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Abstract: Electrocardiogram (ECG) signals have been used to monitor and diagnose signs of cardio-
vascular disease and abnormal signals about the human body. ECG signals are typically characterized
by the PR, ORS, QT interval, ST-segment, and heart rate (HR) parameters. ECG devices are widely
used for many applications, especially for the elderly. However, ECG signals are often affected by
noises from the environment. There are mainly two types of noises that affect the ECG signals: low
frequencies from muscle activity and 50/60 Hz from the electrical grid. Removing these noises is
important for improving the quality of the ECG signal. A clear ECG signal makes it easy to diagnose
cardiovascular problems. ECG signals with high sampling frequency are more accurate. However,
the noises in the signal will be more obvious and it will be difficult to remove these noises with
filters. We analyzed the symmetrical correlation between the sampling frequency of the signal and
the parameters of the signal such as signal to noise ratio (SNR) and signal amplitude. This study will
compare characterization of ECG signals performed at different sampling frequencies before and
after applying infinite impulse response (IIR) and symmetric finite impulse response (FIR) filters.
Therefore, it is critical that the sampling frequency is consistent at the same frequency of the ECG
signal for accurate diagnosis. Furthermore, the approach can be also important for the device to help
reduce the device’s computing power and hardware resources. Our results were tested with the
MIT/ BIH database at 360 Hz sampling frequency with 11-bit resolution. We also experimented with
the device operating in real-time with a sampling frequency from 100 Hz to 2133 Hz and a 24-bit
resolution. The test results show the advantages of the symmetric FIR filter over IIR when applied to
the filtering of ECG signals. The study’s conclusions can be applied to real-world devices to improve
the quality of ECG signals.

Keywords: electrocardiogram (ECG); symmetric finite impulse response (FIR) with odd orders;
infinite impulse response (IIR); Arduino ESP32; P wave; QRS wave; T wave

1. Introduction

According to WHO statistics, the number of people with cardiovascular problems is
increasing, especially among the elderly [1]. Therefore, the monitoring of cardiovascular
issues has become more and more urgent and important [2-4]. The electrocardiogram is a
common non-invasive measurement method in the screening and diagnosing of various
diseases [5-8]. One of the critical applications is in health monitoring and diagnosis [9,10].
It provides one of the essential pieces of information supporting the diagnosis of stroke.
Electrocardiogram monitoring helps in the early detection and identification of the cause of
stroke [11]. The quality of the ECG signal plays a direct role in the diagnostic outcome [12].
The components of the ECG signal include the Q, R, S, and T wave [13], where the R
peaks play an essential role in calculating the patient’s heart rate [9]. Distinguishing the
components of an ECG signal will yield more helpful information [14].
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Typically, the recording of an electrocardiogram is conducted by attaching electrodes
to the patient’s body, and the device will receive electrical signals from these electrodes [15].
Therefore, the contact between the electrodes and the user’s skin will directly affect the
quality of the obtained ECG signal. In addition, when the user is near the equipment
that uses alternating current (AC) power, the human body is also affected by interference
from the power grid [16-18]. This interference has a frequency equal to the 50/60 Hz grid
frequency, depending on the country [19]. These are two types of noise that directly affect
the quality of the received ECG signal. Therefore, it is necessary to eliminate these two
types of interference [20-22]. There are two methods of noise removal: using analog filters
designed on hardware and digital filters designed on software. Analog filters are made
up of three basic elements—resistor (R), inductor (L) and capacitor (C)—and have fixed
parameters [15,23]. The digital filters are designed based on the computing power of the
central processing unit (CPU), so the parameters can be changed more flexibly [24]. To
completely eliminate the two types of noise in the ECG signal, designing both low-pass (LP)
and high-pass (HP) filters is necessary [25]. Therefore, the choice of filter design method
plays an essential role in signal quality [16,22]. Recently, dedicated filter architectures, such
as adaptive filters or machine learning algorithm (autoencoders) were developed [26-28].
For our case, we utilized the simple filter topology for reduced design complexity to filter
out unwanted ECG noises.

