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Abstract: The variable background harmonic data and incomplete phasor information make multi-
harmonic source responsibility division in three-phase symmetrical power system a significant
challenge. In this paper, a background harmonic data selection method based on canonical cor-
relation analysis is proposed to deal with multi-harmonic source responsibility division without
phasor information. Firstly, the canonical correlation coefficient between harmonic voltage and
harmonic current is used to characterize the fluctuations of background harmonic voltage. Then,
the sliding window method is adopted to select the harmonic voltage and harmonic current with
small fluctuations. Next, the canonical correlation results for selected data are used to calculate
the harmonic responsibility index via the linear regression method. The harmonic responsibility
index in the form of percentage represents the harmonic responsibility division. Finally, several
experimental results demonstrate that the proposed method has a high accuracy in calculating the
harmonic responsibility division, particularly when the user side contains fluctuations of unknown
harmonic sources.

Keywords: power quality; harmonic responsibility division; canonical correlation analysis

1. Introduction

In the field of electronic and electrical engineering, nonlinear load is widely used,
which makes the harmonic pollution of three-phase symmetrical power system increasingly
serious. Nonlinear devices, such as generators, inverters, and rectifiers, inject harmonic
currents into their connected power grid, resulting in voltage distortion at the point of
common coupling (PCC), which in turn affects the current at this point. Moreover, the in-
teractions among multiple harmonic loads are complicated, making it difficult to locate the
sources of distortion. Therefore, to address the issue of harmonic pollution [1], accurately
identifying the “problematic” harmonic sources and determining the responsibility of each
harmonic source are two extremely important aspects, the latter of which being the focus
of this paper.

Existing methods of harmonic responsibility division mainly include: the volatility
method [2–4], the covariance method [5–7], the blind source separation method [8–11], and
the linear regression method [12–20]. The first three methods have shown a higher accuracy
in estimating the harmonic impedance, but they all require accurate harmonic waveform
sampling data to obtain the harmonic amplitude and phase angle to realize the separation
and calculation of the real and imaginary parts. The linear regression method is vulnerable
to the fluctuation of the background harmonic. In addition, the regression formulas derived
from following the circuit principles in different works may require different data, and
some of them do not require phase angle data [19,20]. The volatility method and the
covariance method are both proposed based on the responsibility assessment of a single
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harmonic source, while the blind source separation method and linear regression method
can be used for a single harmonic source and multi-harmonic sources.

At present, responsibility division for multi-harmonic sources has been widely studied,
and the proposed methods are generally based on accurately estimating the harmonic
impedance [21]. The blind source separation method has been widely studied in recent
years. The independent component method (ICA) as well as its improved variants [8–11]
are the most representative. When the harmonic source meets the precondition of being
statistical independence and non-Gaussianness, individual harmonic current signals can be
separated one by one from their mixed signal with merely measuring the harmonic voltage
and without knowing the network harmonic impedance. The least squares method and
its improved variants [12–15] are a common method to obtain the harmonic impedance
through calculating the coefficient of Norton equivalent circuit of each harmonic source [16].

However, in real situations where the assessment of harmonic impedance is affected
by the highly autocorrelated harmonic monitoring data, the problem may become ill-
conditioned, and the abovementioned methods could fail. The problem is highly possible
to be ill-conditioned when multiple harmonic sources exist, because a large amount of data
are required for such systems. Partial least-squares method is an improvement of the least
squares method, which overcomes the disadvantage of variable dependence for systems
model with multiple harmonic sources [17,19]. M-estimation robust regression method [20]
can reduce the influence of singular values to a certain extent and realize the division
without phase angel information, but this method is mainly used for responsibility division
of a single harmonic source. When used for dividing responsibility of multi-harmonic
sources, data segments in which the harmonic resource to be analyzed fluctuates greatly
while the fluctuations of other harmonic sources being less than 5~10% have to be selected
out. In practical cases, the limited available data segments would make the corresponding
result difficult to reflect the overall situation of harmonic responsibility in a long time scale.

