. Multicore
processors are considered more favorable for implementing such complex and processing
intensive applications due to their proficiency in terms of energy consumption and heat

Symmetry 2021, 13, 1488. https://doi.org/10.3390/sym13081488 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0001-8370-9290
https://doi.org/10.3390/sym13081488
https://doi.org/10.3390/sym13081488
https://doi.org/10.3390/sym13081488
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13081488
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13081488?type=check_update&version=2

Symmetry 2021, 13, 1488 2 of 26

generation [6]. Multicore processors are fundamentally categorized as homogeneous, het-
erogeneous, or power asymmetric (also known as uniform or single-ISA heterogeneous) [6].
In homogeneous multicore processors, all of the cores have similar functional and pro-
cessing capabilities while a heterogeneous multicore processor may contain cores with
different functional and processing capabilities [7]. On the other hand, processing cores in
a power asymmetric multicore processor are similar in functional capabilities but they may
differ in their processing capabilities [7–9]. Power asymmetric processors are viewed as
better in terms of energy consumption when contrasted with its other counterparts [8,9].

Research on single-processor real-time scheduling is considered developed yet there is
as yet a generous space for research on multiprocessor/multicore scheduling [10,11]. The
existing multicore real-time scheduling approaches are categorized as partitioned, global,
or semi-partitioned [11,12]. In partitioned scheduling, the given workload is divided into
m subsets (where m is the number of cores) such that each subset k is feasible on corre-
sponding core k. During execution each subset is executed on its assigned core. This task
to core binding is permanent and no task can migrate during the execution [11,12]. On the
other hand, in global scheduling, all of the tasks are placed in a single prioritized queue
and the scheduler assigns them to cores according to their priorities. Therefore, during
execution tasks can migrate from one core to another [11,12]. Generally, global schedul-
ing is considered superior to partitioned scheduling in terms of system schedulability
but suffers from high runtime overheads. Semi-partitioned scheduling is presented as a
compromise between pure partitioned and global scheduling in order to reduce the run-
time overheads associated with the global scheduling and to improve the performance of
partitioned scheduling. The semi-partitioned scheduling extends the partitioned schedul-
ing by allowing a small number of tasks to migrate, which results in improved system
utilization [11,12].

Although a lot of work has been done in multicore scheduling but still none of the ex-
isting approaches achieve optimal performance. The best-known utilization bound for both
global and partitioned scheduling algorithms is 50%, while the semi-partitioned scheduling
improves it up to 65% [11,13]. Furthermore, most of the results are based on the homoge-
nous multicore processors whereas research on power asymmetric multicore scheduling is
still in its infancy. The power consumption has become a main challenge for future em-
bedded system designs; therefore, it is much needed to consider the power-efficient power
asymmetric multicore processors while addressing the real-time scheduling problem [11].
In this paper, we have considered the dynamic priority real-time scheduling of power
asymmetric multicore processors and proposed a semi-partitioned scheduling algorithm
named Earliest-deadline First with C=D Task Splitting (EDFwC=D-TS). EDFwC=D-TS
algorithm allocates the tasks to cores in decreasing order of their utilizations while the
cores are sorted in descending order of their processing power. It utilizes the C=D heuristic
to split tasks. The simulation results show that EDFwC=D-TS outclasses its counterparts
and provides better system utilization.

The rest of the paper is organized as follows. Section 2 presents the existing work
that is closely related to the addressed problem. System and task models are given in
Section 3. In Section 4 the EDFwC=D-TS algorithm is presented. Experimental evaluation
of the proposed work is presented in Section 5. Section 6 presents the evaluation of the
EDFwC=D-TS algorithm while our work is concluded in Section 7.

2. Related Work

In this section, we present the existing work that is generally pertinent to the addressed
problem. Since semi-partitioned scheduling utilizes uniprocessor schedulability analysis
while doling out tasks to cores, we therefore first discuss some significant results on
uniprocessor dynamic-priority real-time scheduling. Subsequently, we discuss the most
significant existing literature on dynamic-priority semi-partitioned real-time scheduling
and power asymmetric multi-processor scheduling.

Symmetry 2021, 13, 1488 3 of 26

2.1. Uniprocessor Scheduling

In 1973, Liu and Layland did the pioneer and the most influential work in real-time
scheduling theory (presented in [14]). Under the dynamic-priority category, they proposed
an optimal algorithm named Earliest-deadline First (EDF) [14]. EDF assigns the highest
priority to the task that has the least absolute deadline. Liu and Layland have proved that
EDF achieves 100% system utilization, i.e., any task-set Γ can be feasibly scheduled on a
single processor system using the EDF algorithm if U(Γ) ≤ 1.

Baruah et al. [15] derived an exact schedulability test known as Processor Demand
Analysis (PDA) for sporadic arbitrary relative deadline tasks. According to the PDA a
task-set Γ is EDF schedulable if:

h(t) ≤ t ∀t > 0 (1)

where h(t) is the function that computes the maximum CPU time required by all tasks
which have both arrival times and relative deadlines in the interval of length t where h(t) is
given by Equation (2):

h(t) = max

(
0,

n

∑
j=1

⌊
t + Pj − Dj

Pj

⌋)
× Cj (2)

where Pj is the period, Dj is the relative deadline, and Cj is the worst-case execution time
of the task j. Since the value of t may be very large, it may take a lot of time to determine
the feasibility of a task-set using PDA. In [15], Baruah et al. determined an upper bound La
on the value of t given as follows:

La = max
{

D1, . . . , Dn, max
1≤i≤
{Pi − Di}

U
1−U

}
(3)

In Equation (3), U represents the system utilization factor of the given workload.
Therefore, the feasibility condition for task-set under PDA is given by Equation (4):

h(t) ≤ t ∀t < La (4)

Ripoll et al. [16] further reduced the upper bound on the maximum value of t that is
given by Equation (5):

n

∑
i=1
{Pi − Di}

Ui
1−U

(5)

Ripoll et al. [16] and Spuri [17] derived a recursive function to determine the upper
bound (Lb) on the value of t given by Equation (6):

sq+1 =
n

∑
i=1

⌈
sq

Pi

⌉
Ci (6)

The initial value of Sq is set equal to
n
∑

i=1
Ci. The recurrence Sq+1 is solved until it gives

the same value in two consecutive iterations.
Zhang and Burns [18] presented the Quick-convergence Processor-demand Analysis

(QPA) to efficiently determine the feasibility of task-sets. The QPA reduces the calculation
effort exponentially. It starts by selecting the upper (L) and lower bound (dmin) on the
value of t where L = min(La, Lb) and dmin is equal to minimum relative deadline of the
task τi ∈ Γ. Next, starting from t = L, QPA computes h(t) for t and if it is found less than
t then it is replaced with h(t). This process continues as long as t reaches to dmin or h(t)
is found greater than t. Zhang et al. further extended their work to perform sensitivity
analysis on EDF scheduling [19].

Symmetry 2021, 13, 1488 4 of 26

2.2. Semi-Partitioned Multi-Processor Scheduling

Anderson et al. introduced the semi-partitioned scheduling, presented in [20]. They
introduced the notion of task-splitting to improve the system utilization and proposed the
EDF-fm algorithm for scheduling recurrent soft real-time tasks on multiprocessor systems.
Under the hard dynamic priority semi-partitioned category, EDF with task splitting and K
processors in a Group (EKG) is a well-known algorithm [21]. EKG classifies the tasks into
heavy and light. Each of the heavy tasks is assigned to a separate processor while the light
tasks are sequentially allocated to the remaining processors.

In [22], Kato et al. presented the Ehd2-SIP. It assigns tasks to processors sequentially
starting from the first processor. If the utilization of the current task τi is less than or equal
to the remaining capacity of the current processor Pm i.e., U(τi) ≤ Ub −U(Pm) then τi is
assigned to Pm. Otherwise, it is split into two portions τi

′ and τi
′′ where τi

′′ is assigned to
Pm while τi

′′ is assigned to P(m+1). Kato et al. presented the Earliest Deadline Deferrable
Portion (EDDP) algorithm in [23]. EDDP first classifies the tasks as light or heavy. A task τi
is considered as heavy if:

Ui > 4√2− 5 ∼= 65%

All of the remaining tasks are considered light tasks. Heavy tasks are assigned to
dedicated processors while the light tasks are sequentially assigned to the remaining
processors. EDDP algorithm achieves a utilization bound of 65%. Kato et al. further
extend their results on semi-partitioned scheduling and proposed Earliest Deadline and
Highest Priority Split (EDHS) algorithm [24]. EDHS algorithm assigns global and highest
static priority to migratory tasks while the priorities to fixed tasks are assigned using
EDF algorithm. Earliest Deadline First with Window-constrained Migration (EDF-WM)
algorithm, presented in [25], aims at improving the system schedulability with reduced
context switching cost. EDF-WM algorithm assigns tasks to processors on first-fit basis.
When a task is not feasible on any processors then it is split across more than one processor.

Burn et al. addressed the dynamic priority semi-partitioned scheduling of periodic
tasks on identical processors and proposed the C=D heuristic for task-splitting [26]. When
a task τi is required to be split into sub-tasks τi

′ and τi
′′, the deadline of τi

′ is set equal to its
worst-case execution time. In this way, τi

′ always has the highest priority on its assigned
core. This reduces the task-splitting penalty.

In [27], Anderson et al. extends the EDF-fm algorithm presented in [20] and proposed
Earliest Deadline First with Optimal Semi-partitioned (EDF-os) scheduling algorithm.
EDF-fm algorithm restricts the migrating tasks to have utilization less than 0.5. It assigns
high-priority to migrating tasks while the priorities to fixed tasks are assigned in EDF
manner.

2.3. Power Asymmetric Multiprocessor Scheduling

The problem of power asymmetric multiprocessor scheduling was first addressed
in [28]. In [28], Baruah studied the dynamic priority scheduling of periodic real-time
tasks on power asymmetric multicore processors with integer boundary constraint on task
preemptions and showed that the general problem is intractable.

In [29], Funk et al. has provided an online algorithm based on global EDF scheduling.
They have derived sufficient condition to determine the EDF feasibility of a set of tasks on
a power asymmetric processor provided that this task set is known to be feasible on some
different power asymmetric processor. This algorithm suffers from high runtime cost due
to task migrations.

In [30], the fixed priority real-time scheduling of periodic tasks on power asymmetric
processors is considered and a sufficient test to determine the feasibility of a set of tasks
is derived. This test works well for task sets with low utilization but fails to determine
schedulability of high utilizations task sets. Andersson et al. has addressed the real-
time scheduling problem of sporadic tasks and proposed a partitioned dynamic priority
algorithm named EDF-DU-IS-FF [31]. The EDF-DU-IS-FF algorithm partitions the task set
based on the processor capacity and at runtime; these partitioned tasks are executed in

Symmetry 2021, 13, 1488 5 of 26

EDF fashion. The same authors have discussed the fixed priority scheduling of sporadic
tasks in [32] and proposed the RM-DU-IS-FF algorithm. This algorithm first partitions
the task set using the L.L bound and then these tasks are executed in RM fashion. This
algorithm fails to fully utilize the processor capacity due to the usage of sufficient test
during partitioning stage and as a result does not perform well at higher system utilization
levels.

In [33], Cucu et al. has shown that, according to the global fixed-priority scheduling,
any schedule of asynchronous periodic task sets that is feasible on a power asymmetric
processor becomes periodic after a specific moment in time. They have determined that
point and have provided a feasibility interval for such systems. In [34], a sufficient test for
global EDF scheduling of sporadic task system on a power asymmetric multicore processor
is presented. The scheduling of soft real-time periodic tasks on power asymmetric multicore
processor is studied in [35]. The authors have argued that there are deficiencies in the
Linux system for supporting real-time periodic tasks. They discussed the way to provide
better performance for the soft workload in the presence of hard workload using deferrable
servers.

Chen et al. presented the online-scheduling algorithms PG and PCG for scheduling
periodic tasks on a power asymmetric multicore processor [36]. These algorithms assign
tasks with largest remaining execution time to the fastest processor. PG and PCG algorithms
incur high runtime cost in the form of context switches and task migrations. In [37], A-S
algorithm is proposed as an improvement over the PCG algorithm to reduce the runtime
costs. A-S algorithm reduces the task preemptions and task migrations up to 90% and 87%
respectively. Risat et al. has discussed the RM based global scheduling of periodic implicit-
deadline tasks in [38]. They have provided a set of schedulability conditions based on easily
computable task-set parameters for providing better utilization along with maintaining
the feasibility. They have showed that their conditions provide better performance than
other counterparts. Jung et al. studied the scheduling of harmonic real-time tasks in [39].
They have proposed a RM based partitioned approach. They first partition the task set
based on processor capacity using the harmonic bound and then split the remaining tasks
if required.