Along with advanced semiconductor technology, there have been many analog Front
end (AFE) for ECG applications, produced by created manufacturers, serving biological
measurement, such as TI, Maxim Integrated and Analog Devices, and the more compact
and precise form of these components makes the design of wearable devices faster and
easier [3,24,29,30]. The streamlined design process accelerates the commercial product
launch process [24,31]. These bio-sensors usually have a variable sampling frequency [32].
For ECG signal, the higher the sampling frequency, the more accurate the signal, and vice
versa. However, a high sampling frequency will create an extensive database that makes
it difficult to calculate and transmit data to other devices. The BIT/ MIH database has a
sampling frequency of 360 Hz [33]. Sensor ADS1293 from TI has a sampling frequency of up
to 2133 Hz [34], sensor MAX86150 from Maxim Integrated has a frequency of 3200 Hz [35],
and sensor ADAS1000 from Analog Devices has a sampling frequency of 8000 Hz. There-
fore, surveying the ECG signal at different sampling frequencies plays a vital role in
reducing the amount of data to be collected but still ensuring the correctness of the signal.
The basic structure of a wearable device includes bio-sensor and system-on-chip module
(microcontroller unit (MCU), Bluetooth, Wi-Fi, battery management, etc.,) [32,36-38]. Since
most ECG wearable devices use batteries, reducing the amount of computation on the data
is also an effective method to save energy consumption and prolong usage time [24,32].

Usually, there is a correlation between sampling frequency and signal quality. The
higher the sampling frequency, the more faithful the components of the signal will be. How-
ever, ECG signal parameters need to be considered, such as heart rate (60-150 beats/min)
and P, QRS and T wave amplitude. We analyzed the asymmetries in the ECG signal at
different frequencies, from which to draw conclusions.

Overall, our study has the following contributions:

1.  We analyzed the crucial components in the ECG signal. Noise factors affect the signal
and how to design filters to remove noise.

2. Weinvestigated ECG signals from BIT/ MIH database with different sampling fre-
quencies. We apply filters to compare the difference between the received signals.

3. We proposed an ECG signal acquisition model based on large production components
to collect real-time signals. We also apply filters to remove noise with different sam-
pling frequencies of the device. We compare the parameters and draw conclusions.

The rest of this article is presented as follows: the Materials and Methods section will
analyze the related works and implementation methods. The subsequent sections will show
the implementation results. In the last part of the paper, we will present the conclusions.
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2. Materials and Methods
2.1. ECG Characteristic Analysis and Related Works

In this section, we review related works by other authors to further clarify the meaning
of the ECG signal and the obtained results of applied analysis. Figure 1 describes a
reasonably typical ECG signal with the P wave, the QRS complex, and the T wave [39].
The P waves are generated by muscle activation of both atria. The left-to-right ventricular
activation produces a QRS complex. Finally, ventricular muscle activation produces T
waves. Therefore, the P, QRS, and T wave are essential parts of the electrocardiogram that
should be observed and evaluated because they have a lot of helpful information [13,40].

QRS

komplex
R

ST
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P segment

PR interval

QT interval

ﬁ

Figure 1. ECG signal with typical segment [39].

Wenliang Zhu and colleagues have studied cardiac arrhythmias based on abnormal
cardiac electrical activity to correct cardiac arrhythmias. The study analyzed the electro-
cardiogram P-QRS-T segment and the shape features of the P-QRS-T wave to identify
arrhythmias [2]. Dengao Li et al. used a novel neural network structure based on the
12 most common electrocardiographic leads proposed to classify 9 arrhythmias [5]. Piotr
Augustyniak used a time-independent QRS detection method [10]. We applied a graph
data representation and applied a heterogeneous time-scale transform finding the exact
P, QRS and T wave demarcation points. J. P. V. Madeiro used the mathematical model of
Gaussian and Rayleigh Functions to compare the modeling and segmentation of P and
T waves in the electrocardiogram [13]. The root mean square (RMS) evaluated between
models and characteristics wave. In addition, the author also applied wavelet transform to
estimate the P peak and T wave. Khaleel Husain and colleagues presented their study on
the architecture of an ECG signal acquisition system including hardware and software [24].
Regarding the software, they analyze factors such as noise reduction, machine learning
and privacy protection. With the result, it is possible to provide details regarding the
components of the ECG signal.
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From the studies of the above authors, we found that there are no studies focused
on analyzing the sample frequency of the ECG signal and the quality of the signal.
We focused on complementing the new knowledge and results related to ECG signal
acquisition and analysis.

