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Abstract: Logistics plays an important role in the field of global economy, and the storage and retrieval
of tasks in a warehouse which has symmetry is the most important part of logistics. Generally, the
shelves of a warehouse have a certain degree of symmetry and similarity in their structure. The
storage and retrieval efficiency directly affects the efficiency of logistics. The efficiency of the
traditional storage and retrieval mode has become increasingly inconsistent with the needs of the
industry. In order to solve this problem, this paper proposes a greedy algorithm based on cost
matrix to solve the path planning problem of the automatic storage and retrieval system (AS/RS).
Firstly, aiming at the path planning mathematical model of AS/RS, this paper proposes the concept
of cost matrix, which transforms the traditional storage and retrieval problem into the element
combination problem of cost matrix. Then, a more efficient backtracking algorithm is proposed
based on the exhaustive method. After analyzing the performance of the backtracking algorithm,
combined with some rules, a greedy algorithm which can further improve efficiency is proposed; the
convergence of the improved greedy algorithm is also proven. Finally, through simulation, the time
consumption of the greedy algorithm is only 0.59% of the exhaustive method, and compared with
the traditional genetic algorithm, the time consumption of the greedy algorithm is about 50% of the
genetic algorithm, and it can still maintain its advantage in time consumption, which proves that the
greedy algorithm based on cost matrix has a certain feasibility and practicability in solving the path
planning of the automatic storage and retrieval system.

Keywords: path planning; automatic storage and retrieval system; cost matrix; improved greedy algorithm

1. Introduction

With the development of the global economy, the field of logistics is also developing
rapidly. The traditional manual-controlled storage and retrieval scheduling problem does
not meet the needs of the times, so the automatic storage and retrieval system (AS/RS)
appeared. The AS/RS is an automatic control warehouse system, which can store and
retrieve goods automatically in a warehouse which has symmetry instead of manual
processing, and is controlled and managed by a computer [1,2]. Generally, the shelves
of the warehouse have a certain degree of symmetry and similarity in their structure. A
storage and retrieval cycle of tasks usually includes the time of entering and leaving the
warehouse, registration time, and storage and retrieval time, among which the storage
and retrieval time of goods by the stacker accounts for the largest proportion, and can
be as high as 50% of the logistics cycle. If the stacker is not properly dispatched or the
dispatching mode is inefficient, the working efficiency of the stacker and the operation
efficiency of the entire warehouse will be seriously affected. Therefore, a more reasonable
path planning for the storage and retrieval system is the key to improving the efficiency of
the stacker [3–5].

At present, many scholars have made great achievements in solving the problem
of the stacker. Li Ding et al. started with the speed control of the stacker, improved the
transport system of the stacker in the automatic warehouse from smooth speed change and
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accurate parking, and put forward the optimization design of the S-curve algorithm for
acceleration and deceleration of the automatic warehouse, so that the stacker can accurately
locate goods among the shelves and increase the speed. Speed stability during speed and
deceleration ensures the safety and accuracy of goods access [1]. For motion planning of
the double stacker, Hisato H. et al. proposed a method to generate a motion path at two
levels to avoid collision [6]. Eleonora B. et al. used a genetic algorithm to optimize the
distribution of goods in the warehouse and reduce the movement time of the stacker [7]. Of
course, since the path planning of the stacker plays an important role in affecting logistics
efficiency, more scholars choose to conduct a lot of research on path planning. Sun et al. [8]
proposed a new genetic-neural network algorithm to find the optimal path solution for
the warehouse assignment problem. Shen Li [9] proposed an improved adaptive genetic
algorithm; the dynamic crossover coefficient and variation coefficient are used to not
only overcome the shortcomings of premature and slow convergence of the traditional
genetic algorithm, but also greatly improve the efficiency of the genetic algorithm. Qiu [10]
proposed a scheduling model based on a mixed command sequence. On this basis, an
improved chemical reaction optimization (ICRO) algorithm was used to optimize the
scheduling path of the dual-stacker. For the position tracking problem of the stacker in an
industrial environment, Thakur N., Han C.Y. [11] provided a big data-driven method to
study the multimodal components of mobile robot interaction and analyze the data from
Bluetooth low-energy (BLE) beacon and BLE scanner, so as to obtain the indoor position of
the robot.