3. System and Task Models

We have considered a power asymmetric multicore processor having m cores. The
processing power of these cores is defined by the set S = {S1, S2, . . . , Sm}, where Si is the
processing power of the ith core and Si = Sj or S i 6= Sj ∀ i, j ∈ S. The total processing

power of the system can be calculated by S =
m
∑

i=1
Si.

We have considered the standard real-time task model to characterize the workload of
the system. The system workload is represented by the set Γ, which consists of n real-time
periodic tasks. Each task τi is characterized by its worst-case execution requirements, i.e.,
the number of CPU cycles required by τi to complete its execution in the worst-case (Ci);
its minimum inter-arrival time (Pi), i.e., its period; and its relative deadline (Di). The time
instant at which the first job of a task is released is known as its phase and is denoted by φi.
We assume that all of the tasks in Γ follow the implicit deadline model, i.e., Pi = Di ∀ i ∈ Γ.
In addition, we assume that all of the tasks are synchronous, i.e., φi = 0 ∀ i ∈ Γ.

Furthermore, we have considered another task parameter, i.e., the additional offset.
The additional offset of a task τi denoted by δi is the amount of time for which τi remains
blocked and is not considered for scheduling, i.e., during the time interval ri + δi (where ri
is the release time of τi) remains blocked. Initially, the additional offset of all of the tasks is
zero, i.e., δi = 0 ∀ i ∈ Γ. Thus, we can define a task τi by a 4-tuple (δi, Ci, Pi, Di). Typical
examples of this kind of workload include sensory data acquisition system, air traffic
control systems, environment monitoring system, etc. These systems have to periodically
execute certain tasks and the completion of those tasks within a specified time is mandatory.
Any delay in the completion of these tasks may have catastrophic consequences.

Symmetry 2021, 13, 1488 6 of 26

Due to the difference in processing speed of different cores, a task takes a different
amount of time on different cores to complete its execution. The time a task τi ∈ Γ takes to
complete its execution on core j ∈ S can be calculated by Equation (7):

T(i, j) =
Ci
Sj

(7)

The fraction of the processor time required by a task to complete its execution is
known as its system utilization factor. The system utilization factor of a task τi ∈ Γ on core
j ∈ S is calculated using the Equation (8):

U(i, j) =
T(i, j)

Pi
=

(
Ci/Sj

)
Pi

(8)

While the system utilization factor of a task τi ∈ Γ on the processor S is given by
Equation (9):

U(i) =
T(i, j)

Pi
=

(Ci/ ∑m
i=1 Si)

Pi
(9)

Now, the total its system utilization factor of the task set Γ is given by Equation (10):

U(Γ) =
n

∑
i=1

U(i) =
n

∑
i=1

(
Ci/ ∑m

j=1 Sj

)
Pi

(10)

A task set Γ can only be considered for scheduling if U(Γ) ≤ 1 and any task set with
U(Γ) > 1 can never be feasible with any scheduling algorithm. The used notations are
given in Table 1.

Table 1. Used notations and their meanings.

Notation Meanings

Γ Task-set representing the workload
τi Task i ∈ Γ
Ci CPU cycles required by task i in worst-case
Di Relative deadline of the task i
Pi Period of the task i
S Set defining the power asymmetric multicore processor
Si Processing power of the core i

T(i, j) Time required by task i to complete its execution on core j
U(i, j) System utilization factor of the task i on core j
Θ(n) Value of the L.L bound for n tasks

δi Additional-offset of task i

4. Dynamic Priority Semi-Partitioned Scheduling of Real-Time Tasks on Power-Asymmetric
Multicore Processors

In this section, we present our dynamic-priority algorithm named EDFwC=D-TS (EDF
Scheduling with C=D task-splitting) for scheduling real-time tasks on power-asymmetric
multicore processors. EDFwC=D-TS works in two phases: task-allocation and scheduling.
In task-allocation phase, the given workload is distributed among the processor cores,
while in scheduling phase, tasks are scheduled using the EDF algorithm on each core. In
the following sections, we discuss the EDFwC=D-TS scheduling algorithm in detail.

Symmetry 2021, 13, 1488 7 of 26

4.1. Task-Allocation in EDFwC=D-TS Scheduling

In this section, we discuss the task-allocation phase under the EDFwC=D-TS schedul-
ing. Task-allocation deals with the mapping of tasks to cores. In task-allocation, a given set
of tasks Γ is divided into at most M (M is the number of cores in S) subsets such that each
subset Γi is EDF-feasible on the corresponding core Si i.e., U(Γi) ≤ 1. Task-allocation in
EDFwC=D-TS assigns tasks to a core with the provision that its capacity is fully utilized.
When the capacity of a core gets exceeded due to the assignment of a task, a task is split
over multiple cores using the C=D heuristic.

Task-allocations scheme under EDFwC=D-TS scheduling is given by Algorithm 1. In
Algorithm 1, it is assumed that tasks in Γ are sorted in descending order of their utilization,
i.e., Ui > Uj ∀i < j. Furthermore, it is also assumed that the processor cores are sorted in
descending order of their speed, i.e., Si > Sj ∀i < j.

Algorithm 1 starts by assigning the tasks to the first core, i.e., the fastest core. It first
calculates the system utilization of the next task τi on the current core m i.e., U(τi, m) and
then adds it to the total system utilization of the tasks which are already assigned to the
core m i.e., U(Γm); here Γm represents the set of tasks which are already assigned to the
core m (Line 3–4).

Now, if after adding U(τi, m) the total system utilization of Γm i.e., U(Γm) remains
less than the EDF-bound that is 1, then τi is removed from Γ and it is added in Γm (Lines
5–7). Similarly, τi is also removed from Γ and is assigned to Γm in cases when the addition
of U(τi, m) to U(Γm) makes it equal to 1. Furthermore, U(Γm) = 1 means that the capacity
of the core m is fully utilized and therefore the next core should be considered for the
allocation of remaining tasks. For this the index of current core, i.e., m is increased by 1
(Line 8–11).

In cases when the addition of U(τi, m) to U(Γm) results in U(Γm) getting greater
than 1, i.e., the core’s capacity gets exceeded, then Algorithm 1 examines the remaining
unassigned tasks in Γ to find a task that can be accommodated on core m, i.e., a task
τi with U(τi, m) ≤ 1−U(Γm) (Lines 12–27). If no such unassigned task exist in Γ then the
last task in Γ, i.e., τ|Γ|, is added in Γm and task-splitting is performed (Lines 28–31). This
means that a task τi from Γm is selected for splitting into two subtasks τ′i and τ

′′
i such

that τ′i is assigned to core m while τ
′′
i is assigned to some other core k where k > m. The

task-splitting under EDFwC=D-TS is discussed in Section 4.2. In the end, Algorithm 1
decides the feasibility of task-set (Lines 34–38). This decision is made on the number of
cores used. If the number of used cores is greater than the total number of cores, i.e., M,
then the task-set is declared not feasible.

4.2. Splitting Tasks in EDFwC=D-TS Scheduling

In this section, we discuss the task-splitting under the EDFwC=D-TS scheduling.
Task-splitting chooses a task τi ∈ Γm to be split into two subtasks τ′i and τ

′′
i such that τ′i is

feasible on core m, i.e., U(Γm) + U(τi
′̂′)−U(τi) ≤ 1. τ′i is allocated to the core m while τ

′′
i

is allocated to the slowest core where it is feasible. For this purpose, the feasibility of τ
′′
i is

tested on SM, i.e., the core having lowest processing power. If the system utilization of τ
′′
i

exceeds than the residual capacity of the SM then the next core, i.e., SM−1 is considered.
This process continues unless τ

′′
i is feasibly assigned to some core. This indexing of cores is

important to reduce the task-splitting penalty (as shown in Theorem 4).
To make the choice of the task to split, each task τi ∈ Γm is split one after the other in

increasing order of their deadlines using C=D heuristic and its feasibility is determined
using the QPA algorithm until a feasible task is found. This process is performed in the
following steps:

• A task τi : (0, Ci, Pi, Di) ∈ Γm such that it has the minimum deadline among the tasks
in Γm and is not previously tested is selected

• τi is split into two subtasks τ′i : (C′, Pi, Di = C′) and τ
′′
i : (Ci − C′, Pi, D_i− C′) using

C=D heuristic such that U(Γm) + U
(
τ′i
)
−U(τi) = 1

• In Γm, τi is replaced by τ′i and its feasibility is determined using QPA algorithm

Symmetry 2021, 13, 1488 8 of 26

• If Γm is feasible then it is allocated to the core m otherwise the next task is tested in the
similar way

• If no task in Γm is found feasible then for each task τi the worst-case execution time of
τ′i is reduced and tested again

• This process continuous until a feasible task is found or the worst-case execution time
of τ′i for each task becomes equal to zero

Algorithm 1 Task-Allocation under the EDFwC=D-TS Algorithm

Input: (i) Set of n real-time implicit-deadline periodic tasks Γ = {τ1, τ2, . . . , τn} where tasks are sorted in descending order of their
utilization i.e., Ui > Uj ∀i < j. (ii) Single-ISA heterogeneous multicore processor S = {S1, S2, . . . , SM} having M processing cores
where processing cores are sorted in descending order of their processing speed i.e., Si > Sj ∀i < j.
Output: Assigns tasks to cores; and returns success if Γ is feasible on S
1: M = |S|; i = 1; m = 1; U

(
Γm (m=1, 2, ..., M)

)
= 0

2: While Γ 6= ∅ AND m ≤ M Do
3: Ui =

Ci
Si×Pi

4: U(Γm) = U(Γm) + Ui
5: If U(Γm) < 1 Then
6: Γ = Γ− τi
7: Γm = Γm ∪ τi
8: ElseIf U(Γm) == 1 Then
9: Γ = Γ− τi
10: Γm = Γm ∪ τi
11: m = m + 1
12: Else
13: U(Γm) = U(Γm) − Ui
14: For j = i + 1 to | Γ | Do
15: U(Γm) = U(Γm) + Uj
16: If U(Γm) < 1 Then
17: Γ = Γ− τi
18: Γm = Γm ∪ τi
19: ElseIf U(Γm) == 1Then
20: Γ = Γ− τi
21: Γm = Γm ∪ τi
22: m = m + 1
23: break;
24: Else
25: U(Γm) = U(Γm) − Ui
26: End If
27: End For
28: U(Γm) = U(Γm) + U|Γ|
29: Γ = Γ− τi
30: Γm = Γm ∪ τi
31: Γm= split− task(Sm, Γm, U(Γm))
32: End If
33: End While
34: If m ≤ M Then
35: return (“Allocation is Success f ul”)
36: Else
37: return (“Allocation Failed”)
38: End If

The task-splitting process used in EDFwC=D-TS is given in Algorithm 2. Since
the total system utilization of tasks assigned to core m is greater than its capacity, i.e.,
U(Γm) > 1, Algorithm 2 first computes the fraction of U(Γm) by which it exceeds the core’s
capacity (Line 2). Furthermore, due to the reason that the suitability of tasks for splitting is
determined in ascending order of their deadlines, consequently tasks in Γm are sorted in
ascending order of their deadlines (Line 3). In the next step, for each task the fraction of

Symmetry 2021, 13, 1488 9 of 26

worst-case execution requirements (C′i) that can be allocated to core m given that this task
is chosen for splitting is computed (Line 4–6).

Once these basic computations are made, Algorithm 2 splits each task τi ∈ Γm into two
subtasks, τ′i and τ

′′
i , one by one and determines their feasibility using the QPA Algorithm

(Lines 9–22). To support the varying processing power of cores, the processor demand
function is modified as given in Equation (11).

h(t) = Max

(
0,
|Γm |

∑
j=1

⌊
t + Pj − Dj

Pj

⌋)
×
(

C′i
Sm

)
(11)

when the splitting of some task τi is found feasible on core m then τi is replaced with τ′i in
Γm and Γm is allocated to the core m. If none of the tasks is found feasible for splitting then
the worst-case execution requirements (C′i) of tasks is reduced using the recursive function
presented in [16] (Lines 23–30). However, to support varying processing speed of cores
some basic modifications are required as given in Equation (12).