2.2. Design a High-Pass and Low-Pass Filter

It is necessary to design both high-pass and low-pass filter to remove high-pass and
low-pass noises from the grid for ECG signal [41]. The FIR and IIR filters are usually
utilized for two types of filtering: the Formulas (1) and (2) describe the FIR filter and the
IIR filter, respectively.

y(n) = Y by xx(n— K) M
k=1
y(n) =Y berx(n— k) + Y apey(m—i) @
k=1 =2

y(n) is output signal (ECG signal after applied filter), x(n) is input signal (ECG signal
before applied filter), n is the orders of filter.

The characteristic of the symmetrical FIR filter is that it is always stable and the signal
is not distorted. However, the symmetrical FIR has a substantial computation, so it needs
to be selected appropriately for the intended use. Besides, a symmetric FIR filter with an
odd number of coefficients has an integer delay. This means that the original signal and
the filtered signal are delayed by shifting an integer number. The integer numbers shift

follows the formula below. .
n —

2

n is the orders of filter, d is the shifting delay interval.

The IIR filter has a much smaller order number than the FIR filter. However, the
signal, after passing through the IIR filter, is distorted and needs to be designed to ensure
stability. The high-pass filter was applied to the ECG signal to eliminate noise with a
cutoff frequency in the 0.01 Hz to 0.05 Hz. The FIR filter requires dedicated computations.
Therefore, applying the FIR high-pass filter would not be appropriate. Therefore, we only
use the IIR high-pass filter. The purpose of a low-pass filter is to remove multiple harmonic
supply/ground-bouncing noises from power lines. The noise frequency is equal to the
frequency of the power grid, which is 50/60 Hz depending on the power-delivery network
in the system. We recommend the filter structure, as shown in Figure 2. The structure
includes the combination of low-pass filter (IIR/ FIR) and high-pass filter (IIR).

d:

®)

ECG before ECG after
Filter Input Low-Pass | . Filter Output
| 1 (IR) :
A ("——lonrass]
i | " .. . .
i r\wﬂ"‘“” i r”.“m"‘ . LOEIIV= ISSS —

Figure 2. The structure of filter applied to ECG signal.

Detailed information on the design of high-pass and low-pass filter applied to ECG
signals is presented in Table 1. We chose to design the IIR filter according to the Elliptic
method and the FIR filter according to the Equiripple method to minimize the number of
calculations in the filters.
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Table 1. The Characteristics of Filter Design.
Filter Items Descriptions
High-Pass (IIR) Method Elliptic
Cutoff frequency (Hz) Hz = 0.05 Hz
! Y Apass =1 dB, Astop = 80 dB
Low-Pass (IIR) Method Elliptic
Cutoff frequency (Hz) 35 Hz = 45 Hz
! Y Apass =1 dB, Astop = 80 dB
Low-Pass (FIR) Method 35%1231’4{’51‘;&
Cutoff frequency (Hz)

Apass =1 dB, Astop = 80 dB

2.3. Standard Evaluation ECG Signal before and after Applied Filter with Different
Sampling Frequencies
As we mentioned above, the BIT/ MIH database data has a sampling frequency of
360 Hz. In this section, we will examine the ECG signal extracted from this database
with smaller sampling frequencies. The new sampling frequency is chosen as follows
Frew_fre = (30, 45,72, 90,120, 180) Hz. The evaluation of new data generated from the
BIT/ MIH database was performed as follows.
1. We created new databases from the MIT/BIT database with f,¢, ¢, sampling frequencies.
2. We performed the filter on both new and old data.
3. We selected the data after filtering at 360 Hz as the original data and the data at the
new sampling frequencies as the comparison data.
4.  The standards for comparison included: signal to noise ratio of the signal. We compared
the amplitudes of the P wave, QRS wave and T wave at different sampling frequencies.

The signal to noise ratio (SNR) of the ECG signal is shown below:

PSignal

SNR =
PNoise

4)

According to the Formulas (1) and (2), the total number of multiplication and addition
calculations for the FIR/ IIR filter is as follows:

FIR pga = FIRpu1i = M ©)

IR pqq = IIRppy1si = 2N — 1 (6)

The total number of multiplication and work performed by the FIR/ IIR filter on the
entire data are as follows:

TOtﬂl_FIRAdd = TOi’al_FIRMulti = PIRAdd * (L — M) (7)

TOtLll_IIRAdd = TOt&ll_IIRMulti = IIRAdd * (L — N) (8)
where: L is the length of data, M is the order of FIR and N is the order of IIR filter

3. Results

In this section, we evaluated the effect of filters on ECG signals at different sampling
frequencies. We used ECG signals from the MIT/ BIH database, and the signals were
collected directly from volunteers. The electrocardiogram sample from the MIT/BIH
database is fixed at a sampling rate of 360 Hz. However, the electrocardiogram signals
from the volunteers had a dynamic sampling frequency of 100 Hz to 2133 Hz.