The relevant works of harmonic responsibility division in the past five years are
summarized in Table 1, from which it can be seen that most methods of responsibility
division of multi-harmonic sources require data of harmonic phase angle. However, due to
the limitation on communication channels and storage capacity, the harmonic phase angle
information is usually not stored in existing regional power quality online monitoring
systems. To this end, to apply those methods, harmonic measuring instruments have to be
used to conduct special tests on site to obtain short-term measurement data. However, the
obtained data is not compatible to the monitoring system, and the corresponding results
are hard to reflect the overall situation of long-term harmonic responsibility.

In general, the linear regression method can find highly accurate solutions when the
utility harmonic voltage is constant; however, utility harmonic voltage usually varies in
real systems [22]. When the utility harmonic voltage is under considerable fluctuations,
the use of linear regression methods for harmonic impedance assessment becomes less
accurate [23,24]. Data analysis methods can weaken the impacts of fluctuations of the
background harmonic on the accuracy but may result in a reduction in the amount of
available data. Taking the linear regression method as an example, we discuss three typical
data analysis methods.
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Table 1. Summary of Harmonic Responsibility division methods in the past five years.

Method Data Requirement Data Selection Method Feature

Covariance method [5–7]

Harmonic voltage amplitude;
branch harmonic current
amplitude; phase angle

difference between harmonic
voltage and harmonic current

(without harmonic initial
phase angle).

Not needed.
Applicable for harmonic

responsibility division of a
single harmonic source.

Blind source separation
method [8–11]

Harmonic voltage amplitude
and phase angle; branch

harmonic current amplitude
and phase angle.

Data selection required;
limited available data

after selection.

Applicable for harmonic
responsibility division of
multi-harmonic sources.

Linear regression method
[12–20]

Harmonic voltage amplitude
and phase angle; branch

harmonic current amplitude
and phase angle (not

necessary for some methods).

Data selection required;
limited available data after

selection.

Applicable for harmonic
responsibility division of one
or multi-harmonic sources.

The proposed method

Harmonic voltage amplitude
at PCC; branch harmonic

current amplitude; (all
available in grid online
monitoring systems).

Data selection required;
sufficient available data after

selection.

Accurate even when the
background harmonic

fluctuates greatly; applicable
for harmonic responsibility

division of
multi-harmonic sources.

The first solution is to classify the background harmonic voltage into different cat-
egories, and then perform linear regression for each category. For classification of the
background harmonic voltage, Zang et al. [25] divided the harmonic data points into
segments that take constant utility harmonic voltage, which can be determined from hierar-
chical K-means clustering. Zhang and coworkers [26] considered the effects of background
harmonic fluctuations, and proposed a data selection method based on the improved Ham-
pel weight function. The basic idea of this method is to estimate the utility background
harmonic voltage by solving the phasor equation, which avoids the use of iterative meth-
ods. However, in real systems where the measurement of phase data is not mandatory, the
background harmonic voltage cannot be estimated if the phase information is unknown.
The accuracy of the utility background harmonic voltage relies on the accuracy of the utility
harmonic impedance; its accuracy is usually low and difficult to calculate when the system
harmonic impedance changes [27].

The second solution is to perform linear regressions first and then classifies the back-
ground harmonic voltage using iterative methods. As iterative methods are applied in this
solution, the computational (both space and time) complexity is significantly increased [28].
The drawback of these two solutions is that both require the harmonic phase data, which
are usually not available directly in power quality monitoring systems [29].

To avoid this limitation, the third solution based on data correlation is proposed to
assess the harmonic responsibilities by comparing the similarity between the harmonic
voltage and the harmonic current and then selecting the strongly relevant data for linear
regression [30,31]. However, these methods cannot reflect the degree of correlation for
multiple sets of data combinations and are used only for estimating the harmonic emission
capability of harmonic sources on both sides of the PCC. For cases where multiple harmonic
sources are connected to the PCC, it remains unsolved as to how to analyze the correlations
between the harmonic currents and the harmonic voltage.

However, the above-mentioned multi-harmonic source division method requires a
large amount of calculations and cumbersome steps, the responsibility division for multi-
harmonic sources needs further improvement.