C′i(r + 1) =
1− oth(t)⌊
t+Pi−C′i (r)

Pi

⌋ (12)

where

C′i(r) =
C′i
Sm

and

oth(t) = ∑
τj∈Γm∧τj 6=τi

⌊ t + Pj − Dj

Pi

⌋
For the reduced C′i of each task, the feasibility of task-splitting is determined again

until some feasible task-splitting is found. If the reduced C′i for all tasks reaches to 0
then the task-splitting is failed. In this case, the minimum utilization task τi ∈ Γm
is removed from Γm and added to the set of unassigned tasks Γ (Lines 32–34). If the
task-splitting is successful, i.e., a task τi ∈ Γm is split into two subtasks τ′i and τ

′′
i then

τ
′′
i , defined by

(
C′i /(Sm), Ci − C′i , Di − C′i , Pi

)
, is assigned to the slowest core where it is

feasible (Lines 35–46). Here, it can be seen that the additional offset of τ
′′
i is increased from

0 to C′i
S¬m

. This ensures that τ′i and τ
′′
i never execute simultaneously. Finally, Algorithm 2

returns Γm (Line 47).

Analysis of Task-Splitting in EDFwC=D-TS Scheduling

Usually, partitioned scheduling fails to fully utilize the processor capacity. Consider
the allocation of tasks to the core m. Suppose, Γm is the set of tasks that are already assigned
to the core m. Further assume that none of the unassigned tasks can be assigned entirely
to core m then 1−U(Γm) capacity of the core m will remain unused. Similarly, the total
wasted capacity on the processor S denoted by λ(S) can be calculated as given below:

λ(S) =
M

∑
j=1

(
1−U

(
Γj
))

Semi-partitioned scheduling aims at using this wasted processor capacity to improve
the system schedulability. In EDFwC=D-TS scheduling, during allocation of tasks to the
core m, when τi is split the gained advantage can be written as:

U
(
τ′i
)
=

C′i
Pi × Sm

Symmetry 2021, 13, 1488 10 of 26

Algorithm 2 Split-task process under EDFwC=D-TS Scheduling

Input: (i) Processing core having processing power Sm, which is currently being considered for task allocation. (ii) Set of tasks Γm
where Γm ⊆ Γ and contains the tasks which are assigned to core m by Algorithm 1. (iii) System utilization of Γm i.e., U(Γm)
Output: Selects a task τi ∈ Γm and splits it into two subtasks.
1: f lag = f lase
2: udi f f = U(Γm)− 1
3: sort_increasing(Γm, Deadline) // sort tasks in Γm; in increasing order
of deadline
4: For i = 1 to |Γm| Do
5: Ctemp[i] = Ci − (Sm × udi f f × Pi)
6: End For
7: While f lag == f alse Do
8: f lagzero = f lase
9: For i = 1 to |Γm| Do
10: Γtemp = Γm
11: Γtemp[i]⇐

(
0, Ctemp[i], Ctemp[i], Pi

)
12: If Ci 6= 0 Then
13: f lagzero = true
14: Result = Q.P.A

(
Γtemp

)
15: If Result == Feasible Then
16: Γm[i]⇐

(
0, Ctemp[i], Ctemp[i], Pi

)
17: τ′′i ⇐

(
Ctemp [i]

Sm
, Ci − Ctemp[i], Di − Ctemp[i], Pi

)
18: m = m + 1
19: f lag = true
20: End If
21: End If
22: End For
23: If result 6= f easible AND f lagzero == true Then
24: For i = 1 to |Γm| Do
25: Ctemp[i] = Re− compute(C)
26: End For
27: ElseIf f lagzero == f alse Then
28: f lag == true
29: End ElseIf
30: End If
31: End While
32: If result 6= f easible Then
33: Γ = Γ ∪ minU(Γm)
34: Γm = Γm −minU(Γm)
35: else
36: Assing f lag = f alse
37: While Assing f lag == f alse ∧M > m Do
38: U(ΓM) = U(ΓM) + U

τ
′′
i

39: If U(ΓM) > 1 Then
40: M = M− 1
41: Else
42: ΓM = ΓM ∪ τ′′i
43: Assing f lag = true
44: End If
45: M = M− 1
46: End While
47: If Assing f lag = f alse Then
48: return “Task set is not feasible”
45: End If
46: End If
47: return Γm

Symmetry 2021, 13, 1488 11 of 26

Task-splitting has non-zero penalty on the system. It is incurred in the form of in-
creased system utilization of the split task. Suppose a task τi ∈ Γm is split into two subtasks
τ′i :

(
0, C′i , C′i /Sm, Pi

)
and τ

′′
i :
(
C′i /Sm, Ci − C′i , Di − C′i /Sm, Pi

)
, then the utilization of split

tasks is always higher than τi. From now onwards we call it the task splitting penalty and
it is given by Inequality 13:

U
(
τ′i
)
+ U

(
τ
′′
i
)
> U(τi) (13)

If we replace U
(
τ′i
)
, U
(
τ
′′
i
)
, and U(τi) with their actual value then the task-splitting

penalty (ρ(τi)) can be written as given in equality 14:

ρ(τi) =
C′i

Di × Sm
+

Ci − C′i(
Di −

C′i
Pi×Sm

)
× Sm

− Ci
Pi × Sm

(14)

Now, if the advantage of task-split always remains greater than its overhead then we
can say that task-splitting benefits the system. This condition is given by Inequality 15:

C′i
Pi × Sm

>
C′i

Di × Sm
+

Ci − C′i(
Di −

C′i
Pi×Sm

)
× Sm

− Ci
Pi × Sm

(15)

In the following, we prove that task-splitting always benefits the system.

Theorem 1. The advantage gained due to task-splitting in EDFwC=D-TS scheduling is always
greater than its overhead on the system.

Proof of Theorem 1. We assume that currently tasks are being assigned to the core m.
Furthermore, we assume that τi is selected to split into two subtasks, τ′i and τ

′′
i , and τ′i is

assigned to the core m. To proof Theorem 1, we have to show that:

C′i
Pi × Sm

>
C′i

Di × Sm
+

Ci − C′i(
Di −

C′i
Pi×Sm

)
× Sm

− Ci
Pi × Sm

⇒
Ci − C′i(

Di −
C′i

Pi×Sm

)
× Sm

− Ci
Pi × Sm

+
C′i

Pi × Sm
−

C′i
Di × Sm

< 0 (16)

As in implicit-deadline task model Pi = Di, the Inequality 16 can be written as:

Ci − C′i(
Di −

C′i
Pi×Sm

)
× Sm

− Ci
Pi × Sm

< 0

⇒
Ci − C′i(

Di −
C′i

Pi×Sm

)
× Sm

−
Ci − C′i + C′i

Pi × Sm
< 0 (1)

⇒
Ci − C′i(

Di −
C′i

Pi×Sm

)
× Sm

−
Ci − C′i
Pi × Sm

−
C′i

Pi × Sm
< 0 (2)

⇒
Ci − C′i(

Di −
C′i

Pi×Sm

)
× Sm

−
Ci − C′i
Pi × Sm

<
C′i

Pi × Sm
(17)

Symmetry 2021, 13, 1488 12 of 26

As Ci−C′i
Pi×Sm

<
Ci−C′i(

Di−
C′i

Pi×Sm

)
×Sm

, therefore by replacing a smaller value with a larger value:

Ci − C′i(
Di −

C′i
Pi×Sm

)
× Sm

−
Ci − C′i(

Di −
C′i

Pi×Sm

)
× Sm

<
C′i

Pi × Sm
⇒ 0 <

C′i
Pi × Sm

Since C′i
Pi×Sm

> 0, therefore it is proved that the advantage gained due to the task-
splitting remains always greater than its overhead on the system. �

Now, we show that the task-splitting under EDFwC=D-TS satisfies the necessary
task-splitting condition, i.e., the split tasks can never execute simultaneously.

Theorem 2. Given a task τi , split into two subtasks τ′i : (0, C′i , C′i /Sm, Pi) and τ
′′
i : (C′i /Sm, Ci

−C′i , Di − C′i /Sm, Pi) using the Algorithm 2. If τ′i is assigned to core m where m < M and τ
′′
i is

assigned to some other core k where m < k ≤ M then τ′i and τ
′′
i can never execute simultaneously.

Proof of Theorem 2. Since the task-splitting under EDFwC=D-TS assigns an additional-
offset equal to C′i /Sm to τ

′′
i , τ

′′
i remains in blocked state for C′i /Sm for an amount of time

after its release. To show that τ′i and τ
′′
i can never execute simultaneously, we have to prove

that τ′i is always completed before the additional-offset of τ
′′
i , i.e., the worst-case response

time of τ′i always remains less than or equal to the additional-offset of τ
′′
i . It can be written

as:
R
(
τ′i
)
≤ δi

⇒ R
(
τ′i
)
≤

C′i
Sm

(18)

The worst-case response time of a task is equal to the sum of its execution time and the
interference from high priority tasks before its completion. Since τ′i has the highest priority,
therefore its worst-case response time always remains equal to its worst-case execution
time, i.e.,

R
(
τ′i
)
=

C′i
Sm

(19)

By comparing Equations (18) and (19), it is clear that the necessary task-splitting
condition is satisfied in EDFwC=D-TS scheduling. �

In Theorem 2, we have showed that due to the assignment of additional offset δi to
the split task, τ

′′
i ensures that τ′i and τ

′′
i never execute simultaneously, since, during δi

time interval, τ
′′
i remains blocked. Therefore, it is required to ensure that it does hurt its

deadline. We prove this property in Theorem 3.

Theorem 3. Given a task τi, split into two subtasks τ′i : (0, C′i , C′i /Sm, Pi) and τ
′′
i : (C′i /Sm, Ci

−C′i , Di − C′i /Sm, Pi) using Algorithm 2. If τ′i is assigned to core m where m < M and τ
′′
i is

assigned to some other core k where m < k ≤ M then the assignment of additional offset (δi) to
τ
′′
i does not affect its schedulability.

Proof of Theorem 3. We assume that a task τi is split into two subtasks, τ′i :
(
0, C′i , C′i /Sm, Pi

)
and τ

′′
i :

(
C′i /Sm, Ci − C′i , Di − C′i /Sm, Pi

)
. Further assume that τ′i is allocated to core m

while τ
′′
i is allocated to some other core k where m < k ≤ M. Since, τ

′′
i is feasible on core k,

therefore:

R
(
τ
′′
i
)
≤ Di −

C′i
Sm

⇒ Ihp(i) + Ci − C′i ≤ Di −
C′i
Sm

(20)

Symmetry 2021, 13, 1488 13 of 26

Now, to show that τ
′′
i remains schedulable after the assignment of additional offset

(δi) we have to prove that:

(
τ
′′
i
)
+ δi ≤ Di⇒ Ihp(i) + Ci − C′i +

C′i
Sm
≤ Di

⇒ Ihp(i) + Ci − C′i ≤ Di −
C′i
Sm

(21)

By comparing Inequalities 20 and 21 it is proved that the assignment of additional
offset to τ

′′
i does not affect its deadline. �

After proving that the task-splitting under EDFwC=D-TS maintains operational accu-
racy, now we show that the indexing of processor cores used in EDFwC=D-TS task-splitting
reduces the task-splitting penalty.

Theorem 4. Given a Single-ISA heterogeneous multicore processor S having M cores, the indexing
of cores in descending order of their processing speed reduces the task-splitting penalty.

Proof of Theorem 4. Suppose the task τi is split into two subtasks τ′i :
(
0, C′i , C′i /Sm , Pi

)
and τ

′′
i :

(
C′i /Sm, Ci − C′i , Di − C′i /Sm, Pi

)
using Algorithm 2. Further assume that τ′i is

assigned to core m where m < M and τ
′′
i is assigned to some other core k where m < k ≤ M.

From (14), the task-splitting penalty is given by:

ρ(τi) =
C′i

Di × Sm
+

Ci − C′i(
Di −

C′i
Pi×Sm

)
× Sm

− Ci
Pi × Sm

(22)

Given a single-ISA heterogeneous multicore processor S has M cores, the indexing of
cores in descending order of their processing speed reduces the task-splitting penalty.

That is, ρ(τi) time on core k is wasted due to task-splitting. Now, assume that Sk is
the processing speed of kth core when processor cores are sorted in descending order of
their processing speeds; while S∗k is its processing speed when processor cores are sorted in
ascending order of their processing speeds then:

S∗k ≥ Sk

Now, the ρ(τi) when the processor cores are sorted in descending order of their
processing speeds is given by (23):

ρ(τi)× Sk (23)

Furthermore, the ρ(τi) when the processor cores are sorted in ascending order of their
processing speeds is given by (24):

ρ(τi)× S∗k (24)

Since S∗k ≥ Sk, therefore by comparing (20) and (21) it is proved that the task-splitting
penalty is lower when processor cores are sorted in descending order of their processing
speed. �

Task-splitting under EDFwC=D-TS assigns the τ
′′
i to the lowest index core where it is

feasible. We can show by using the Theorem 4 that this approach helps to minimize the
task-splitting overhead. We prove this in Theorem 5.