Considering the importance of the stacker path planning problem, therefore path
planning of AS/RS based on cost matrix and improved greedy algorithm was studied in
this paper. In fact, at present, compared with the non-probabilistic algorithm represented by
the exhaustive method, more scholars prefer to use a heuristic algorithm represented by the
genetic algorithm and ant colony optimization as optimization methods. The main reason
is that the solution space of the problem is too large, so the efficiency of the traditional non-
probabilistic algorithm is relatively low. However, compared with the heuristic algorithm,
the non-probabilistic algorithm does not suffer from fatal problems such as falling into local
optimum solution. Therefore, if we try to improve the efficiency of the non-probabilistic
algorithm so that it can approach the heuristic algorithm, the comprehensive performance
of the non-probabilistic algorithm will be better than the heuristic algorithm, thus providing
more alternatives for solving the stacker path planning problem. The purpose of this paper
is to propose a greedy algorithm based on cost matrix. Case simulation proves that the
method proposed in this paper has excellent efficiency on inheriting the characteristics of
the non-probabilistic algorithm which must have the best solution. This makes it possible
for the non-probabilistic algorithm to solve the stacker path planning problems.

The purpose of this paper is to propose a greedy algorithm based on cost matrix.
Through case simulation, it can be proven that the proposed method inherits the character-
istics of the necessary optimal solution of the non-probabilistic algorithm, and its efficiency
is also excellent. From the simulation results, its time is far less than that of the exhaustive
algorithm and backtracking algorithm; even in the face of the challenge of the traditional
genetic algorithm, this algorithm can still keep the advantage of time, which makes it
possible for the non-probabilistic algorithm to solve the stacker path problem.

The rest of this paper is organized as follows: Section 2 establishes an abstract model;
Section 3 introduces the concept of cost matrix, and based on the law of the backtracking
algorithm, a greedy algorithm is proposed to solve the problem. Simulation and results are
carried out to verify the feasibility and optimization effect of the proposed algorithm in
Section 4. The conclusions and future work are given in Section 5.

2. Problem Description and Model
2.1. Problem Description

The objective of this paper is to optimize the path of the stacker in AS/RS. An AS/RS
is mainly composed of several storage units, as shown in Figure 1. As for a storage unit,



Symmetry 2021, 13, 1483 3 of 16

it is mainly composed of access platform, roadway, stacker, and goods shelf [10]. When
the system is running, the goods enter and leave the warehouse from the storage platform,
and the stacker moving on the roadway moves the goods from the storage platform to
the shelf, or takes out the goods from the shelf and transfers them to the storage platform.
Whenever the automated warehousing system generates several storage and retrieval tasks,
the question of how to determine the optimal operation track of the stacker in the shortest
time affects the storage efficiency of the whole system; therefore, this is the problem to be
solved in this paper.

Figure 1. Model structure of warehouse.

2.2. Assumptions

In order to make the model more perfect, a series of assumptions are given as follows:

1. Taking a single task as a storage object; that is, the stacker can only deal with one task
each time.

2. The stacker moves at a constant speed in both horizontal and vertical directions.
3. Since the time taken by the stacker to store or take out the goods from the shelf accounts

for a small proportion of the total time, this time is ignored; that is, once the stacker moves
to the target storage location, it is regarded as completing the storage task.

4. All storage units on the shelf have the same length and width.
5. The evaluation standard is the total time for the stacker to complete a series of

access tasks.

2.3. Variable Table

The symbols used in our model are listed in Table 1 below.

Table 1. Symbols and explanations.

Symbol Explanation

Ii Storage task (i = 1, 2, 3 . . . m)
Oj Retrieval task (j = 1, 2, 3 . . . n)
m Number of storage tasks
n Number of retrieval tasks
L Solution sequence model
S Size of solution space

Vx Horizontal moving speed of stacker
Vy Vertical moving speed of stacker
T Total time for stacker to complete task

2.4. Mathematical Model

There are two ways for the stacker to access tasks: (1) when the stacker starts from
the I/O station each time, it only executes one retrieval task or storage task, which is
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called single operation; (2) starting from the I/O station, the stacker first executes a storage
task, and then immediately executes a retrieval task, which is called composite operations.
Because composite operations can reduce the number of times the stacker moves and
improve its operation efficiency, the composite operations mode is considered in this paper.