The main contributions of this paper can be highlighted as follows:



Symmetry 2021, 13, 1451 4 of 17

(1) A harmonic responsibility division method based on canonical correlation analysis is
proposed. Compared with the existing methods, harmonic phase angle data is not
required while still achieving a higher division accuracy even when the background
harmonic fluctuates relatively greatly.

(2) One-to-many correlation analysis between the harmonic voltage at PCC and the data
of multi-harmonic sources is realized with canonical correlation analysis method,
with which even under great fluctuations of the background harmonic, appropriate
data can be selected out.

(3) Merely using available data from the online power quality monitoring system and
without involving additional harmonic measuring instruments, harmonic responsibil-
ity division on a longer time scale is realized focusing on long-term stable operation
of power grids.

2. Preliminaries on the Division Method of Multi-Harmonic Sources Responsibility
2.1. Projection Coefficient Calculation

Figure 1 shows the Norton equivalent circuit with multi-harmonic sources, where
.

UPCC

and
.
IPCC are harmonic voltage and harmonic current, respectively, at the PCC;

.
I
′
u,Zu,

.
Iu repre-

sent the system side equivalent harmonic current of the harmonic source, equivalent harmonic

impedance, and branch harmonic current, respectively;
.
I
′
k,Zk,

.
Ik(k = 1, 2, · · · , n), similar to

.
I
′
u,Zu,

.
Iu, represent the counterparts on the user side [18].

Figure 1. Norton equivalent model.

As proved in [32], it is feasible to use the actual measured current
.
I instead of the the-

oretical current
.
I
′

to carry out the responsibility assessment of centralized multi-harmonic
sources, and most current studies default to do so. According to the superposition theorem,
.

UPCC can be easily calculated as

.
UPCC =

n

∑
k=1

.
Uk +

.
U0 =

n

∑
k=1

Z′k
.
Ik +

.
U0 (1)

where n is the number of major harmonic sources connected to the PCC;
.

Uk is the harmonic
voltage at the PCC generated by the harmonic source k; Z′k is the equivalent harmonic

impedance excluding the branch k;
.

U0 is the background harmonic voltage for other
components at the PCC, including the system harmonic voltage and the user-side non-
major harmonic source. Assuming three main harmonic sources (n = 3), the relationship
between the harmonic source voltage for each user and the harmonic voltage vector at the
PCC is shown in Figure 2.
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Figure 2. Harmonic voltage vector diagram.

According to the definition, the harmonic responsibility for source k is defined as the
ratio of the projection of

.
Uk on

.
UPCC to the amplitude of

.
UPCC, which is expressed as

Hk =

∣∣∣ .
Uk

∣∣∣ cos αk∣∣∣ .
UPCC

∣∣∣ × 100% =

∣∣∣ .
Ik

∣∣∣Z′k cos αk∣∣∣ .
UPCC

∣∣∣ × 100% =

∣∣∣ .
Ik

∣∣∣hk∣∣∣ .
UPCC

∣∣∣ × 100% (2)

where
hk = Z′k cos αk (3)

with αk the phase angle between
.

UPCC and
.

Uk (k = 1, 2, · · · , n).
∣∣∣ .
UPCC

∣∣∣ and
∣∣∣ .
Ik

∣∣∣ are the
modulus measured at the PCC. hk (k = 1, 2, · · · , n) is the projection coefficient, calculated
by the linear regression method.

Figure 2 shows the relationship between
.

UPCC and the projection of
.

Uk on
.

UPCC.
Based on Equations (3), Equation (1) can be expressed as∣∣∣ .

UPCC

∣∣∣ =
n
∑

k=1

∣∣∣ .
Uk

∣∣∣ cos αk +
∣∣∣ .
U0

∣∣∣ cos α0

=
n
∑

k=1

∣∣∣ .
Ik

∣∣∣∣∣Z′k∣∣ cos αk +
∣∣∣ .
U0

∣∣∣ cos α0

=
n
∑

k=1
hk

∣∣∣ .
Ik

∣∣∣+ ∣∣∣ .
U0

∣∣∣ cos α0

(4)

Since all the terms in Equation (4) are scalars, hk can be calculated from linear regres-
sion, which avoids solving vector equations. Note that the solution of Equation (4) will
have high accuracy if U0cos α and hk are both constant. However, U0cos α varies in real
systems, which may cause large errors when using the linear regression method.