Theorem 5. Given a task τi is split into two subtasks τ′i :
(
0, C′i , C′i /Sm, Pi

)
and τ

′′
i : (C′i /Sm, Ci

−C′i , Di − C′i /Sm, Pi) using Algorithm 2, if τ′i is assigned to core m where m < M and τ
′′
i is

assigned to some other core k where m < k ≤ M then the task-splitting penalty is minimized if
k = M provided that the processor cores are indexed in descending order of their processing speed.

Proof of Theorem 5. Assume that the task τi ∈ Γm is split into two subtasks τ′i : (0, C′i , C′i /
Sm, Pi) and τ

′′
i : (C′i /Sm, Ci − C′i , Di − C′i /Sm, Pi) using Algorithm 2. Further assume that

Symmetry 2021, 13, 1488 14 of 26

τ′i is assigned to the core m where m < M and τ
′′
i is assigned to some other core k where

m < k ≤ M. From (14), the time wasted on core k due to task-splitting is given by (25):

ρ(τi) = (
C′i

Di × Sm
+

Ci − C′i
(Di −

C′i
Pi×Sm

)× Sm

− Ci
Pi × Sm

)× Sk (25)

As the processor cores are sorted in descending order of their processing speed,
therefore:

min
k→M

(Sk) (26)

From (13):

U
(
τ′i
)
+ U

(
τ
′′
i
)
> U(τi)⇒

C′i
Di × Sm

+
Ci − C′i(

Di −
C′i

Pi×Sm

)
× Sm

>
Ci

Pi × Sm

⇒
C′i

Di × Sm
+

Ci − C′i(
Di −

C′i
Pi×Sm

)
× Sm

− Ci
Pi × Sm

> 0 (27)

By comparing (25) and (27) it is clear that ρ(τi) keeps on increasing as Sk increases.
Furthermore, (26) shows that Sk decreases as k→ M and it is minimum when k = M.
Therefore, it can be concluded that ρ(τi) decreases as k→ M and it is minimum when
k = M. �

4.3. The EDFwC=D-TS Scheduling Algorithm

After discussing the task-allocation, now we present the EDFwC=D-TS scheduling
algorithm. In EDFwC=D-TS scheduling given by Algorithm 3, the given workload is
first distributed among the processor cores using the Algorithm 1 (Lines 1–5). On each
core j, initial task priorities are assigned using the EDF algorithm (Lines 6–7). At time
t = 0, the highest priority task is executed on each core (Lines 9–10). Whenever a task
is completed, the highest priority ready task is executed next (Lines 11–12). Similarly,
when a task is released its absolute deadline is compared with the absolute deadline of
the currently executing task and the task with earliest absolute deadline is selected for
execution (Lines 13–16).

4.4. Working Example

In this section, in order to illustrate the working of EDFwC=D-TS algorithm, we apply
it on an example task-set. We have assumed a power asymmetric multicore processor
having 3 cores, defined by the set S = {2.0 GHz, 1.5 GHz, 1.0 GHz}. The workload consists
of 10 synchronous periodic implicit-deadline real-time tasks given by Table 2.

Table 2. Example Task-set.

Task
(τi)

CPU Cycles Required in
Worst-Case (Ci)

Task Period
(Pi)

Task Deadline
(Di)

System Utilization
Factor
(Ci

Di
)

τ1 4×109 6 s * 6 s 0.6667
τ2 3×109 5 s 5 s 0.6
τ3 6×109 12 s 12 s 0.5
τ4 6×109 12 s 12 s 0.5
τ5 9×109 20 s 20 s 0.45
τ6 12×109 30 s 30 s 0.40
τ7 2×109 6 s 6 s 0.3333
τ8 5×109 15 s 15 s 0.3333
τ9 4×109 15 s 15 s 0.2667
τ10 1×109 4 s 4 s 0.25

* s stands for seconds.

Symmetry 2021, 13, 1488 15 of 26

Algorithm 3: EDFwC=D-TS Scheduling Algorithm

Input: (i) Set of tasks Γ = {τ1, τ2, . . . , τn} with Pi ≥ Pj ∀ i > j (ii) a Single-ISA heterogeneous multicore
processor S = {S1, S2, . . . , SM} with Si ≥ Sj ∀i < j
Output: Schedule Γ on S
1: rv = Task− Allocation(Γ, S) // partition task-set using Algorithm 3.1
2: If rv == “Feasible” Then
3: For j = 1 to M Do
4: Corej ⇐ Γj // Assign Γj ⊆ Γ to core j
5: End For
6: On each core j :
7: Assign priorities to each τi ∈ Γj according to EDF Algorithm
8: While (System Remains Active) Then
9: t = 0 // At beginning
10: Corej ⇐ τh(p)
11: On task completion
12: Corej ⇐ τh(p)
13: On task release
14: If d(τrel) < d(τcur) Then
15: Corej ⇐ τrel
16: End If
17: End While
18: Else
19: Print “Fail to Schedule”
20: End If

As EDFwC=D-TS algorithm assumes that processor cores are sorted in descending
order of their speeds, therefore tasks are first allocated to the core having highest processing
speed, i.e., 2.0 GHz. Initially, the utilization of core 1 is set to 0, i.e., U1 = 0. The system
utilization factor of τ1 on core 1 is 0.3333 (calculation is given below):

C1

P1 × S1
=

4× 105

6× 2× 105 = 0.3333

After allocating τ1 to core 1, its utilization becomes 0.3333 (U1 = 0 + 0.3333). Since
U1 < 1, therefore, τ1 is feasibly allocated to core 1. Next, the τ2 is considered for allocation
on core 1. Its system utilization factor on core 1 is 0.3. After allocating τ2 to core 1, U1 turns
out to be 0.6333 (U1 = 0.3333 + 0.3 = 0.6333). Since U1 is still less than the capacity of the
core 1, i.e., 1, therefore τ2 is also feasible on core 1. Subsequently, τ3 is assigned to core
1 after τ2. The system utilization factor of τ3 on core 1 is 0.25 and after allocating τ3 to
core 1 U1 grows to 0.8833. The next task considered for allocation to the core 1 is τ4. The
system utilization factor of τ4 on core 1 is 0.25. After allocating τ4 to core 1, its utilization
becomes 0.1333. Since U1 gets greater than the capacity of core 1, therefore τ4 is not feasible
on core 1.

Now, the next task, i.e., τ5, is considered for allocation to core 1. The utilization
factor of τ5 on core 1 is 0.225 and if this task is allocated to core 1 then U1 becomes 1.1083.
Therefore, τ5 is also not feasible on core 1. We continue to test the feasibility of remaining
tasks. Since none of the remaining tasks, i.e., from τ6 to τ10, is feasible on core 1, therefore
τ10 which has the lowest utilization factor, is added to Γ1 and task splitting is performed.

Task-splitting under EDFwC=D-TS scheduling (given by Algorithm 2) selects a task
from Γ1 that is most suitable for splitting, i.e., maximizes the U1 without hurting the
system feasibility. The suitability of tasks for splitting is determined in decreasing order
of their deadlines. Since τ10 has the least deadline among the tasks in Γ1, therefore its
suitability for splitting is determined first. For this, τ10 is split into two subtasks: τ′10 and
τ
′′
10 such that U

(
Γ1 − τ

′′
2
)
= 1. Subtasks of τ10 are: τ′10 :

(
0, 0.932272× 105, 0.466136, 4

)
and τ

′′
10 :

(
0.466136, 0.067728× 105, 3.533864, 4

)
. Now, τ10 is replaced with τ′10 in Γ1 and

the feasibility of Γ1 is determined using the QPA Algorithm.
The QPA Algorithm determines the feasibility of Γ1 in the following steps:

• The value of L is calculated using Equation (3); L = 59.99204
• Value of dmin is set to 0.466136
• The initial value of t is assigned using t = max{d_i |d_i < L}; t = 56.466136

Value of h(t) is calculated against each value of t (calculations are given in Table 3).

Symmetry 2021, 13, 1488 16 of 26

Table 3. Value of h(t) against each value of t.

t h(t) t h(t)

56.46136 53.49204 28.729088 25.229088
53.49204 49.525904 25.229088 24.762952

49.525904 47.559768 24.762952 23.262952
47.559768 42.093632 23.262952 17.796816
42.093632 40.127496 17.796816 13.83068
40.127496 37.66136 13.83068 11.86544
37.66136 36.16136 11.86544 6.398408
36.16136 35.695224 6.398408 4.432272

35.695224 30.695224 4.432272 0.466136
30.695224 28.729088

Since at t = 4.432272 the value of h(t) is 0.466136 and t < dmin, it leads to the
conclusion that Γ1 =

{
τ1, τ2, τ3, τ′10

}
is feasible on core 1. Now, τ

′′
10 is assigned to the

slowest core where it is feasible. Since core 3 is the slowest core and currently no task
is assigned to it, therefore U3 = 0. The system utilization factor of τ

′′
10 on core 3 is 0.016.

Therefore, it is feasible on core 3. Similarly, the remaining tasks are allocated to core 2 and 3.
The final task allocation is given in Table 4.

Table 4. Final task allocation.

Core Allocated Tasks Processor Utilization

1
τ1 :

(
0, 4× 109, 6, 6

)
, τ2 :

(
0, 3× 109, 5, 5

)
,

τ3 :
(
0, 6× 109, 12, 12

)
, τ′10 :

(
0, 932272× 109, 0.466136, 4

) 1

2
τ′4 :

(
0, 4.571592× 109, 3.047728, 12

)
, τ5 :

(
0, 9× 109, 20, 20

)
,

τ6 :
(
0, 12× 109, 30, 30

)
, τ9 :

(
0, 4× 109, 15, 15

) 1

3
τ′′4 :

(
3.047728, 1.428408× 109, 8.952272, 12

)
,

τ7 :
(
0, 2× 109, 6, 6

)
, τ8 :

(
0, 5× 109, 15, 15

)
,

τ′′10 :
(
0.466136, 0.067728× 109, 3.533864, 4

) 0.8454

Once the task-allocation phase is completed, tasks are scheduled on each core using
the EDF algorithm. On core 1, at t = 0, the first job of τ1, τ2, τ3, and τ′10 is ready for
execution. Since τ′10 has the least absolute deadline, therefore it is executed first. The

worst-case execution time of τ′10 on core 1 is 0.466136 s
(

C′10
S1

= o.9322272×109

2×199 = 0.466136
)

.

At t = 0.466136, the first job of τ′10 is completed. Since, at t = 0.466136, τ2 has the least
absolute deadline among the ready tasks, therefore its first job is started. At t = 1.9666136,
J2,1 is completed and τ1 is started. The WCET of τ1 on core 1 is 2; therefore, it is completed
at t = 3.9666136. τ3 is the only ready task at t = 3.9666136, therefore its first job is started.
At t = 4, second job of τ′10 (J′10,2) is released. Since, J′10,2 has earlier absolute deadline, i.e.,
8 than currently executing task J3,1 therefore, J3,1 is preempted and J′10,2 is executed. The
execution of tasks continues in the similar way. The Gantt chart showing the execution of
tasks on core 1 during the first hyper-period is given in Figure 1.

The Gantt chart showing the execution of tasks on core 2 is given in Figure 2 while is
Figure 3 shows the execution of tasks on core 3.

Symmetry 2021, 13, 1488 17 of 26

Symmetry 2021, 13, x FOR PEER REVIEW 17 of 27

Table 4. Final task allocation.

Core Allocated Tasks Processor Utilization

1
𝜏ଵ: ሺ0, 4 ൈ 10ଽ, 6, 6ሻ, 𝜏ଶ: ሺ0, 3 ൈ 10ଽ, 5, 5ሻ, 𝜏ଷ: ሺ0, 6 ൈ 10ଽ, 12, 12ሻ, 𝜏′ଵ଴: ሺ0, 932272 ൈ

10ଽ, 0.466136, 4ሻ
1

2
𝜏ସ
ᇱ : ሺ0,4.571592 ൈ 10ଽ, 3.047728, 12ሻ, 𝜏ହ: ሺ0, 9 ൈ 10ଽ, 20, 20ሻ, 𝜏଺: ሺ0, 12 ൈ 10ଽ, 30, 30ሻ,

𝜏ଽ: ሺ0, 4 ൈ 10ଽ, 15, 15ሻ
1

3
𝜏′′ସ: ሺ3.047728,1.428408 ൈ 10ଽ, 8.952272, 12ሻ, 𝜏଻: ሺ0, 2 ൈ 10ଽ, 6, 6ሻ, 𝜏଼: ሺ0,5 ൈ 10ଽ, 15,15ሻ,

𝜏′′ଵ଴: ሺ0.466136, 0.067728 ൈ 10ଽ, 3.533864, 4ሻ
0.8454

Once the task‐allocation phase is completed, tasks are scheduled on each core using

the EDF algorithm. On core 1, at 𝑡 ൌ 0, the first job of 𝜏ଵ, 𝜏ଶ, 𝜏ଷ, and 𝜏ଵ଴ᇱ is ready for ex‐
ecution. Since 𝜏ଵ଴ᇱ has the least absolute deadline, therefore it is executed first. The

worst‐case execution time of 𝜏ଵ଴
ᇱ on core 1 is 0.466136 s ቀ

஼భబ
ᇲ

ௌభ
ൌ ௢.ଽଷଶଶଶ଻ଶൈଵ଴వ

ଶൈଵଽవ
ൌ 0.466136ቁ.