3.1. Testing the Filter with the MIT/BIH Database

We used five ECG signals from the MIT/ BIH database to evaluate the high-pass and
low-pass filters. This data are then used to generate seven new ECG signals with sample
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frequencies of less than (30, 45, 60, 72, 90, 120 and 180) Hz. For our proposed design,
we chose the lowest possible sampling rate suitable for a heart rate monitor application
because the reduced size of data could increase the computation efficiency and overall
power overhead in the system. The minimum sampling frequency suitable for ECG
applications with P wave and QRS wave needed to be evaluated.

3.1.1. Analysis of the Minimum Sampling Frequency Choice for Heart Rate Applications

We also used five ECG signals from the MIT/ BIH database with sample frequencies
below (30, 45 and 60) Hz. The results show that for the frequency of 30 Hz, the value on
the R peak of the signal is decreased significantly, so it is not suitable for the application to
calculate the heart rate using the data from the R peak of the ECG signal. For the sampling
frequency of 45 Hz, there is still some loss of peak R. Therefore, we find that the minimum
sampling frequency of 45 Hz is suitable for ECG applications that calculate heart rate with
R peak of ECG signal. In Figure 3, we described these signals.

ECG Signal BIT/MIH (SVTA-209m-0) differenct sampling frequencies
T I

s
£ 200
Ly
=]
2
a o0 -
£
<

- 1 I

2Q20000 2500 3000 3500

400

' |
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£ 200t
L
e
=
3 ot -
E
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2 1 |

c53000 2500 3000 3500

Number of Samples

Amplitude (m\)

Amplitude (mV)

2500 3000 3500
Number of Samples

Figure 3. The comparison ECG with different low sampling frequencies (first plot with black color lines for original data
and second three plots with blue color lines for regenerated waveforms with 30, 45 and 60 Hz).

3.1.2. Analysis of the Minimum Sampling Frequency for P, QRS, T Wave Applications

We examine five ECG signals from the MIT/ BIH database with sample frequencies
below (60, 72, 90, 120 and 180) Hz. The results show that for frequencies of less than 90 Hz,
the determinants Q and S values might be usually wrong. Therefore, we choose the value
of the minimum sampling frequency suitable for applications where the P, QRS, and T
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waveforms are considered to be 90 Hz. In Figure 4, we described the ECG signals with
different sample frequencies and S and Q positions.

ECG Signal BIT/MIH (AFIB-201m-5) differenct sampling frequencies

—Fs=360Hz

2500 3000 3500
—Fs=180Hz

2500 Number of Samples 3000 3500
—Fs=120Hz

2500 3000 3500
—Fs=90Hz

2500 3000 3500

Number of Samples

Figure 4. The comparison ECG signal with different sampling frequencies for P, QRS, T wave detection (first plot with black
color lines for original data and second three plots with blue color lines for regenerated waveforms with 90, 120 and 180 Hz).

Figure 5 describes the original ECG signal in the time domain and noise spectrum with
a sampling rate of 360 Hz. Figure 5b clearly shows that the filtered signals such as low-pass
FIR (blue) and low-pass IIR (red) could provide sufficient noise suppression against the
original signals, which could improve the accurate processing of ECG signals.

Next, we will investigate the effect of filters on ECG signals with different sampling
frequencies as 90, 120, 180 and 360 Hz. For ECG signals with sampling frequencies 90 and
120 Hz, we do not apply a low-pass and high-pass filter because the noise in these ECG
signals is noise from the power grid with a frequency 60 Hz. The 90 Hz and 120 Hz
sampling frequencies are not large enough to evaluate the effect of this noise. The results
are described in Table 2.
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Figure 5. (a) ECG signal in the time domain and (b) ECG spectral signal with original (black) and
filtered signals (red (IIR), blue (FIR)) for noise suppression.