2.2. Principle of Data Selection

As it is shown in Figure 1, where the system side and the user side are considered as
two different parts, the harmonic voltage Equation at the PCC is expressed as

.
UPCC = Zu

.
IPCC + Zu

.
I
′
u (5)

Since Zu << Zc, and Zc is the integrated equivalent harmonic impedance of the user
side. Then, we have:

.
U
′
0 =

ZuZc

Zu + Zc

.
I

u
′ ≈ Zu

.
I
′
u (6)

Based on Equations (5) and (6), the background harmonic voltage of the system side
can be expressed as

.
U
′
0 =

.
UPCC − Zu

.
IPCC (7)
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The phasor
.

U
′
0 can be calculated from the vector Equation (7), and then the data for

linear regression are selected via the cluster analysis [21].
The cluster analysis methods for data selection have two major drawbacks: (i) vector

calculation is required, and (ii) these methods only select the data with small background
harmonic voltage fluctuations from the system side. When the user side contains unknown
harmonic sources that fluctuate, these methods consider them to be constant, resulting in
errors that are unavoidable.

The data with small background harmonic voltage fluctuations can be directly selected
using the data correlation methods; the linear equation is then solved according to the
selected data, and the projection coefficient is calculated. These methods require no
estimation of the system side harmonic voltage, and they also minimize the influence of
the unknown harmonic sources on the user side.

Although the correlation between different sequences has been widely studied in
the existing data correlation methods, in this paper we propose a new data selecting
method based on the CCA. Equation (4) shows that when U0cos α is a constant, UPCC
is linearly related to Ik (k = 1, 2, . . . , n). This linear relationship between UPCC and Ik
(k = 1, 2, . . . , n) is affected by the term U0cos α if it fluctuates. In other words, as the
fluctuation of U0cos α increases, the linearity between UPCC and the linear combination of
Ik (k = 1, 2, . . . , n) decreases, and vice versa. The data can thereby be selected according
to the degree of linearity between UPCC and the linear combination of Ik (k = 1, 2, . . . , n).
The higher the degree of linearity is, the smaller the fluctuation of U0cos α is, and vice
versa. Since the traditional correlation analysis methods, such as the Pearson correlation
coefficient evaluation method, cannot be applied to cases with two groups of multiple
random variables, in this paper we use the CCA method to analyze the correlations between
the harmonic voltage and the harmonic currents for multiple harmonic sources.

3. Multi-Harmonic Source Responsibility Division Method
3.1. The Method of CCA Data Selection

The analysis in the previous section indicates that the background voltage is consid-
ered constant when the harmonic voltage and the harmonic currents are highly relevant,
and thus a multivariate correlation analysis is need to analyze the relationship between the
harmonic voltage and the harmonic currents. The CCA is such a method used to study the
correlation among multiple sets of data. The two sets of variables studied are X = (x1,x2,
. . . ,xn) and Y = (y1,y2, . . . ,yn), where xi and yi are both m-dimensional vectors, and the two
groups of variables are standardized. X’ and Y’ are defined as comprehensive variables
where X’ and Y’ are both m-dimensional vectors; these two comprehensive variables are to
replace the original variables according to the optimization method. More details about
the optimization method can be found in [33].

The correlation between the input parameters X and Y can be found by calculating
the Pearson correlation coefficient. The expression is shown in Equation (8) as

r =
cov(X′, Y′)√
D(X′)

√
D(Y′)

(8)

where comprehensive variable X′ and Y′, X′ = X, Y′ is the optimal linear combination of the
variables in Y, and the principle is to make the correlation of X′ and Y′ strongest; cov(X′,
Y′) represents the covariance between X′ and Y′; D(X′) and D(Y′) are the variances of X′

and Y′, respectively.
If the correlation between X and Y satisfies the criterion in Equation (9), they are

considered strongly correlated [34].
r ≥ 0.7 (9)