At 𝑡 ൌ 0.466136, the first job of 𝜏ଵ଴ᇱ is completed. Since, at 𝑡 ൌ 0.466136, 𝜏ଶ has the least
absolute deadline among the ready tasks, therefore its first job is started. At 𝑡 ൌ
 1.9666136, 𝐽ଶ,ଵis completed and 𝜏ଵis started. The WCET of 𝜏ଵ on core 1 is 2; therefore, it
is completed at 𝑡 ൌ 3.9666136. 𝜏ଷ is the only ready task at 𝑡 ൌ 3.9666136, therefore its
first job is started. At 𝑡 ൌ 4, second job of 𝜏ଵ଴ᇱ (𝐽ଵ଴,ଶ

ᇱ) is released. Since, 𝐽ଵ଴,ଶ
ᇱ has earlier

absolute deadline, i.e., 8 than currently executing task 𝐽ଷ,ଵtherefore, 𝐽ଷ,ଵ is preempted and

𝐽ଵ଴,ଶ
ᇱ is executed. The execution of tasks continues in the similar way. The Gantt chart

showing the execution of tasks on core 1 during the first hyper‐period is given in Figure

1.

Figure 1. Execution of tasks on core 1 (𝑆ଵ ൌ 2𝐺𝐻𝑧, Гଵ ൌ ሼ𝜏ଵ, 𝜏ଶ, 𝜏ଷ, 𝜏ଵ଴ᇱ ሽ).

The Gantt chart showing the execution of tasks on core 2 is given in Figure 2 while is

Figure 3 shows the execution of tasks on core 3.

Figure 2. Execution of tasks on Core 2 (𝑆2 ൌ 1.5 𝐺𝐻𝑧, Г2 ൌ ሼ𝜏4
′ , 𝜏5, 𝜏6ሽ).

Figure 1. Execution of tasks on core 1 (S1 = 2GHz, Γ1 =
{

τ1, τ2, τ3, τ′10
}

).

Symmetry 2021, 13, x FOR PEER REVIEW 17 of 27

Table 4. Final task allocation.

Core Allocated Tasks Processor Utilization

1
𝜏ଵ: ሺ0, 4 ൈ 10ଽ, 6, 6ሻ, 𝜏ଶ: ሺ0, 3 ൈ 10ଽ, 5, 5ሻ, 𝜏ଷ: ሺ0, 6 ൈ 10ଽ, 12, 12ሻ, 𝜏′ଵ଴: ሺ0, 932272 ൈ

10ଽ, 0.466136, 4ሻ
1

2
𝜏ସ
ᇱ : ሺ0,4.571592 ൈ 10ଽ, 3.047728, 12ሻ, 𝜏ହ: ሺ0, 9 ൈ 10ଽ, 20, 20ሻ, 𝜏଺: ሺ0, 12 ൈ 10ଽ, 30, 30ሻ,

𝜏ଽ: ሺ0, 4 ൈ 10ଽ, 15, 15ሻ
1

3
𝜏′′ସ: ሺ3.047728,1.428408 ൈ 10ଽ, 8.952272, 12ሻ, 𝜏଻: ሺ0, 2 ൈ 10ଽ, 6, 6ሻ, 𝜏଼: ሺ0,5 ൈ 10ଽ, 15,15ሻ,

𝜏′′ଵ଴: ሺ0.466136, 0.067728 ൈ 10ଽ, 3.533864, 4ሻ
0.8454

Once the task‐allocation phase is completed, tasks are scheduled on each core using

the EDF algorithm. On core 1, at 𝑡 ൌ 0, the first job of 𝜏ଵ, 𝜏ଶ, 𝜏ଷ, and 𝜏ଵ଴ᇱ is ready for ex‐
ecution. Since 𝜏ଵ଴ᇱ has the least absolute deadline, therefore it is executed first. The

worst‐case execution time of 𝜏ଵ଴
ᇱ on core 1 is 0.466136 s ቀ

஼భబ
ᇲ

ௌభ
ൌ ௢.ଽଷଶଶଶ଻ଶൈଵ଴వ

ଶൈଵଽవ
ൌ 0.466136ቁ.

At 𝑡 ൌ 0.466136, the first job of 𝜏ଵ଴ᇱ is completed. Since, at 𝑡 ൌ 0.466136, 𝜏ଶ has the least
absolute deadline among the ready tasks, therefore its first job is started. At 𝑡 ൌ
 1.9666136, 𝐽ଶ,ଵis completed and 𝜏ଵis started. The WCET of 𝜏ଵ on core 1 is 2; therefore, it
is completed at 𝑡 ൌ 3.9666136. 𝜏ଷ is the only ready task at 𝑡 ൌ 3.9666136, therefore its
first job is started. At 𝑡 ൌ 4, second job of 𝜏ଵ଴ᇱ (𝐽ଵ଴,ଶ

ᇱ) is released. Since, 𝐽ଵ଴,ଶ
ᇱ has earlier

absolute deadline, i.e., 8 than currently executing task 𝐽ଷ,ଵtherefore, 𝐽ଷ,ଵ is preempted and

𝐽ଵ଴,ଶ
ᇱ is executed. The execution of tasks continues in the similar way. The Gantt chart

showing the execution of tasks on core 1 during the first hyper‐period is given in Figure

1.

Figure 1. Execution of tasks on core 1 (𝑆ଵ ൌ 2𝐺𝐻𝑧, Гଵ ൌ ሼ𝜏ଵ, 𝜏ଶ, 𝜏ଷ, 𝜏ଵ଴ᇱ ሽ).

The Gantt chart showing the execution of tasks on core 2 is given in Figure 2 while is

Figure 3 shows the execution of tasks on core 3.

Figure 2. Execution of tasks on Core 2 (𝑆2 ൌ 1.5 𝐺𝐻𝑧, Г2 ൌ ሼ𝜏4
′ , 𝜏5, 𝜏6ሽ). Figure 2. Execution of tasks on Core 2 (S2 = 1.5 GHz, Γ2 =

{
τ′4, τ5, τ6

}
).

Symmetry 2021, 13, x FOR PEER REVIEW 18 of 27

Figure 3. Execution of tasks on Core 3 (𝑆3 ൌ 1.0 𝐺𝐻𝑧, Г3 ൌ ሼ𝜏′′4,𝜏8, 𝜏′′10}).

5. Experimental Evaluation

In this section, we have evaluated the effectiveness of EDFwC=D‐TS algorithm

through. We have developed our simulator in Java. Our simulator generates synthetic

task‐sets using the UUniFast algorithm [40] and then performs required analysis on these

task‐sets. Detail of experimental set‐up and performed analysis is given in subsequent

sections.

5.1. Experimental Setup

5.1.1. Task and System Parameters

We have measured the performance of EDFwC=D‐TS algorithm through simulations

on randomly generated synthetic task‐sets. We have generated a total of 105 task‐sets for

each experiment. Each task‐set contained 8 to 64 tasks, i.e., |𝛤| ∈ ሾ8 െ 64ሿ. Task parame‐

ters are set as follows: 𝐶௜ ∧ 𝐷௜ ∧ 𝑃௜ ∈ ሾ10 െ 100ሿ. Values of task parameter are set in such a

way that the total system utilization factor remained between 0.90 and 1.0, i.e., 𝑈 ∈
ሼ0.85, … ,1.0ሽ. To execute these tasks, we have considered a power asymmetric multicore

processor. First, we have executed the tasks on 2‐core processor and then the experiments

are repeated on 4‐core, 6‐core, and 8‐core processors. The task‐set and system parameters

are summarized in Table 5.

Figure 3. Execution of tasks on Core 3 (S3 = 1.0 GHz, Γ3 =
{

τ′′4 , τ8, τ′′10
}

).

Symmetry 2021, 13, 1488 18 of 26

5. Experimental Evaluation

In this section, we have evaluated the effectiveness of EDFwC=D-TS algorithm through.
We have developed our simulator in Java. Our simulator generates synthetic task-sets
using the UUniFast algorithm [40] and then performs required analysis on these task-sets.
Detail of experimental set-up and performed analysis is given in subsequent sections.

5.1. Experimental Setup
5.1.1. Task and System Parameters

We have measured the performance of EDFwC=D-TS algorithm through simulations
on randomly generated synthetic task-sets. We have generated a total of 105 task-sets
for each experiment. Each task-set contained 8 to 64 tasks, i.e., |Γ| ∈ [8− 64]. Task
parameters are set as follows: Ci ∧ Di ∧ Pi ∈ [10− 100]. Values of task parameter are
set in such a way that the total system utilization factor remained between 0.90 and 1.0,
i.e., U ∈ {0.85, . . . , 1.0}. To execute these tasks, we have considered a power asymmetric
multicore processor. First, we have executed the tasks on 2-core processor and then the
experiments are repeated on 4-core, 6-core, and 8-core processors. The task-set and system
parameters are summarized in Table 5.

Table 5. Task and system parameters for simulations.

Task Parameters

Total Task-Sets
Task-Set

Cardinality
(n)

Task Parameters
(Ci, Pi, Di)

System Utilization
Factor (U)

105 {8, . . . , 64}
{

10× 109, . . . , 100× 109},
{10, . . . , 100}, {10, . . . , 100}

{0.90, . . . , 1.0}

Processor Specification

2 {1.01 GHz, 3.1 GHz}
4 {1.01 GHz,1.5 3 GHz, 2.1 GHz, 3.1 GHz}
6 {1.01 GHz, 1.53 GHz, 1.81 GHz, 2.1 GHz, 2.7 GHz, 3.1 GHz}

8 {1.01 GHz, 1.53 GHz, 1.26 GHz, 1.81 GHz, 2.1 GHz, 2.42 GHz,2.7 GHz, 3.1
GHz}

5.1.2. Comparing Algorithms

The performance of the EDFwC=D-TS algorithm is compared with the following
algorithms

• EDF-Partitioned: assigns tasks to a core to its full capacity on First-Fit basis using the
EDF utilization bound, i.e., U ≤ 1

• EDF-DU-IS-FF: referred to the algorithm presented in [31] that assigns tasks to cores
on First-Fit basis using EDF utilization bound assuming that cores are sorted in-order
of increasing speed while the tasks are arranged in order of decreasing utilization.

5.1.3. Metrics Used for Comparison

The performance of the above-mentioned algorithms is compared on the basis of
following matrices

• Processor Utilization: refers to the ability of an algorithm to utilize the capacity of
available processor cores

• No. of cores used: is the number of cores used to feasibly schedule the provided
workload

• Schedulability: is the ability of an algorithm to feasibly schedule the workload using
the available processing cores

Symmetry 2021, 13, 1488 19 of 26

5.2. Simulation Results

This segment presents the experiments, and obtained results, conducted to evaluate
the performance of EDFwC=D-TS and its counterparts.

5.2.1. Processor Utilization

In this experiment, we have measured the ability of the aforementioned algorithms
to utilize the processor capacity. First, we have evaluated these algorithms on a 2-core
processor defined by S = {1.01 GHz, 3.1 GHz}. We have generated 25,000 task-sets as
per the above-mentioned parameters. Total system utilization of these task-sets is kept
between 0.90 and 1.0, i.e., U(Γ) ∈ [0.90, . . . , 1.0] ∀Γ as per S. Each task-set consisted of 4 to
16 tasks. For each task-set, we have determined the schedulability of these task-sets on S
using each of the algorithms. If Γ is not found schedulable under certain algorithm then
we have used an extra core with processing power of 1.53 GHz to make it schedulable. In
the end, we calculated the average of system utilization of the work assigned to each core
using the following formula:

Processor Utilization =
∑

n=number o f core used
i=1 Ui

n

For the purpose of comparison, we have calculated the average processor utilization
under each algorithm. We have repeated the same experiment for 4-core, 6-core, and 8-core
processors. The obtained results are shown in Figure 4.

Symmetry 2021, 13, x FOR PEER REVIEW 20 of 27

For the purpose of comparison, we have calculated the average processor utilization

under each algorithm. We have repeated the same experiment for 4‐core, 6‐core, and

8‐core processors. The obtained results are shown in Figure 4.