Assume that there are m storage tasks and n retrieval tasks at the beginning, and
assume that the capacity of the stacker is 1; then the solution sequence model L of the
solution of the total task is:

L =

{
I1, O1, I2, O2, . . . , In, On, In+1, In+2, . . . , Im , m > n

I1, O1, I2, O2, . . . , Im, Om, Om+1, Om+2, . . . , On , m < n
(1)

In Equation (1), Ii(i = 1, 2, 3 . . . m) are storage tasks, and Oj(j = 1, 2, 3 . . . n) are
retrieval tasks, After a brief analysis, it can be seen that I1 has m possibilities, O1 has n
possibilities, I2 has m − 1 possibilities, and O2 has n − 1 possibilities . . . And so on, it is
easy to see that the solution space S of L is:

S = m ∗ n ∗ (m− 1) ∗ (n− 1) ∗ . . . ∗ 1 ∗ 1 = m ∗ (m− 1) ∗ . . . ∗ 1 ∗ n ∗ (n− 1) ∗ . . . ∗ 1 = m!n! (2)

It can be seen from Equation (2) that the complexity of S for m or n is a factorial level,
this means that the application of non-probabilistic algorithms in the stacker path planning
problem is limited.

3. Algorithm Design

In this section, this paper firstly proposed a concept of cost matrix, which transforms
the original scheduling optimization problem into the element combination problem of
cost matrix. Then it was proved that the size of the new solution space is significantly
reduced by using the enumeration algorithm. Then, a backtracking algorithm based on the
exhaustive method is proposed for optimization, and the simulation results show that the
backtracking algorithm can greatly improve the efficiency of the enumeration algorithm.
Finally, after analyzing the procession of the backtracking algorithm, we proposed a greedy
algorithm to further improve the efficiency of the backtracking algorithm. The simulation
results show that the new greedy algorithm is effective.

3.1. Cost Matrix

After observing sequence model L in Equation (1), it can be found that at the beginning,
I and O appear in pairs, because there is a pair of I/O that forms a loop, as shown in Figure 2.

Figure 2. One round task simplified diagram of stacker.

Therefore, the path in Figure 2 can be looked at as that the stacker starts from the starting
point, performs the storage task, and solves a nearby retrieval task at a certain time cost.

Based on the above, the path planning problem of the stacker can be described from
another perspective:



Symmetry 2021, 13, 1483 5 of 16

Initialize: Suppose that there are n storage tasks [I1, I2, I3, . . . In] and m retrieval tasks
[O1, O2, O3, . . . Om].

Step 1: Firstly, only the storage task is considered. Obviously, the total time T0 is a
fixed value, as shown in Figure 3.

Figure 3. The total time T0 used for storage tasks.

Step 2-1: Consider only the first retrieval task O1, it can be seen as inserting into a
location in the storage task sequence. It is worth noting that the insertion location of O1
will affect the total task time T1, that is T1 ∈ [T1,1, T1,2, . . . , T1,n]. By subtracting T0 from
T1,1, T1,2, . . . , T1,n, the generation value corresponding to various schemes can be obtained.
Obviously, the generation value can measure the pros and cons of schemes; that is, the cost
value P corresponding to the optimal scheme meets P = min{P1,1, P1,2, . . . , P1,n}, as shown
in Figure 4.

Figure 4. The relationship between task sequence and cost value.

Step 2-2: From step 2-1, when only O1 is considered, no matter where O1 is in the task
sequence, it always corresponds to a generation value P1 ∈ [P1,1, P1,2, . . . , P1,n]. Similarly,
when only O2 is considered, there is a generation value P2 ∈ [P2,1, P2,2, . . . , P2,n]. When O1
and O2 are considered at the same time, no matter where they are in the task sequence, at
this time, the cost value P corresponding to the optimal scheme satisfies Equation (3), and
the result is shown in Figure 5.