In order to illustrate the effects of the CCA on data selection, we set two harmonic
sources on the user side and set the harmonic source on the system side fluctuating.
Figure 3 is a schematic diagram of the data selection results, where UPCC is the harmonic
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voltage at the PCC, I1 and I2 represent the harmonic current of harmonic sources 1 and 2,
respectively. For the plots on left of Figure 3, the data variance is 0.1, and the background
harmonic voltage fluctuations are considered small; while the plots on the right show
relatively large background harmonic voltage fluctuations with a variance of 0.5. When the
background harmonic voltage fluctuations are small, there is no obvious similarity between
the harmonic currents of the two harmonic sources and the harmonic voltage at the PCC,
and the comprehensive variable have a strong similarity with the harmonic voltage. From
the plots on the right of Figure 3, there is no obvious correlation between the comprehensive
variable and the harmonic voltage at the PCC, which is in agreement with the theoretical
analysis in Section 2 that as the background harmonic voltage fluctuations increase, the
correlation between the comprehensive variable and the PCC harmonic voltage decreases.
Based on the CCA, the data with small background harmonic voltage fluctuations can be
screened for subsequent analysis and calculations.

Figure 3. Schematic diagram of variation law of each variable.

3.2. Harmonic Data Sliding Window Analysis

Since it is almost impossible to directly obtain the correlation of the data at a certain
moment, the analysis needs to segment the data first. The CCA method proposed in this
paper based on sliding window analysis. Assume that the length of each data set is m, and
one sliding window includes t sets of harmonic voltage and current amplitude data.

The CCA is performed for each data segment. rj is the correlation coefficient of the jth
data segment. When rj ≥ rth (rth is the correlation coefficient threshold), the background
harmonic voltage fluctuations of the jth segment data are considered small, hence each
harmonic current and the harmonic voltage at the PCC in the jth segment can be used to
calculate the harmonic responsibility coefficient; when rj < rth, the jth data segment is not
available, thus is discarded.

The CCA method based on sliding window analyzes long-term data in stages by
intercepting data segments. This method analyzes the correlation between the harmonic
voltage and the harmonic currents in each data segment. On this basis, the data segments
with smaller background harmonic voltage fluctuations are selected, which can be used to
calculate the projection coefficient by linear regression; the harmonic responsibility index
can then be calculated from Equation (2).
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3.3. Harmonic Responsibility Division Procedures

Figure 4 depicts the procedures of the harmonic responsibility division method for
multi-harmonic sources, that are based on the CCA proposed in this paper. A brief
description of the procedures is provided as follows.

Figure 4. Algorithm flowchart.

Step 1: Measure the harmonic data at the PCC for n major harmonic sources during
the time periods of interest. The measurements include the harmonic voltage data at the
PCC, UPCC, and the harmonic current data for each source Ik(k = 1, 2, · · · n).

Step 2: Determine the length of the sliding window t by considering the accuracy and
time of the calculation. The smaller sliding window t, the higher calculation accuracy and
the longer calculation time.

Step 3: Calculate, using the CCA method, the correlation coefficient, rj(1 ≤ j ≤ n),
between the harmonic voltage data and the harmonic current data of the jth window. The
data are selected if rj ≥ rth, and are discarded otherwise.

Step 4: Solve Equation (4) using the linear regression method to calculate the projection
coefficient.

Step 5: Calculate the harmonic responsibility index for each harmonic source from
Equation (2).

Step 6: Move j one point backwards, and repeat steps (3) to (5) until j = n.
Step 7: Calculate the average of the harmonic responsibility index in each period

to get the total harmonic responsibility index for each user, the expression is shown in
Equation (10) as

H′k =
n

∑
j=1

Hk/n (10)

where, n is the number of total data segments after screening in the analysis period.
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4. Case Studies
4.1. Simulation Specifications

The case study demonstrated here is the Norton equivalent circuit with three harmonic
sources (see Figure 1 with n = 3). The simulation is conducted in Power System CAD
(PSCAD), and we take the fifth harmonic as an example. The parameters of the system side
and three harmonic sources (user side) are listed in Table 2. The harmonic impedance is
a series connection between the resistance R and the reactance L. The fluctuation of each
harmonic source is assumed to follow normal distribution with zero mean value, and a
variance shown in the last column of Table 2. Note that we used four different variance
values to represent varying degrees of fluctuation on the system side.