Figure 4 shows that EDFwC=D‐TS algorithm utilized the 99% of the processor ca‐

pacity on 2‐core processor while EDF‐DU‐IS‐FF and EDF‐Partitioned algorithms utilized

93% and 91% processor capacity respectively. This shows that EDFwC=D‐TS algorithm

utilized up to 6% and 8% more processor capacity as compared to EDF‐DU‐IS‐FF and

EDF‐Partitioned algorithms respectively. Similar dominance of EDFwC=D‐TS over its

counterparts on 4‐core, 6‐core, and 8‐core processors is obvious where it utilized up‐to

9% more processor capacity.

Figure 4. Average processor utilization (𝑚 ൌ 2,4,6,8; 𝑛 ∈ ሾ4 െ 64ሿ; 𝑈 ∈ ሾ0.90 െ 1.0ሿ).

5.2.2. Number of Cores Used

In this experiment, we have compared the EDFwC=D‐TS, EDF‐DU‐IS‐FF, and

EDF‐Partitioned algorithms on the basis of number of cores required by each algorithm

to feasibly schedule the given workload. First, we have generated 25,000 task‐sets having

system utilization 1.0, i.e., 𝑈ሺГሻ ൌ 1.0 ∀ Г on a 2‐core processor defined by 𝑆 ൌ
ሼ1.01 GHz, 3.1 GHzሽ. Due to the heavy workload, none of the algorithms guarantee to fea‐

sibly schedule all of the task‐sets using processing cores provided by S. Therefore, we

assume that the S has an extra core having speed of 1.53 GHz that will be used only if the

task‐set is not schedulable with two cores.

Considering this set‐up, we have recorded the number of cores required by each

algorithm to feasibly schedule a task‐set on S. To make a comparison, we have calculated

the average of the cores used by each algorithm using the following formula:

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑒𝑠 𝑢𝑠𝑒𝑑 ൌ
∑ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑒𝑠 𝑢𝑠𝑒𝑑௡ୀ்௢௧௔௟ ே௨௠௕௘௥ ௢௙ ்௔௦௞ି௦௘௧௦
௜ୀଵ

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘 െ 𝑠𝑒𝑡𝑠

The same experiment is repeated for 4‐core, 6‐core, and 8‐core processors. The ob‐

tained results are shown in Figure 5. In Figure 5, the number of processing cores used to

determine the workload is given on the x‐axis while the average number of cores used by

each algorithm is given on the y‐axis. An algorithm is considered better if the average

number of cores used by it remains close to the total number of cores used to define the

workload. For 2‐cores, the EDFwC=D‐TS used on average 2.10 cores while EDF‐DU‐IS‐FF

and EDF‐Partitioned algorithms use 2.34 and 2.42 cores respectively. This shows that

EDFwC=D‐TS uses 14% less cores than EDF‐DU‐IS‐FF while 19% less cores than

EDF‐Partitioned algorithm. Similarly, it is easy to observe that EDFwC=D‐TS outper‐

forms its counterparts on 4‐core, 6‐core, and 8‐core processors and uses up to 13%, 8%,

91%

89% 89%
88%

93% 93%
92%

89%

99%
98% 98%

97%

82%

84%

86%

88%

90%

92%

94%

96%

98%

100%

2‐cores 4‐cores 6‐cores 8‐cores

A
v
e
ra
g
eS
 P
ro
ce
ss
o
r
U
ti
li
za
ti
o
n

Total Number of Processors

EDF‐Partitioned EDF‐DU‐IS‐FF EDFwC=D‐TS

Figure 4. Average processor utilization (m = 2, 4, 6, 8; n ∈ [4− 64]; U ∈ [0.90− 1.0]).

Figure 4 shows that EDFwC=D-TS algorithm utilized the 99% of the processor capacity
on 2-core processor while EDF-DU-IS-FF and EDF-Partitioned algorithms utilized 93% and
91% processor capacity respectively. This shows that EDFwC=D-TS algorithm utilized up
to 6% and 8% more processor capacity as compared to EDF-DU-IS-FF and EDF-Partitioned
algorithms respectively. Similar dominance of EDFwC=D-TS over its counterparts on
4-core, 6-core, and 8-core processors is obvious where it utilized up-to 9% more processor
capacity.

5.2.2. Number of Cores Used

In this experiment, we have compared the EDFwC=D-TS, EDF-DU-IS-FF, and EDF-
Partitioned algorithms on the basis of number of cores required by each algorithm to
feasibly schedule the given workload. First, we have generated 25,000 task-sets hav-
ing system utilization 1.0, i.e., U(Γ) = 1.0 ∀ Γ on a 2-core processor defined by S =
{1.01 GHz, 3.1 GHz}. Due to the heavy workload, none of the algorithms guarantee to

Symmetry 2021, 13, 1488 20 of 26

feasibly schedule all of the task-sets using processing cores provided by S. Therefore, we
assume that the S has an extra core having speed of 1.53 GHz that will be used only if the
task-set is not schedulable with two cores.

Considering this set-up, we have recorded the number of cores required by each
algorithm to feasibly schedule a task-set on S. To make a comparison, we have calculated
the average of the cores used by each algorithm using the following formula:

Average number o f cores used =
∑

n=Total Number o f Task−sets
i=1 Number o f cores used

Total number o f task− sets

The same experiment is repeated for 4-core, 6-core, and 8-core processors. The ob-
tained results are shown in Figure 5. In Figure 5, the number of processing cores used to
determine the workload is given on the x-axis while the average number of cores used
by each algorithm is given on the y-axis. An algorithm is considered better if the average
number of cores used by it remains close to the total number of cores used to define the
workload. For 2-cores, the EDFwC=D-TS used on average 2.10 cores while EDF-DU-IS-FF
and EDF-Partitioned algorithms use 2.34 and 2.42 cores respectively. This shows that
EDFwC=D-TS uses 14% less cores than EDF-DU-IS-FF while 19% less cores than EDF-
Partitioned algorithm. Similarly, it is easy to observe that EDFwC=D-TS outperforms its
counterparts on 4-core, 6-core, and 8-core processors and uses up to 13%, 8%, and 9% fewer
cores than EDF-DU-IS-FF algorithm respectively while it uses 16%, 9%, and 11% fewer
cores than EDF-partitioned algorithm.

Symmetry 2021, 13, x FOR PEER REVIEW 21 of 27

and 9% fewer cores than EDF‐DU‐IS‐FF algorithm respectively while it uses 16%, 9%, and

11% fewer cores than EDF‐partitioned algorithm.

Figure 5. Average number of cores used (𝑚 ∈ ሾ2,4,6,8ሿ,𝑛 ∈ ሾ4 െ 64ሿ and 𝑈 ൌ 1.0).

5.2.3. Schedulability

Schedulability is major metric used to compare the performance of real‐time sched‐

uling algorithms. This is defined as the ability of algorithms to schedule task‐sets feasi‐

bly. In this experiment, we have compared EDFwC=D‐TS, EDF‐DU‐IS‐FF,

EDF‐Partitioned in schedulability perspective. To begin with, we assess the performance

of these algorithms on 4‐core power‐asymmetric multicore processor defined by the set

𝑆 ൌ ሼ1.01 GHz, 1.53 GHz, 2.1 GHz, 3.1 GHzሽ . We have generated 105 synthetic task‐sets.

Each task‐set contained 16 to 32 tasks. Task parameters were set as per the criteria de‐

fined in Table 5. The system utilization of each task‐set was kept between 0.90 and 1.0.

We have determined the feasibility of each task‐set on S and recorded the results. For

comparison, we have counted the total task‐sets against each system utilization level and

determined the percentage of feasible task‐sets under each algorithm. The obtained re‐

sults are given by Figure 6.

In Figure 6, the x‐axis represents the system utilization while the y‐axis represents

the percentage of feasible task‐sets. EDF‐partitioned scheduling performed well up to

93% system utilization while its performance reduces at an increasing rate, as the system

utilization gets higher. At 94–95% system utilization level it feasibly schedules 78%

tasks‐sets, while at 96–97%, 98–99%, and 100% utilization levels the success rate drops up

to 19%, 0%, and 0% respectively. In contrast, the EDF‐DU‐IS‐FF algorithm schedules

100% task‐sets with utilization 93% or less while at higher system utilization levels (94–

95%, 96–97%, 98–99%, and 100%) its performance declines gradually and it achieves a

success ratio of 86%, 27%, 3%, and 0%. At the same experimental set‐up, the superior

performance of EDFwC=D‐TS algorithm is obvious. It successfully achieves 100% success

ratio up‐to 95% system utilization. However, at 96–97%, 98–99%, and 100% system utili‐

zation levels it schedules 78%, 43%, and 6% task‐sets feasibly.

2.42

5.12

7.04

9.22

2.34

4.94

6.95

8.98

2.1

4.68

6.52

8.28

0

1

2

3

4

5

6

7

8

9

10

2‐cores 4‐cores 6‐cores 8‐cores

A
v
er
ag
e
N
u
m
b
er
 o
f
C
o
re
s
U
se
d

Optimal Number of Cores

EDF‐Partitioned EDF‐DU‐IS‐FF EDFwC=D‐TS

Figure 5. Average number of cores used (m ∈ [2, 4, 6, 8], n ∈ [4− 64] and U = 1.0).

5.2.3. Schedulability

Schedulability is major metric used to compare the performance of real-time schedul-
ing algorithms. This is defined as the ability of algorithms to schedule task-sets feasibly.
In this experiment, we have compared EDFwC=D-TS, EDF-DU-IS-FF, EDF-Partitioned in
schedulability perspective. To begin with, we assess the performance of these algorithms on
4-core power-asymmetric multicore processor defined by the set S = {1.01 GHz, 1.53 GHz,
2.1 GHz, 3.1 GHz}. We have generated 105 synthetic task-sets. Each task-set contained 16
to 32 tasks. Task parameters were set as per the criteria defined in Table 5. The system uti-
lization of each task-set was kept between 0.90 and 1.0. We have determined the feasibility
of each task-set on S and recorded the results. For comparison, we have counted the total

Symmetry 2021, 13, 1488 21 of 26

task-sets against each system utilization level and determined the percentage of feasible
task-sets under each algorithm. The obtained results are given by Figure 6.

In Figure 6, the x-axis represents the system utilization while the y-axis represents
the percentage of feasible task-sets. EDF-partitioned scheduling performed well up to
93% system utilization while its performance reduces at an increasing rate, as the system
utilization gets higher. At 94–95% system utilization level it feasibly schedules 78% tasks-
sets, while at 96–97%, 98–99%, and 100% utilization levels the success rate drops up to
19%, 0%, and 0% respectively. In contrast, the EDF-DU-IS-FF algorithm schedules 100%
task-sets with utilization 93% or less while at higher system utilization levels (94–95%,
96–97%, 98–99%, and 100%) its performance declines gradually and it achieves a success
ratio of 86%, 27%, 3%, and 0%. At the same experimental set-up, the superior performance
of EDFwC=D-TS algorithm is obvious. It successfully achieves 100% success ratio up-to
95% system utilization. However, at 96–97%, 98–99%, and 100% system utilization levels it
schedules 78%, 43%, and 6% task-sets feasibly.

Symmetry 2021, 13, x FOR PEER REVIEW 22 of 27

Figure 6. Feasible task‐sets (𝑚 ൌ 4,𝑛 ∈ ሾ16 െ 32ሿ, 𝑈 ∈ ሾ90% െ 100%ሿ).

We repeated the same experiment for 6‐core processor. For this experiment, system and

workload specifications are set as given in Table 5. The obtained results are shown in Figure

7. It is obvious that all of the algorithms performed well at lower system utilization levels. For

higher system utilization workload, EDFwC=D‐TS dominates its counterparts. It can be seen

that at 94–95% system utilization, it schedules 29% and 33% more task‐sets as compared to

EDF‐DU‐IS‐FF and EDF‐Partitioned algorithms respectively while at 96–97%, 98–99%, and

100% system utilization levels it schedules 51%, 29%, 5% and 57%, 29%, 5% more task‐sets

than EDF‐DU‐IS‐FF and EDF‐Partitioned algorithms respectively.

We further verified the dominance of EDFwC=D‐TS by repeating the same experi‐

ment on 8‐core processor (system and workload configuration is given in Table 5). We

generated 105 task‐sets with | Г | ∈ ሾ32 െ 64ሿ following the task parameters as given in

Table 5. The system utilization for these tasks‐sets was kept between 0.90 and 1.0. The

obtained results are given in Figure 8. It is easy to observe from Figure 8 that

EDFwC=D‐TS outclasses its counterparts in terms of schedulability at higher system uti‐

lization levels. The performance gain achieved is (38%, 46%, 13%, 2%) and (42%, 50%,

13%, 2%) at (94–95%, 96–97%, 98–99%, 100%) system utilization against EDF‐DU‐IS‐FF

and EDF‐Partitioned algorithms respectively.