The results described in Table 2 include: the SNR of the signal before and after
applying the filter, the amplitude of the P, QRS and T wave before and after the filter, and
the number of calculations corresponding to each filter.

(a) Analysis of SNR without filter and with the proposed filters.

When we change the sampling frequency, we see that the SNR of the signal changes.
The SNR of the ECG signals tends to increase, and at 90 Hz, many data have the largest
SNR (AFIB-201m(5), NSR-100m(5)). We can clearly see that the smaller sampling frequency
could reduce the effect of spectral noises from power delivery networks at 60 Hz.

For the 90 Hz and 120 Hz sampling frequencies for reconstructing ECG signals, we
only apply the IIR low-pass filter because the low-pass IIR filter could provide the lower
order of filtering and greatly improve computation efficiency of the FIR low-pass filter. We
see that the SNR of the ECG signal at the sampling frequencies at 90 and 120 Hz is smaller
than the SNR of the original signal because the IIR filter has distorted the ECG signals,
leading to the reduction in the SNR of the reconstructed ECG signals in the 35 to 45 Hz
frequency range. At 180 Hz and 360 Hz sampling frequencies, we also investigated and
analyzed the SNR characteristics depending on a wide range of combinations of filters.
The SNR of the ECG signal with combined high-pass and low-pass IIR/ FIR filters could
provide the best performance among all combinations of filters such as high-pass (HP)
and low-pass (LP) IIR/ FIR, HP-LP (IIR-IIR), and HP-LP (IIR-FIR). At the lower sampling
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frequencies of less than 120 Hz, we found that there is no need to apply any filters to
improve the ECG signals.

Table 2. The comparison SNR, P, QRS, T wave of ECG from MIT/ BIH Database before and after Filter.

SNR Amplitude (500:900) ! Order of Filter

MIT/BIH Sampling Combined Combined
ECG Frequency . High-Pass High-Pass
Samples (Hz) Vgﬁ‘;’r‘s‘t (IIR) and (IIR) and P(I":\a/‘;e QR(ISnz,V)“e T(HVY;‘)’e HP (IIR)  LP (IIR) LP (FIR)
Low-Pass Low-Pass
(IIR) (FIR)
£ 245.2 360.7 3248 12,8, 8) (270, 230, 240) (45, 30, 30) 7 15 91
AFIB- (original)
20 (s) 180 250.7 359.4 318.1 (12,8, 8) (270, 220, 230) (45, 30, 30) 7 15 45
120 219.3 146.5 - (12,8, -) (270, 220, -) (45, 30, -) 7 - -
90 324.2 215.9 - (12,8, -) (270, 220, -) (45, 30, -) 7 - -
(Orf’;i?l ) 281.8 11347 9745 (22,12, 20) (320, 265, 290) (60, 40, 45) 7 15 91
2(‘%1;%('2) 180 2783 1106.1 935.9 (22,12, 20) (320, 260, 275) (52,40, 45) 7 15 45
120 423.7 320.8 - (22,12,-) (320, 260, ) (52, 40, -) 7 - -
90 382.4 284.4 - (22,12,-) (310, 260, -) (50, 40, -) 7 - -
£ . 17.2 28.4 214 (32, 15, 30) (290, 240, 240) (25, 20,22) 7 15 91
APB- (original)
100m(a) 180 17.0 29.3 29.8 (32, 15, 20) (290(240, 230) (25,20, 20) 7 15 45
120 16.7 16.4 - (32,15,-) (290, 240, -) (25,20, -) 7 - -
90 148 14.6 - (32,15,-) (285, 260, -) (25,20, -) 7 - -
Eol . 211 37.9 30.2 (50, 25, 40) (340, 310, 300) (40, 25, 30) 7 15 91
NSR- (original)
100m(S) 180 21.2 38.4 35.1 (50, 25, 35) (340, 310, 295) (40, 25, 30) 7 15 45
m 120 21.4 20.8 - (50, 25, -) (340, 310, -) (40, 25, -) 7 - -
90 24.7 24.1 . (50, 25, -) (340, 300, -) (30, 20, -) 7 . .
0 19.6 304 273 (80, 70, 80) (470, 325, 350) (60, 40, 60) 7 15 91
SVTA- (original)
209m(0) 180 19.8 31.0 27.6 (80, 70, 80) (470, 325, 340) (60, 40, 50) 7 15 45
m 120 19.9 19.4 - (80, 60, -) (460, 325, -) (60, 40, -) 7 - -
90 21.3 20.9 . (80, 60, -) (440, 330, -) (55, 40, -) 7 - .