Table 2. Harmonic Source Parameter Setting.

Harmonic
Sources R/Ω L/H I/A Fluctuation

Variance

system side 1 0.001 1.10∠–17.5◦ 0.15, 0.2, 0.25, 0.3
User 1 5 0.010 3.03∠–7.3◦ 0.05
User 2 3 0.005 4.75∠–14.1◦ 0.05
User 3 4 0.008 2.27∠–2.7◦ 0.05

According to the previous analysis, we set rth to 0.7. Five different methods are cited
to divide the harmonic responsibility for each user, which are the partial least squares
method [25] (method 1), the mean shift method [35] (method 2), M-estimation robust
regression method [20] (method 3), multiple linear regression method [19] (method 4) and
the method proposed in this paper. The simulations obtain the harmonic voltage and the
harmonic current of each user branch at the PCC.

4.2. Background Harmonic Voltage Fluctuations

The fluctuation of each harmonic source is specified according to Table 2. Here we take
the variance of 0.15 as an example. Figure 5 shows the selected data and the removed data
of the harmonic voltage and the harmonic currents. The background harmonic source is
the system harmonic source, and its degree of fluctuation is larger than any other harmonic
source at the PCC. Thus, it can be seen from Figure 5, the data with small system harmonic
source fluctuations are selected by the CCA, and the data with large system harmonic
fluctuations are removed.

Figure 5. The diagram of selected data and removed data.

Based on the selected data, the projection coefficient is computed from the linear
regression method; the harmonic responsibility index then can be calculated from Equa-
tion (2). Table 3 shows the harmonic responsibility index calculated from method 1, method
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2, and our proposed method. It should be noted that both method 1 and method 2 require
phasor information, while our proposed method does not. The actual value in Table 3 rep-
resents the ratio of the projection of each user’s harmonic voltage on the harmonic voltage
at the PCC to the PPC’s harmonic voltage when the harmonic source has no fluctuation.

Table 3. Comparison with the Calculation Result of the Harmonic Responsibility Index of the
Phase-Required Method.

Harmonic
Sources

Fluctuation
Variance

Harmonic Responsibility Index/%

Actual Value Method 1 Method 2
The

Proposed
Method

User 1

0.15

28.41

17.69 26.31 26.48
0.2 15.45 25.45 29.58
0.25 13.56 23.88 26.20
0.3 15.45 22.14 27.42

User 2

0.15

38.90

18.60 36.25 36.03
0.2 17.88 35.94 37.16
0.25 15.73 34.75 41.23
0.3 17.88 34.75 42.87

User 3

0.15

19.89

12.36 19.72 20.32
0.2 11.07 18.91 22.09
0.25 10.28 17.72 19.37
0.3 11.07 9.80 20.41

It can be seen from Table 3 that the proposed method has higher accuracy than
method 1, and its error is similar to that of method 2. Since the proposed method requires
neither the estimation of the background harmonic voltage nor the phase information, it
has higher practical values in engineering applications.

With the background harmonic voltage fluctuation variance set to 0.15, the results
from method 3, method 4, and our proposed method are shown in Table 4. Note that
neither method 3 nor method 4 requires phasor information.

Table 4. Comparison with the Calculation Results of the Harmonic Responsibility Index of the
Phase-Required Method without Phase Method.

Harmonic
Sources

Fluctuation
Variance

Harmonic Responsibility Index/%

Actual Value Method 3 Method 4
The

Proposed
Method

User 1
0.15

28.41 27.03 18.61 26.48
User 3 38.90 36.18 20.79 36.03
User 3 19.89 19.27 11.53 20.32

From Table 4, the accuracy of the proposed method is comparable to that of method 3,
and is higher than that of method 4. Method 3 used the iterative solution of least squares
after weight reduction to weaken the impact of abnormal data on linear regression solutions,
but it needs a regression calculation for each harmonic source. Compared with method 3,
the method in this paper requires no iteration, only needs one screening and regression
to obtain higher accuracy results, and the algorithm is more convenient. The premise
of method 4 is that the background harmonic voltage does not fluctuate, so when the
background harmonic voltage fluctuates, the method of this paper is more accurate.