0

10

20

30

40

50

60

70

80

90

100

90‐91 92‐93 94‐95 96‐97 98‐99 100

EDF‐Partitioned

EDF‐DU‐IS‐FF

EDFwC=D‐TS

P
er
ce
n
ta
g
e
o
f
F
ea
si
b
le
 T
as
k
‐S
et
s

System Utilization (%)

Figure 6. Feasible task-sets (m = 4, n ∈ [16− 32], U ∈ [90%− 100%]).

We repeated the same experiment for 6-core processor. For this experiment, system
and workload specifications are set as given in Table 5. The obtained results are shown in
Figure 7. It is obvious that all of the algorithms performed well at lower system utilization
levels. For higher system utilization workload, EDFwC=D-TS dominates its counterparts.
It can be seen that at 94–95% system utilization, it schedules 29% and 33% more task-sets as
compared to EDF-DU-IS-FF and EDF-Partitioned algorithms respectively while at 96–97%,
98–99%, and 100% system utilization levels it schedules 51%, 29%, 5% and 57%, 29%, 5%
more task-sets than EDF-DU-IS-FF and EDF-Partitioned algorithms respectively.

We further verified the dominance of EDFwC=D-TS by repeating the same experiment
on 8-core processor (system and workload configuration is given in Table 5). We generated
105 task-sets with | Γ | ∈ [32− 64] following the task parameters as given in Table 5. The
system utilization for these tasks-sets was kept between 0.90 and 1.0. The obtained results
are given in Figure 8. It is easy to observe from Figure 8 that EDFwC=D-TS outclasses its
counterparts in terms of schedulability at higher system utilization levels. The performance
gain achieved is (38%, 46%, 13%, 2%) and (42%, 50%, 13%, 2%) at (94–95%, 96–97%,
98–99%, 100%) system utilization against EDF-DU-IS-FF and EDF-Partitioned algorithms
respectively.

Symmetry 2021, 13, 1488 22 of 26
Symmetry 2021, 13, x FOR PEER REVIEW 23 of 27

Figure 7. Feasible task‐sets (𝑚 ൌ 6,𝑛 ∈ ሾ24 െ 48ሿ, 𝑈 ∈ ሾ90% െ 100%ሿ).

Figure 8. Feasible Task‐sets (𝑚 ൌ 8,𝑛 ∈ ሾ34 െ 64ሿ,𝑈 ∈ ሾ56% െ 75%ሿ).

We have summarized the results in Tables 6 and 7.

Table 6. Average number of cores used/Average processor utilization.

EDF‐Partitioned EDF‐DU‐IS‐FF EDFwC=D‐TS

2‐cores 4‐cores 6‐cores 8‐cores 2‐cores 4‐cores 6‐cores 8‐cores 2‐cores 4‐cores 6‐cores 8‐cores

Average No. of Cores Used 2.42 5.12 7.04 9.22 2.34 4.94 6.95 8.98 2.10 4.68 6.52 8.28

Average Processor Utilization 91% 89% 89% 88% 93% 93% 92% 89% 99% 98% 98% 97%

0

10

20

30

40

50

60

70

80

90

100

90‐91 92‐93 94‐95 96‐97 98‐99 100

EDF‐Partitioned
EDF‐DU‐IS‐FF
EDFwC=D‐TS

0

10

20

30

40

50

60

70

80

90

100

90‐91 92‐93 94‐95 96‐97 98‐99 100

EDF‐Partitioned

EDF‐DU‐IS‐FF

EDFwC=D‐TS

System Utilization (%)

P
er
ce
n
ta
g
e
o
f
S
ch
ed
u
la
b
le
 T
as
k
‐S
et
s

System Utilization (%)

P
er
ce
n
ta
g
e
 o
f
S
ch
ed
u
la
b
le
 T
as
k
‐S
et
s

Figure 7. Feasible task-sets (m = 6, n ∈ [24− 48], U ∈ [90%− 100%]).

Symmetry 2021, 13, x FOR PEER REVIEW 23 of 27

Figure 7. Feasible task‐sets (𝑚 ൌ 6,𝑛 ∈ ሾ24 െ 48ሿ, 𝑈 ∈ ሾ90% െ 100%ሿ).

Figure 8. Feasible Task‐sets (𝑚 ൌ 8,𝑛 ∈ ሾ34 െ 64ሿ,𝑈 ∈ ሾ56% െ 75%ሿ).

We have summarized the results in Tables 6 and 7.

Table 6. Average number of cores used/Average processor utilization.

EDF‐Partitioned EDF‐DU‐IS‐FF EDFwC=D‐TS

2‐cores 4‐cores 6‐cores 8‐cores 2‐cores 4‐cores 6‐cores 8‐cores 2‐cores 4‐cores 6‐cores 8‐cores

Average No. of Cores Used 2.42 5.12 7.04 9.22 2.34 4.94 6.95 8.98 2.10 4.68 6.52 8.28

Average Processor Utilization 91% 89% 89% 88% 93% 93% 92% 89% 99% 98% 98% 97%

0

10

20

30

40

50

60

70

80

90

100

90‐91 92‐93 94‐95 96‐97 98‐99 100

EDF‐Partitioned
EDF‐DU‐IS‐FF
EDFwC=D‐TS

0

10

20

30

40

50

60

70

80

90

100

90‐91 92‐93 94‐95 96‐97 98‐99 100

EDF‐Partitioned

EDF‐DU‐IS‐FF

EDFwC=D‐TS

System Utilization (%)

P
er
ce
n
ta
g
e
o
f
S
ch
ed
u
la
b
le
 T
as
k
‐S
et
s

System Utilization (%)

P
er
ce
n
ta
g
e
 o
f
S
ch
ed
u
la
b
le
 T
as
k
‐S
et
s

Figure 8. Feasible Task-sets (m = 8, n ∈ [34− 64], U ∈ [56%− 75%]).

We have summarized the results in Tables 6 and 7.

Table 6. Average number of cores used/Average processor utilization.

EDF-Partitioned EDF-DU-IS-FF EDFwC=D-TS

2-
cores

4-
cores

6-
cores

8-
cores

2-
cores

4-
cores

6-
cores

8-
cores

2-
cores

4-
cores

6-
cores

8-
cores

Average No. of Cores Used 2.42 5.12 7.04 9.22 2.34 4.94 6.95 8.98 2.10 4.68 6.52 8.28
Average Processor Utilization 91% 89% 89% 88% 93% 93% 92% 89% 99% 98% 98% 97%

Table 7. Percentage of feasible task-sets.

System
Utilization

(%)

EDF-Partitioned EDF-DU-IS-FF EDFwC=D-TS

4-cores 6-cores 8-cores 4-cores 6-cores 8-cores 4-cores 6-cores 8-cores

90–91 100 100 100 100 100 100 100 100 100
92–93 100 100 100 100 100 100 100 100 100
94–95 78 67 58 86 71 62 100 100 100
96–97 19 11 9 27 17 13 78 68 59
98–99 0 0 0 3 0 0 43 29 13

100 0 0 0 0 0 0 6 5 2

Symmetry 2021, 13, 1488 23 of 26

6. Discussion of Experimental Results

In this section, we have discussed and evaluated the performance of EDFwC=D-TS
algorithm.

Average Processor Utilization: It is aforementioned that partitioned scheduling usually
fails to fully utilize the available processor capacity while semi-partitioned scheduling
improves the processor utilization. EDFwC=D-TS algorithm expands the space for choosing
the task to split. In this way a task is selected for splitting that maximizes the processor
utilization. Furthermore, EDFwC=D-TS allocates the second portion of split task on slowest
core where it is schedulable. We have shown that this reduces the overhead associated with
existing semi-partitioned scheduling techniques. As a result, EDFwC=D-TS improves the
processor utilization. We have conducted experiments to validate the superior performance
of EDFwC=D-TS algorithm in terms of processor utilization.

In the first experiment, we have evaluated EDF-Partitioned, EDF-DU-IS-FF, and
EDFwC=D-TS algorithms, in terms of their capabilities to utilize the processor capacity.
The obtained results are given in Figure 4. It can be seen that EDFwC=D-TS achieves
better processor utilization due to its better task assignment strategy as compared to other
counterparts. On a 2-core processor, on average it uses 8% and 6% more processor capacity
against EDF-Partitioned and EDF-DU-IS-FF algorithms respectively. Similarly, it achieves
10%, 5%, and 10% and 6%, 11%, and 8% better processor utilization on 4-core, 6-core, and
8-core processors than EDF-Partitioned and EDF-DU-IS-FF algorithms. This shows that
EDFwC=D-TS dominates its counterparts in terms of processor utilization.

Average Number of Cores Used: Since EDFwC=D-TS algorithm utilizes the processor
capacity in a better way as compared to its counterparts, this ability enables EDFwC=D-TS
to schedule the given workload using less number of cores. While assigning tasks to mth
core using partitioned scheduling if the utilization of remaining tasks is larger than the

residual capacity of mth core, i.e., Sres
m <

|remaining tasks|
∑

i=1
Ui then at least one more core is

required to schedule the tasks. Instead, in EDFwC=D-TS if
m
∑

j=1
Sres

i ≥
|remaining tasks|

∑
i=1

Ui then

no other core is required. Due to this reason, EDFwC=D-TS usually requires less number
of cores than its counterparts to feasibly schedule the workload.

We have conducted the experiments to verify the ability of EDFwC=D-TS algorithm
to schedule the given workload using less number of cores. The obtained results are given
in Figure 5. To schedule heavy workload defined using two cores, in most of the cases
EDFwC=D-TS successfully schedules the workload with two cores while in few cases it
requires another core. As a result it uses 2.10 cores on average. Instead EDF-Partitioned
and EDF-DU-IS-FF use 2.42 and 2.34 cores respectively to schedule the same workload.
It shows that EDFwC=D-TS uses 13.22% less cores than EDF-Partitioned and 10.25% less
cores than EDF-DU-IS-FF. Similarly, for the workload defined using 4-core, 6-core, and
8-core processors EDFwC=D-TS respectively uses 4.45%, 6.19%, and 7.8% less cores than
EDF-DU-IS-FF and 8.59%, 7.39%, and 10.19% less cores than EDF-partitioned.

Schedulability: Better utilization of available processor capacity also results in better
schedulability. When the given workload is not feasible using partitioned scheduling, i.e.,
some of the tasks cannot be assigned to any core, EDFwC=D-TS may produce feasible
schedule for such workloads if the residual capacity utilized by it, is more than the system

utilization of unassigned tasks, i.e.,
m
∑

j=1
Sres

i ≥
|remaining tasks|

∑
i=1

Ui. It shows that EDFwC=D-TS

is more prone to achieve better schedulability as compared to its counterparts.
We have evaluated EDF-Partitioned, EDF-DU-IS-FF, and EDFwC=D-TS algorithms

through simulations to measure their abilities to feasibly schedule the given workload.
On 4-core processors EDFwC=D-TS dominates its counterparts for heavy workload and
schedules up-to 51% and 67% more task-sets than EDF-DU-IS-FF and EDF-Partitioned
algorithms respectively for the workload having 96–97% system utilization. However, for

Symmetry 2021, 13, 1488 24 of 26

workload with low system utilization the performance of all algorithms is comparative
(See Figure 6 for detailed results). A similar trend is observed when the simulations are
performed on 6-core and 8-core processors (results are given in Figures 7 and 8 respectively).
EDFwC=D-TS schedules 57% and 50% more task-set than EDF-Partitioned at 96–97%
system utilization on 6-core and 8-core processors while this performance gain reaches up
to 51% and 46% against EDF-DU-IS-FF.

7. Conclusions and Future Work

This research explores the dynamic-priority semi-partitioned scheduling of power
asymmetric multicore processors and presented a novel algorithm: EDFwC=D-TS. EDFwC=D-
TS algorithm introduces a two-round task-allocation policy. During task allocation, first a
subset of task is assigned to a core and then, in the second round, task-splitting is performed
is such a way that core utilization is maximized. The empirical analysis verifies the
dominance of the EDFwC=D-TS algorithm over its counterpart. The obtained simulation
results reveal that it schedules up to 67% more task-sets at higher system utilization.
Furthermore, EDFwC=D-TS improves the processor utilization up to 11% while it also
reduces the number of cores required to feasibly schedule the given workload up to 14%.

In this work we have evaluated the EDFwC=D-TS algorithm through simulations.
However, in future we aim at validating the effectiveness of EDFwC=D-TS in real environ-
ments. Furthermore, we will also integrate the DVFS and memory shut-down approaches
with EDFwC=D-TS scheduling to achieve energy efficiency. Additionally, we will also
study the efficacy of the proposed work for parallel task models.