L (Original ECG signals, reconstructed ECG signals with combined IIR-IIR, FIR-IIR filtering) and the unit of ECG signal amplitude is mV.

In terms of amplitude at different ECG sampling frequencies, for the ECG signals at
sampling frequencies 180 Hz and 360 Hz, the amplitudes of the P, QRS and T waves of
the symmetric FIR filter signal are higher than those of the IIR filter. The IIR filter could
more significantly reduce the signal amplitude than the FIR filter, which also can lead to
increased difficulty of positioning of the peak S of ECG signal. The FIR filter makes quite
easy to decide on the implement and the amplitude of the QRS wave is the same in the
original signal. However, the IIR filter might cause unwanted signal ringing, as shown in
Figure 5b. Therefore, the choice of filter combination and optimization of filter orders is the
most important factor in terms of SNR, amplitude and computation complexity.

(b) Optimal number of filter orders

The results in Table 2 also show massive differences in the number of calculations that
need to be performed between the IIR and symmetric FIR filters at different frequencies.

At 180 Hz sampling frequency, the order of the symmetric FIR filters with an odd order
of filter is 45, while that of the IIR filter is 15. However, at different sampling frequencies
(i.e., 360 Hz), the computation complexity can be increased significantly, because the
orders of FIR filter should be changed from 45 to 91. Hence, we could determine that the
selection of the sampling frequency at 180 Hz can be the most suitable for the ECG signals
because the low-pass FIR could significantly remove noises from power delivery networks
operating with 50 and 60 Hz frequencies.

3.2. Experiment with Volunteers

We made a test model to measure the ECG signal from the volunteers, as shown in
Figure 6. The hardware architecture includes the ECG integrated circuit (ADS1293) and
the evaluation board (ESP32). The ADS1293 board connects to the volunteer body by
electrodes [42] and communicates with the ESP32 board by a serial peripheral interface
(SPI). The connection signals of the ESP32 board and the ADS1293 module include such key
components as (GP1023-MOSI), (GPIO19-MISO), (GPIO018-SCK), (GP1I017-ADS1293_CS)



Symmetry 2021, 13, 1461

10 of 16

and (GPIO16-ADS1293_INT. For the ADS1293 chip, the configured signals include the
following (INO-RA), (IN1-LA), (IN2-LL) and (IN3-RL). Operation configuration as well as
other parameters are described in detail here [19]. The implementation code for this system
uses the Arduino library. The sampling frequency of the ADS1293 can be adjusted to make
our tests suitable. In the evaluation tests, the sampling frequencies of the ECG signals were
chosen to be 100 Hz, 200 Hz, 400 Hz and 2133 Hz, respectively. With different sampling
frequencies, we can perform monitoring in order to eliminate the effects of different types
of noises effective the ECG signal. We applied the proposed filter architecture to our system,
as depicted in Figure 3, to remove any unwanted noises from the ECG signals collected
from volunteers. The software to collect and display the ECG signals is programmed based
on MATLAB. The key results including SNR and ECG amplitudes, and utilized filter orders
are summarized in Table 3.

usB2COM

ADS1293 0 . :
ECG Board ESP32 Board

Figure 6. Real-time ECG measurement system.

Table 3 shows the measured SNR of ECG signals at different sampling frequencies,
such as 2133, 400, 200, 100 Hz. We can reconstruct the (30, 40, 60, 90, 120, 180) Hz from the
original MIB data (330 Hz). We used sampling frequencies for our system that were similar
to reconstructed signal frequencies (i.e., measured 100 Hz signal for the reconstructed
90 Hz). This comes from the limitation of the fixed frequency of utilized chips (i.e., 2333 Hz
of ADS1293).