P = min
{

P1,i + P2,j
}

P1,i ∈ [P1,1, P1,2, . . . , P1,n], i = 1, 2 . . . , n
P2,j ∈ [P2,1, P2,2, . . . , P2,m], j = 1, 2 . . . , m

i 6= j

(3)
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Figure 5. The relationship between the cost value of single task and composite task.

Step 3: According to the contents of step 2-1 and step 2-2, by using the analogy
method, it can be seen that when all the retrieval tasks [O1, O2, . . . Om] are considered, the
cost value P corresponding to the optimal scheme meets the following requirements:

P = min
{

P1,i + P2,j + P3,k + . . . + Pm,λ
}

P1,i ∈ [P1,1, P1,2, . . . , P1,n], i = 1, 2 . . . , n
P2,j ∈ [P2,1, P2,2, . . . , P2,n], j = 1, 2 . . . , n
P3,k ∈ [P3,1, P3,2, . . . , P3,n], k = 1, 2 . . . , n

. . . . . .
Pm,λ ∈ [Pm,1, Pm,2, . . . , Pm,n], λ = 1, 2 . . . , n

the i, j, k . . . λ is not equal.

(4)

So far, the path planning problem of the stacker can be transformed into the problem
of minimizing the total cost value P.

Step 4: The cost matrix C is defined as follows:

C =


p1,1 p2,1 p3,1 . . . pm,1
p1,2 p2,2 p3,2 . . . pm,2
. . . . . .
p1,n p2,n p3,n . . . pm,n

 (5)

where pi,j (i = 1, . . . , m j = 1, . . . , n) is the generation value by binding Oj to Ii. So far, the
definition of total generation value p is supplemented based on the cost matrix:

P =
m

∑
k=1

pk (pk ∈ pm,n) (6)

In Equation (6), any two pk are not the same row and different columns.
Take any P1 from the first row of the cost matrix C, then delete its row and column,

and then take any P2 from the first row of the new C1, and perform the above operation
until Cn+1 = [ ]. After ending a complete traversal sequence, compare the corresponding
P′ value with the known P′min, if and only if P′ is less than P′min, update P′min and record
the current sequence, and let the corresponding sequence be Pmin:

Pmin = Pi1,j1 + Pi2,j2 + . . . + Pin,jn (7)

The corresponding composite bundling storage and retrieval sequence is:

l1 = i1, j1, i2, j2, . . . , in, jn (8)

Note that Equation (8) is composed of several pairs of “storage and retrieval” composite
tasks. In addition, if no element in column k1, k2 . . . is selected, the single sequence is:

l2 = [1, 2, . . .] (9)
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Therefore, the final global sequence is:

L = l1 + l2 (10)

The analysis of the above process shows that the solution space of P based on the cost
matrix is:

S1 = m ∗ (m− 1) ∗ (m− 2) ∗ . . . ∗ 1 == m! (11)

It can be obviously seen that S1 is less than S, it indicates that the model transformation
based on cost matrix can effectively reduce the size of solution space.

Next, a simple example is given to illustrate the cost matrix:
Suppose that there are two storage tasks I1, I2 and two retrieval tasks O1, O2, and

the corresponding shelf coordinates of each task are: I1 = [5, 5], I2 = [10, 7], O1 = [6, 6],
O2 = [11, 7], the horizontal moving speed Vx = 1 m/s and the vertical moving speed
Vy = 1 m/s of the stacker.

Obviously, the optimal task sequence should be L = [I1, O1, I2, O2]. Next, we will
demonstrate how to get this result through the cost matrix.

From Step 1 above mentioned, it can be seen that only considering the total time
T0 = 5 + 10 = 15 s of the storage tasks, the generation values P1,1 = 16 − 15 = 1,
P1,2 = 15− 15 = 0, P2,1 = 21− 15 = 6, P2,2 = 16− 15 = 1 can be obtained from step 2-1,
and the cost matrix can be obtained according to Equation (5):

C =

[
P1,1 P2,1
P1,2 P2,2

]
=

[
1 6
0 1

]
According to Equation (6), when P = P1,1 + P2,2, P = Pmin = 2, that means [I1, O1, I2, O2]

is the optimal solution.