Data utilization rate, W, is defined as

W =
number of selected data

total number of data
× 100% (11)
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Under different background voltage fluctuations, the data utilization rates of the
method proposed in this paper are shown in Table 5:

Table 5. Data Utilization Rates under Different Background Voltage Fluctuations.

Background Harmonic Voltage Fluctuation Variance W (%)

0.15 66.11
0.2 55.03
0.25 45.30
0.3 12.42

It can be seen from Table 5 that as the background harmonic voltage fluctuations
increase, the number of the selected data for linear regression decreases. This can be
explained as: with the increase of fluctuation degree, the less available data can be screened
out by the CCA method. When the total amount of data is the same, the reduction of
filtered data will cause the accuracy of the linear regression method to decrease.

The analysis time scale is another factor affecting the results of the harmonic respon-
sibility index. Table 6 shows the harmonic responsibility index calculated at different
analysis time scales.

Table 6. Comparison Table of Harmonic Responsibility Indicators at Different Time Scales.

Analysis Time Scale
Harmonic Responsibility Index/%

User 1 User 2 User 3

Actual value 28.41 38.90 19.89
15 h (300 data) 26.48 36.03 20.32

3 days (1440 data) 26.69 36.25 20.13
7 days (3360 data) 26.72 36.30 20.07

Since the harmonic responsibility fluctuates within a small range during the period of
analysis, its actual value should be the same as the actual value in Table 3. As is indicated
in Table 6, the accuracy of the harmonic responsibility index improves with the increase
of the number of data. As the number of data increases, the amount of data selected for
linear regression also increases, resulting in more accurate linear regression solutions, and
harmonic responsibility indicators. The accuracy of the responsibility division indicator
reaches a peak as the number of data is large enough; further increasing the number of
data would not significantly increase the accuracy.

4.3. Systems Containing Unknown Harmonic Sources

In the system shown in Figure 1, assume User 3 is an unknown harmonic source, and
User 1 and User 2 are subjected to harmonic responsibility division. The fluctuations on
the system side follow normal distribution with a mean value of 0 and a variance of 0.15.
For User 3, fluctuations have the same mean value of 0 and four different variances, 0.15,
0.2, 0.25, and 0.3. The fluctuations for the harmonic sources in User 1 and User 2 are both
normally distributed with the mean value of 0 and a variance of 0.1. The errors of the
harmonic responsibility index for each method are shown in Figure 6.
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Figure 6. The errors of harmonic responsibility index.

As can be seen from Figure 6, the proposed method can still achieve high accuracy
at the presence of an unknown harmonic source. In addition, as the fluctuations of the
unknown harmonic source increase, the accuracy is still higher than either the partial least
squares method or the mean shift method.

The proposed method selects the data with strong correlations between the harmonic
voltage and the harmonic currents for linear regression. Regardless of where the harmonic
voltage fluctuations are from (system side or unknown harmonic source), the proposed
method is able to solve the harmonic responsibility index using the linear regression
method. The partial least squares method takes all the data into account for linear regression
which leads to large errors in the calculation of the responsibility index. The mean shift
method estimates the background harmonic voltage vector for the system side and selects
the system side background harmonic voltage data with small fluctuations for linear
regression. However, if an unknown harmonic source exists, it is impossible to select
the data with small fluctuations for the unknown harmonic source. In solving this linear
regression problem, the voltage of the unknown harmonic source is considered as a part
of the background harmonic voltage. The fluctuations of the unknown harmonic sources
reduce the linearity between the harmonic voltage at the PCC and the harmonic currents for
all sources, resulting in a linear regression solution with low accuracy. When the fluctuation
scale of an unknown harmonic source increases, the accuracy of the harmonic responsibility
index decreases.