From the analysis of the ECG signals, such as SNR and amplitude, we could find that
no filter is needed for P, QRS, and T waves at the 100 Hz sampling frequency. However,
as the sampling frequency was increased, we could see that the SNR of the original ECG
signals degraded, as shown in Figure 7a,c and Figure 8a. In terms of measured amplitude
of the P, QRS and T waves from the ECG signals, we found that the amplitude of the
symmetric FIR filter was higher than that of the IIR filter. In terms of needed number of
filters, the low-pass IIR filter could provide same order of filter until 2133 Hz. However, the
order of needed filter was increased significantly when the sampling frequency increased
to more than 2133 Hz.
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Table 3. The comparison SNR, P, QRS, T wave of ECG signals from volunteers (with/without applied filtering).

SNR Amplitude Number of Computations
Measured Combined Combined
Samples Sampling Without Filters High-Pass (IIR) High-Pass (IIR) P Wave QRS Wave T Wave HP LP LP
Frequency (Hz) and Low-Pass and Low-Pass (mV) (mV) (mV) (IIR) (ITIR) (FIR)
(IIR) (FIR)
Real data with 2133 11.2 1242 107.5 (- 0.1,0.12) (1.9,1.0,1.2) (0.5,0.4, 0.45) 15 15 540
difforent samolin 400 236 99.9 82.4 (0.2,0.1,0.12) (0.15,0.11, 0.12) (0.5, 0.4, 0.45) 15 15 101
frequencies %)Hz)g 200 77.3 132.6 110.2 (0.18, 0.15, 0.15) (0.14, 0.15, 0.11) (045, 0.35, 0.4) 15 15 50
! 100 147.6 - - 02,--) (0.15, -, -) (045,-,-) - - -
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Figure 7. ECG signal in the time domain and ECG spectral signal with original (black) and filtered

signals (red (IIR), blue (FIR)) for noise suppression: (a,b) at sampling frequency 2133 Hz; (c,d) at
sampling frequency 400 Hz.
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Figure 8. ECG signal in the time domain and ECG spectral signal with original (black) and filtered

signals (red (IIR), blue (FIR)) for noise suppression: (a,b) at sampling frequency 200 Hz; (c,d) at
sampling frequency 100 Hz.
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4. Discussion

Through our proposed ECG system, we could reconstruct the ECG signal from the
MIT/ BIH database to accurately calculate heart rate at 45 Hz. We could significantly
reduce the computation complexity (i.e., eight times lower than the original sampling
frequency from the MIT/ BIH database) by using optimal low-pass and high-pass FIR/ IIR
filters. In particular, in the case of ECG application system that required P, QRS and T wave
evaluation, the best sampling frequency could be 90 Hz for optimal performance. Further-
more, the ECG signal does not need any filtering operation to suppress any potential noises
from hardware and the human body from 90 Hz to 120 Hz sampling frequencies. We also
found that the low-pass symmetric FIR filtering of ECG signals at 180 Hz sampling fre-
quency could provide much better performance than IIR filtering, including reduced noise
suppression from power delivery networks. Furthermore, when the sampling frequencies
are higher than 360 Hz, low-pass IIR filtering could significantly reduce the computation
complexity, leading to fast data processing (i.e., reduced mathematical calculation of MCU).
In the measured SNR, our proposed ECG system with the 100 Hz sampling frequency could
also improve performance in ECG application areas (i.e., 10 times better than the original
2133 Hz sampling frequency). In terms of noise performance, the measured SNR of our
proposed ECG system, which required P, QRS and T wave evaluation at 100 Hz sampling
frequency, also needed no additional filters to reject unwanted noises from hardware and
the human body, leading to the significantly reduced computation and real-time data
processing of ECG signals.

Eliminating interference with the ECG signal is always a top priority because it directly
affects clinical applications and diagnostics. Usually, a good combination of hardware and
software could be the best solution to filter out unwanted noises because the dedicated
combination of filters might increase the cost of the device and the design complexity.
High-quality ECG pads between the patient body and ECG sensor also could improve the
signal quality in terms of hardware. The ECG signal quality could also be further enhanced
by utilizing adaptive filters.

5. Conclusions

We analyzed, designed, and implemented the electrocardiogram systems with optimal
filters to suppress two types of unwanted noises from hardware, such as power delivery
networks and miscellaneous peripherals, and from the human body, such as muscle
activities. From our analysis and design of the proposed ECG filter system, the reduction in
sampling frequency could improve performance in ECG application areas, for example, by
enhancing power and computation efficiency, thus leading to real-time ECG data processing
and measurement. Furthermore, our proposed system also could reduce design complexity
and provide low-cost solutions for ECG signal processing.
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