3.2. Backtracking Algorithm for Solving Problems

As mentioned above, we only need to find the minimum value of the total cost value
p, therefore the backtracking algorithm [12,13] can be used to find Pmin by only traversing
partial solution space to improve the efficiency of the algorithm.

In the whole process of solving Pmin, the backtracking algorithm always keeps the
known P′min as the threshold. In the process of traversing a sequence, if it is found that
the cost value P′ corresponding to the current traversal sequence satisfies the relation
P′ > P′min, the current traversal is interrupted and the previous node is traced back.
Otherwise, after a complete sequence is traversed, let P′min be P′.

The main steps of the backtracking algorithm are as follows:
Step 1. The cost matrix C is constructed based on the existing task data:

C =


p1,1 p2,1 p3,1 . . . pm,1
p1,2 p2,2 p3,2 . . . pm,2
. . . . . .
p1,n p2,n p3,n . . . pm,n


where pi,j (i = 1, . . . , m j = 1, . . . , n) is the cost value generated by the binding retrieval task
Oj to storage task Ii. If the time for the stacker to execute only Ii is ti, the time for executing
Ii firstly and then Oj on the way is tj, then the corresponding cost value pi,j = tj − ti. The
initial cost value counter P′ = 0 and the initial threshold P′min = K, where K is a number
which is larger than the global minimum Pmin, so K can be taken as follows:

K =
n

∑
a=1

pa-max (pa-max is the largest number in row a) (12)

Finally, the cost matrix C is passed to Step 2.1 for processing.
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Step 2: The backtracking algorithm is used to find the minimum value Pmin of the
total cost value. The specific process is as follows:

Step 2.1: Let the obtained matrix be C.
Step 2.1.1: When C = [ ], that is, C is an empty matrix, update P′min = min{P′min, P′},

and go to Step 2.3 to perform the remaining operations;
Step 2.1.1: When C is a non-empty matrix, take out one element from the first row of the

matrix C in turn from left to right, set the element to be taken out as p1,k, then calculate the
current cost value P′ = P′ + p1,k, and execute Step 2.2. When all the elements in the first row
are taken out once, if the cost matrix C obtained in Step 2.1 comes from Step 1, then directly
execute Step 3; otherwise return to Step 2.3 to execute the remaining operations.

Step 2.2: Judge the size of current P′ and P′min. If P′ ≥ P′min, return to Step 2.1 to
execute the remaining operations; otherwise, execute Step 2.3.

Step 2.3: The new matrix after deleting row 1 and column K of current matrix C is
stored in C1; then return matrix C1 to Step 2.1 and continue to perform Step 2.1.1 for the
remaining operations.

Step 3: Output Pmin and corresponding sequence.
The flow chart of backtracking algorithm is shown in Figure 6.

Figure 6. Flow chart of backtracking algorithm.
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3.3. Greedy Algorithm for Solving Problems

If a sequence vector X is defined, and it is composed of n vectors xi(i = 1, 2, . . . n), and
any two xi1 and xi2 satisfy the following condition:

|xi1 × xi2|+ |xi1·xi2| = 0 (13)

The X diagram is shown in Figure 7:

Figure 7. Structure diagram.

When the length of xi(i = 1, 2, . . . n) is taken as the element size of different rows
and columns in the cost matrix C, then the length LX of X is the numerical value of a
solution (or a total cost value p), so the solution space of the problem can be regarded as
innumerable X. If each X is plotted on the x-axis, the solution space is shown in Figure 8.

Figure 8. Solution space of X.

The analysis shows that the solution space is composed of m Xs in Figure 8, and
each X is composed of three xi(i = 1, 2, 3) (broken by the red dot). Reviewing the logic
process of the backtracking algorithm, the traversal process can be regarded as starting
from the starting point on x-axis, and continuously jumping up between the red dots
until reaching the top, and finding a complete solution. Since the smallest solution X is
found, the backtracking algorithm will record the size of the current solution and use it
as a threshold. In the following traversal process, after each jump, it is detected whether
the current position exceeds the threshold, and the subsequent traversal is abandoned if it
exceeds the threshold, as shown in Figure 9.
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Figure 9. Traversal process of backtracking algorithm.