Author Contributions: Conceptualization, B.M.; formal analysis, N.A. and M.I.K.; funding acquisi-
tion, A.A.; investigation, B.M.; methodology, B.M. and N.A; project administration, M.I.K. and A.A.;
software, A.A. and M.I.K.; supervision, M.I.K. and N.A.; validation, N.A.; writing—original draft,
B.M.; writing—review and editing, B.M., N.A., M.I.K. and A.A. All authors have read and agreed to
the published version of the manuscript.

Funding: This research has been fully funded by the University Malaysia Sabah.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: Authors declare no conflict of interest.

References
1. Selim, Z.; El-Attar, N.E.; Ghoneim, M.E.; Awad, W.A. Performance Analysis of Real-Time Scheduling Algorithms. In Proceed-

ings of the ICICSE ’20: 2020 International Conference on Internet Computing for Science and Engineering, Male, Maldives,
14–16 January 2020; pp. 70–75.

2. Zhao, S.; Chang, W.; Wei, R.; Liu, W.; Guan, N.; Burns, A.; Wellings, A. Priority Assignment on Partitioned Multiprocessor
Systems with Shared Resources. IEEE Trans. Comput. 2020, 70, 1006–1018. [CrossRef]

3. Derafshi, D.; Norollah, A.; Khosroanjam, M.; Beitollahi, H. HRHS: A High-Performance Real-Time Hardware Scheduler. IEEE
Trans. Parallel Distrib. Syst. 2020, 31, 897–908. [CrossRef]

4. Seo, E.; Park, J.J.; Lee, J. Power Efficient Scheduling of Real-Time Tasks on Multicore Processors. IEEE Trans. Parallel Distrib. Syst.
2008, 19, 1541–1552.

5. Weisberg, P.; Wiseman, Y. Efficient memory control for avionics and embedded systems. Int. J. Embed. Syst. 2013, 5, 225–238.
[CrossRef]

6. Maiza, C.; Rihani, H.; Rivas, J.M.; Goossens, J.; Altmeyer, S.; Davis, R.I. A Survey of Timing Verification Techniques for Multi-Core
Real-Time Systems. ACM Comput. Surv. 2019, 52, 1–38. [CrossRef]

7. Bertout, A.; Goossens, J.; Grolleau, E.; Poczekajlo, X. Template schedule construction for global real-time scheduling on unrelated
multiprocessor platforms. In Proceedings of the 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE),
Grenoble, France, 15 June 2020; pp. 2016–2221.

8. Yu, T.; Petoumenos, P.; Janjic, V.; Leather, H.; Thomson, J. COLAB: A Collaborative Multi-Factor Scheduler for Asymmetric
Multicore Processors. In Proceedings of the 18th ACM/IEEE International Symposium on Code Generation and Optimization,
Seattle, WA, USA, 23–26 September 2019; pp. 268–279.

9. Choudhury, A.M.; Nur, K. Qualitative Study of Contention-aware Scheduling Algorithm for Asymmetric Multicore Processors.
In Proceedings of the International Conference on Computing Advancements, Dhaka, Bangladesh, 10–12 January 2020; pp. 1–6.

http://doi.org/10.1109/TC.2020.3000051
http://doi.org/10.1109/TPDS.2019.2952136
http://doi.org/10.1504/IJES.2013.057702
http://doi.org/10.1145/3323212

Symmetry 2021, 13, 1488 25 of 26

10. Amina, M.; Kacem, Y.H.; Kerboeuf, M.; Mahfoudhi, A.; Abid, M. A design pattern-based approach for automatic choice of
semi-partitioned and global scheduling algorithms. Inf. Softw. Technol. 2018, 97, 83–98.

11. Davis, R.I.; Burns, A. A survey of hard real-time scheduling for multiprocessor. ACM Comput. Surv. 2011, 43, 1–44. [CrossRef]
12. Guo, Z.; Yang, K.; Yao, F.; Awad, A. Inter-Task Cache Interference Aware Partitioned Real-Time Scheduling. In Proceedings of the

SAC ’20: 35th Annual ACM Symposium on Applied Computing, Brno, Czech Republic, 30 March 2020; pp. 218–226.
13. Hassan, H.A.; Salem, S.A.; Mostafa, A.M.; Saad, E.M. Harmonic segment-based semi-partitioning scheduling for multi-core

real-time systems. ACM Trans. Embed. Comput. Syst. 2016, 15, 29.
14. Liu, C.L.; Layland, J.W. Scheduling algorithms for multiprogramming in a hard real-time environment. J. ACM 1973, 20, 40–61.

[CrossRef]
15. Baruah, S.K.; Rosier, L.E.; Howell, R.R. Algorithms and Complexity Concerning the Preemptive Scheduling of Periodic Real-Time

Tasks on One Processor. J. Real-Time Syst. 1990, 4, 301–324. [CrossRef]
16. Ripoll, I.; Crespo, A.; Mok, A.K. Improvement in feasibility testing for real-time tasks. J. Real-Time Syst. 1996, 11, 19–39. [CrossRef]
17. Spuri, M. Analysis of Deadline Schedule Real-Time Systems; Technical Report 2772; INRIA: Paris, France, 1996.
18. Zhang, F.; Burns, A. Schedulability analysis for real-time systems with EDF scheduling. IEEE Trans. Comput. 2008, 58, 1250–1258.

[CrossRef]
19. Zhang, F.; Burns, A.; Baruah, S.K. Sensitivity analysis of arbitrary deadline real-time systems with EDF scheduling. J. Real-Time

Syst. 2011, 47, 224–252. [CrossRef]
20. Anderson, J.H.; Bud, V.; Devi, C. An EDF-based Scheduling Algorithm for Multiprocessor Soft Real-Time Systems. In Proceedings

of the 17th Euromicro Conference on Real-Time Systems, Balearic Islands, Spain, 6–8 July 2005; pp. 199–208.
21. Andersson, B.; Tovar, E. Multiprocessor scheduling with few preemptions. In Proceedings of the IEEE International Conference

on Embedded and Real-Time Computing Systems and Applications, Sydney, NSW, Australia, 11 September 2006; pp. 322–334.
22. Kato, S.; Yamasaki, N. Real-time scheduling with task splitting on multiprocessors. In Proceedings of the RTCSA ’07: 13th IEEE

International Conference on Embedded and Real-Time Computing Systems and Applications, Daegu, Korea, 4 September 2007;
pp. 441–450.

23. Kato, S.; Yamasaki, N. Portioned EDF-based scheduling on multiprocessors. In Proceedings of the 8th ACM/IEEE International
Conference on Embedded Software, Atlanta, GA, USA, 19–24 October 2008; pp. 139–148.

24. Kato, S.; Yamasaki, N. Semi-partitioning technique for multiprocessor real-time scheduling. In Proceedings of the WIP Session of
the 29th Real-Time Systems Symposium (RTSS), Yokohama, Japan, 30 November 2008; p. 4.

25. Kato, S.; Yamasaki, N.; Ishikawa, Y. Semi-partitioned scheduling of sporadic task systems on multiprocessors. In Proceedings of
the ECRTS ’09: 2009 21st Euromicro Conference on Real-Time Systems, Dublin, Ireland, 1–3 July 2009; pp. 249–258.

26. Burns, A.; Davis, R.I.; Wang, P.; Zhang, F. Partitioned EDF scheduling for multiprocessors using a C = D task splitting scheme.
Real-Time Syst. 2012, 48, 3–33. [CrossRef]

27. Anderson, J.; Erickson, J.; Devi, U.C.; Casses, B. Optimal semi-partitioned scheduling in soft real-time systems. J. Signal Process.
Syst. 2016, 84, 3–23. [CrossRef]

28. Baruah, S.K. Scheduling Periodic Tasks on uniform multiprocessors. Inf. Process. Lett. 2001, 80, 97–104. [CrossRef]
29. Funk, S.; Goossens, J.; Baruah, S.K. On-line Scheduling on Power asymmetric Multiprocessors. In Proceedings of the Real-Time

Systems Symposium (RTSS), London, UK, 2–6 December 2001; pp. 183–192.
30. Baruah, S.K.; Goossens, J. Rate-Monotonic Scheduling on Power asymmetric Multiprocessors. IEEE Trans. Comput. 2003, 52,

966–970. [CrossRef]
31. Andersson, B.; Tovar, E. Competitive Analysis of Partitioned Scheduling on Uniform Multiprocessors. In Proceedings of the 2007

IEEE International Parallel and Distributed Processing Symposium, Daegu, Korea, 21–24 August 2007; pp. 1–8. [CrossRef]
32. Andersson, B.; Tovar, E. Competitive Analysis of Static-Priority Partitioned Scheduling on Power asymmetric Multiprocessors.

In Proceedings of the 13th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA 2007), Daegu, Korea, 21–24 August 2007; pp. 111–119.

33. Cucu, L.; Goossens, J. Feasibility Intervals for Fixed-Priority Real-Time Scheduling on Power asymmetric Multiproces-
sors. In Proceedings of the IEEE Conference on Emerging Technologies and Factory Automation, Prague, Czech Republic,
20–22 September 2006; pp. 397–404.

34. Baruah, S.K.; Goossens, J. The EDF Scheduling of Sporadic Task Systems on Power asymmetric Multiprocessors. In Proceedings
of the Real-Time Systems Symposium, Barcelona, Spain, 30 November–3 December 2008; pp. 367–374.

35. Calandrino, J.M.; Baumberger, D.; Li, T.; Hahn, S.; Anderson, J.H. Soft Real-Time Scheduling on Performance Asymmetric
Multicore Platforms. In Proceedings of the 13th IEEE Real Time and Embedded Technology and Applications Symposium
(RTAS’07), Bellevue, WA, USA, 3–6 April 2007; pp. 101–112.

36. Chen, S.Y.; Hsueh, C.W. Optimal Dynamic-Priority Real-Time Scheduling Algorithms for Power asymmetric Multiprocessors. In
Proceedings of the Real-Time Systems Symposium, Barcelona, Spain, 30 November–3 December 2008; pp. 147–156.

37. Xiaojian, L.; Xiang, L. A-S Algorithm: An Optimal on-line Real-Time Scheduling Algorithm for Power asymmetric Multiprocessors.
In Proceedings of the 3rd IEEE International Conference on “Computational Intelligence and Communication Technology”
(IEEE-CICT 2017), Ghaziabad, India, 9–10 February 2017.

http://doi.org/10.1145/1978802.1978814
http://doi.org/10.1145/321738.321743
http://doi.org/10.1007/BF01995675
http://doi.org/10.1007/BF00365519
http://doi.org/10.1109/TC.2009.58
http://doi.org/10.1007/s11241-011-9124-y
http://doi.org/10.1007/s11241-011-9126-9
http://doi.org/10.1007/s11265-015-0983-7
http://doi.org/10.1016/S0020-0190(01)00148-X
http://doi.org/10.1109/TC.2003.1214344
http://doi.org/10.1109/IPDPS.2007.370337

Symmetry 2021, 13, 1488 26 of 26

38. Pathan, R.M.; Jonsson, J. Parameterized Schedulability Analysis on Power asymmetric Multiprocessors. In Proceedings of the
39th International Conference on Parallel Processing, San Diego, CA, USA, 13–16 September 2010; pp. 323–332.

39. Jung, M.J.; Seong, Y.P.; Lee, C.H. Optimal RM Scheduling for Simply Periodic Tasks on Power asymmetric Multiprocessors. In Pro-
ceedings of the 2009 International Conference on Hybrid Information Technology (ICHIT ’09), Daejeon, Korea, 27–29 August 2009;
pp. 383–389.

40. Bini, E.; Buttazzo, G. Measuring the Performance of Schedulability Tests. Real-Time Syst. 2005, 30, 129–154. [CrossRef]

http://doi.org/10.1007/s11241-005-0507-9

	Introduction
	Related Work
	Uniprocessor Scheduling
	Semi-Partitioned Multi-Processor Scheduling
	Power Asymmetric Multiprocessor Scheduling

	System and Task Models
	Dynamic Priority Semi-Partitioned Scheduling of Real-Time Tasks on Power-Asymmetric Multicore Processors
	Task-Allocation in EDFwC=D-TS Scheduling
	Splitting Tasks in EDFwC=D-TS Scheduling
	The EDFwC=D-TS Scheduling Algorithm
	Working Example

	Experimental Evaluation
	Experimental Setup
	Task and System Parameters
	Comparing Algorithms
	Metrics Used for Comparison

	Simulation Results
	Processor Utilization
	Number of Cores Used
	Schedulability

	Discussion of Experimental Results
	Conclusions and Future Work
	References