Therefore, the efficiency of the backtracking algorithm is mainly affected by the
threshold. The earlier the threshold approaches the global optimal solution, the higher the
optimization efficiency of the algorithm. If and only if the initial threshold is the optimal
solution, the optimization efficiency of the backtracking algorithm is the maximum.

Quickly making the threshold approach the global optimal solution is an important
way to improve the efficiency of the backtracking algorithm. When the initial threshold is
set to the global optimal solution, the characteristics of all nodes below the threshold will
be observed. After analyzing, it will be found that the y value of any node is less than the
threshold, so it is the global optimal solution. Therefore, a greedy strategy can be designed,
which only needs to traverse the node whose y value is lower than the global optimal
solution to solve the problem more efficiently [14–18].

Based on the above, a self-locking greedy algorithm is proposed; the steps are
as follows:

Step 1: A table group Ui(i = 1, 2, 3, . . .) is defined, in which each Ui table only records
the composition of residual solution (or complete solution) nodes whose traversal length
is i nodes and the total cost value corresponding to the residual solution (or complete
solution). In the initial U1 table, there is residual solution ui=1,j=1 (i marks the number of
residual solution nodes, j marks the last node of the residual solution as the j-th element of
the i-th row element in the cost matrix when it is arranged from small to large).

Step 2: Implement a greedy strategy to traverse the loop.
Step 2.1: Find the solution with the lowest cost value from all tables and name it ui,j

(when there are multiple solutions with the same value, the higher i, is the higher priority).
Step 2.1.1: When ui,j is a complete solution; that is, ui,j is in Uimax , the greedy algorithm

finds the global optimal solution and ends the cycle.
Step 2.1.2: When ui,j is a residual solution, the next node is traversed along ui,j, and

the new residual solution ui+1,1 is put into the corresponding Ui+1. If ui,j satisfies ui,j=jmax ,
ui,j will be deleted, otherwise ui,j in Ui will be changed to ui,j+1. ui+1,1 guarantees the
inheritance of the optimal solution in Ui, and ui,j+1 constitutes the self-locking of the
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inferior quality of the residual solution of Ui, which guarantees the deep ergodicity of the
superior solution and hinders the invalid ergodicity of the inferior solution.

Step 2.2: Check whether Ui is empty. If it is empty, select the residual solution with
the greatest value from Ui−1 and perform Step 2.1.

Step 3: Output ui,j and the corresponding sequence.
The pseudo codes of the algorithm are shown in Algorithm 1, Algorithm 2 and

Algorithm 3:

Algorithm 1 Main program of greedy algorithm

1: init_space()→ initialize table groups Ui(i = 1, 2, 3, . . .)
2: while true:
3: smallest_info = seek_the_smallest()→ find the solution with the least cost value in the table group
4: r = blossom(smallest_info)→ update smallest_info and return the status code of the processing result
5: if r = 1:→ if smallest_info is the best solution
6: output smallest_info→ output results
7: break→ Exit the loop and end the program

Algorithm 2 Seek_the_smallest()

1: for i in list_space:→ Take out all the elements in each table in turn.
2: Sort all the elements in ascending order according to cost value.
3: for i in list_space:
4: if there are solutions in the table:
5: if the cost value of the first solution is less than that of all known:
record it
6: return smallest_info→ Return the solution corresponding to the minimum generation value.

Algorithm 3 Blossom ()

1: parameter: information of the solution corresponding to the minimum cost value, smallest_ info = [cost
value c, layer number of solutions t]
2: if t = imax:
3: return 1
4: According to smallest_ info find the corresponding solution and write it down as smallest_ solution.
5: a solution solution_1 in the layer t + 1 is generated, which satisfies solution_1[“value”] =
small_solution[“value”] + value_1, and the row of value_1 is in small_ solution[“next_ available “].
6: A solution_2 in the t layer is generated, which satisfies the solution_2[“value”], replace the last element of
small_solution [“value”] with a slightly larger value in the same column.
7: return 0

3.4. Proof of Algorithm Convergence to Optimal Solution

As the greedy idea aims to use a series of combinations of local optimal solutions to
approximate the global optimal solution, whether the algorithm designed based on the greedy
idea can obtain the optimal solution depends on the realization of greedy strategy. Therefore,
a proof is carried out by contradiction to the above-designed self-locking greedy algorithm.

Hypothesis: the final output ui1,j1 is not the optimal solution.
The optimal solution position currently has the following two cases:
(1) The optimal solution ubest is in Uimax , which is determined by using Step 2.1 in

Section 3.3. Because the cost value of ubest is less than ui1,j1, the algorithm will give a priority
to output ubest instead of ui1,j1, which is contrary to the assumption, so this situation does
not exist.

(2) The optimal solution ubest is not completely traversed, but it is located in Ui 6=imax

in the form of residual solution ui0,j0, assuming that the global optimal solution is ui′ ,j′

and the cost value corresponding to the residual or complete solution in the table group

is defined as Pi,j
f← ui,j, then the cost value Pi′ ,j′ of the optimal solution must be less than

Pi1,j1, and the cost value Pi0,j0 of the residual solution ui0,j0 must be less than Pi′ ,j′ , that is
Pi0,j0 < Pi′ ,j′ . According to Step 2.1.2 in Section 3.3, the greedy algorithm always selects
ui0,j0 for processing; as a result, this situation does not exist.
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To sum up, the hypothesis does not hold. Therefore, the self-locking greedy algorithm
designed in this paper must be able to find the optimal solution.

4. Simulation and Results

In this section, a specific example is given to verify the effectiveness of the self-locking
greedy algorithm. Suppose there is a three-dimensional warehouse with 9 layers and
10 columns, and there are batch random storage and retrieval tasks, including 9 storage
tasks and 8 retrieval tasks. The random tasks are shown in Table 2.

Table 2. Random task sequence.

Tasks 1 2 3 4 5 6 7 8 9

Storage (8,2) (6,5) (7,4) (5,9) (2,8) (4,7) (1,6) (9,3) (3,1)
Retrieval (1,5) (9,4) (2,7) (6,3) (5,2) (8,1) (3,8) (7,9)

Using Python language programming, the self-locking greedy algorithm proposed
in this paper is verified and simulated on the PC of CPU 2.5 GHz, i5 processor, and is
compared with the conventional exhaustive algorithm and backtracking algorithm.

The cost matrix obtained by simulation and the corresponding arrangement of the
optimal solution are shown in Figure 10.

Figure 10. Element combination of cost matrix (optimal solution).

It can be seen from Figure 10:

Pmin = p6,0 + p7,1 + p4,2 + p1,3 + . . . + p3,7 = 8 (14)

The task sequence of the stacker is decoded by using Equation (8):

l1 = [[6, 0], [7, 1], [4, 2], [1, 3], [2, 4], [0, 5], [5, 6], [3, 7]] (15)

Because there is no selected element in column 8, the eighth storage task is a single
task command, which is defined by using Equation (9):

l2 = [8] (16)

So, the optimal solution sequence is:

L = l1 + l2 = [[6, 0], [7, 1], [4, 2], [1, 3], [2, 4], [0, 5], [5, 6], [3, 7], [8]] (17)

The total time of task sequence corresponding to the optimal solution according to
Equation (4):

T = TI + Pmin = 118 + 8 = 126 (18)

The simulation result is shown in Figure 11.
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Figure 11. Schematic diagram of optimal path.

The performance of each algorithm in the simulation process (time, times of selecting
behaviors, number of traversing complete sequence) is shown in Table 3.

Table 3. Comparison of algorithm efficiency.

Algorithm Time Consuming (s) Number of Selecting
Behaviors (Time)

Number of Traversing
Complete Sequence

Exhaustive algorithm 17.9118 623,530 362,880
Backtracking algorithm 0.5588 6172 16

Self-locking greedy algorithm 0.1059 932 1

According to the data in Table 3, it takes 17.9118 s for the exhaustive algorithm to
traverse the complete solution space, 0.5588 s for the backtracking algorithm to traverse
the partial solution space to find the optimal solution, and only 0.1059 s for the greedy
algorithm. The time-consuming ratio of greedy algorithm and exhaustive algorithm is
δt1 = 0.1059

17.9118 = 0.59%. The time-consuming ratio of greedy algorithm and backtracking
algorithm is δt2 = 0.1059

0.5588 = 18.95%. The data in Table 3 also prove that the optimization
efficiency of the greedy algorithm can effectively approach the optimal solution that the
backtracking algorithm can achieve.

In order to further prove the feasibility of the proposed self-locking greedy algorithm
for the stacker path planning problem, the common genetic algorithm (GA) is used in the
heuristic algorithms to simulate the above case. The initial parameters of the GA are shown
in Table 4.
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Table 4. GA’s parameters.

Parameters Value

Population size 30
Iterations 100

Mutation probability 0.1
Crossover type PMX

Selection methods Tournament selection

The simulation result is shown in Figure 12.

Figure 12. Iterative graph by using GA.

It can be seen from Figure 12 that the GA obtains the optimal solution for the first time
in the 14th generation, while the total time for running 100 generations is 1.5022 s; that is,
the shortest time for GA to obtain the optimal solution is:

Tmin =
1.5022

100
∗ 14 = 0.2103 s (19)

By comparing with Table 3, the time consuming for GA is significantly higher than
that of the greedy algorithm. Therefore, it can be proven that the efficiency of the greedy
algorithm proposed in this paper is better than that of the general heuristic algorithms.

Considering that the GA is a probabilistic algorithm and the sampled data are probabilis-
tic, therefore ten random simulations are tested by using GA. The optimal solution obtained
is Q, the number of iterations for the first optimal solution is R-q. The total running time is
T-all, and the time of R-q is T-q. The simulation results are shown in Table 5.

Table 5. Ten random simulation results.

Times 1 2 3 4 5 6 7 8 9 10

Q 126 126 128 126 128 126 126 126 128 126
R-q 9 11 13 11 15 13 11 14 12 14

T-all 1.85 2.03 1.36 1.65 2.01 2.11 1.47 1.66 1.53 1.54
T-q 0.17 0.22 0.18 0.18 0.30 0.27 0.16 0.23 0.18 0.22

It can be seen from the data in Table 5 that the probability of genetic algorithm to
obtain the optimal solution is 70%, and the minimum time to obtain the optimal solution
is significantly higher than that of the greedy algorithm proposed in this paper. Taking
the average value of T-q data in these 10 groups of simulation results as the solution time
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of traditional genetic algorithm, the time ratio of this self-locking greedy algorithm to
traditional genetic algorithm is:

δt3 =
0.1059

(0.17 + 0.22 + . . . + 0.22)/10
=

0.1059
0.211

≈ 50.19% (20)

That is to say, the time of the self-locking greedy algorithm is only half that of the
traditional genetic algorithm.

To sum up, the above simulation proves that the combination of greedy algorithm
based on cost matrix can play a very good effect; both the optimization speed and the
optimization accuracy are better than the performance of the general heuristic algorithm.
This makes it possible to apply a non-probabilistic algorithm in solving the stacker path
optimization problem.

5. Conclusions

Considering the importance of the path planning of AS/RS, a greedy algorithm based
on cost matrix to solve the path planning problem of the AS/RS is proposed. Firstly,
aiming at the path planning mathematical model of AS/RS, this paper proposes a concept
of cost matrix, which transforms the traditional storage and retrieval problem into the
element combination problem of cost matrix. Then, a more efficient backtracking algorithm
is proposed based on the exhaustive method. After analyzing the performance of the
backtracking algorithm, combined with some rules, a greedy algorithm which can further
improve efficiency is proposed; the convergence of the improved greedy algorithm is also
verified. Finally, through simulation, the time consumption of the greedy algorithm is only
0.59% of the exhaustive method, and compared with the traditional genetic algorithm, the
time consumption of the greedy algorithm is about 50% of the genetic algorithm, and it can
still maintain its advantage in time consumption, which proves that the greedy algorithm
based on cost matrix has a certain feasibility and practicability in solving the path planning
of the automatic storage and retrieval system.

In future research work, the improved greedy algorithm proposed in this paper will be
further used to solve job shop scheduling problems, traveling salesman problems, mobile
robot path planning problems, etc.
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