4.4. Changes in Harmonic Responsibility during the Period of Analysis

The above analysis is based on the assumption that the user’s harmonic responsibility
is relatively stable around a certain central value. In this section we discuss the scenarios
when the harmonic responsibility fluctuates significantly. The parameters of each harmonic
source are specified as in Table 2. The harmonic source of User 1 is specified to vary from
3.03∠–7.3◦ to 0.71∠–7.3◦ at a certain moment, the background harmonic voltage fluctuation
is set to 0.1, and the window width t is 60. The harmonic responsibility index in each
window width is shown as a function of time in Figure 7.
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Figure 7. The change chart of harmonic responsibility index.

The black curve in Figure 7 represents the harmonic responsibility index calculated
for User 1 within each window width, while the red curve represents the average value of
User 1’s harmonic responsibility index. It is obvious that the harmonic responsibility has
changed significantly, and hence we separate the black curve into two different periods,
namely period 1 (left) and period 2 (right). The average value of the harmonic responsibility
index for each period is calculated to characterize the harmonic responsibility during that
period. The actual values and the average values of the harmonic responsibility indicators
are shown in Table 7.

Table 7. Harmonic Responsibility Index when Responsibility Changes Significantly.

User 1 Effective Value of
Harmonic Current

Harmonic Responsibility
True Value/%

Harmonic Responsibility
Average/%

Analysis period 1 28.41 26.84
Analysis period 2 8.03 10.02

According to the data utilization defined in Equation (11), the total data utilization
rate is W = 78.86%. The background harmonic voltage fluctuates little in this time period,
hence the data utilization rate is relatively high.

As can be seen from Table 7, the method proposed in this paper can still remain a high
accuracy under the variance of responsibility. Since filtering data in the proposed method
is based on correlation analysis, the selected data have small fluctuations in background
harmonic voltage, thus have high accuracy when conducting linear regression. When the
harmonic responsibility of the data remains the same in the period of analysis, the harmonic
responsibility of the unselected data is approximately the same as that of the selected
data; when the harmonic responsibility of the data varies during the period of analysis,
the selected data will be the same as in the case when the harmonic responsibility data is
unchanged, because the correlation between the harmonic voltage and the harmonic current
is unchanged. Since this paper uses the sliding window-based responsibility division, the
harmonic responsibility varies significantly with time. To improve the accuracy of the
calculation, the average harmonic responsibility of different sections is solved separately.
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In the method proposed in this paper, when the background harmonic voltage fluc-
tuates greatly and the harmonic responsibility varies drastically, such data will not be
selected, so in this case, a lack of responsibility will occur.

4.5. Practical Case Analysis

In this section, we use a practical case, based on the harmonic data of a 220 kV
substation in Zhangzhou, Fujian Province, China, for demonstration. Figure 8 shows the
diagram of a substation, and a 110 kV bus with four feeders. The power quality monitoring
device measures the 95% probability value of harmonic voltage and the currents at the
PCC every 3 min. (In the Chinese national standard, the 95% probability value can be
determined by the following method: rearrange the measured data from big to small, then
5% data from the bigger part and select the maximum one from residual part to be 95%
probability value [29]). The data used for analysis were collected within 7 days (from
20 September 2019 to 27 September 2019).

Figure 8. The diagram of the substation.

Figure 9 shows the harmonic voltage and the current data for the fifth harmonic. Since
the phase angle data are unavailable in this case, the mean shift method and other methods
that require the solution of the phasor equations cannot be applied. In actual systems, the
background harmonic voltage is usually under fluctuations, and therefore, the accuracy of
the harmonic responsibility index calculated from the linear regression method is low.

The harmonic responsibility division results of the proposed method are shown in
Table 8, from which the Manan II Road should take the main harmonic responsibility, as
its harmonic responsibility index is the most among the four roads. This point has been
proved by the on-site investigation and the actual measurements that the main load of
Manan II Road is the electric railway, which results in a large amount of the fifth harmonic
emission. The loads for the rest three roads are mainly from the residential electricity or
ordinary industries, so their fifth harmonic emissions are small.
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Figure 9. Harmonic voltage and current data diagram for the fifth harmonic.

Table 8. Harmonic Responsibility Index Example.

Feeder Manan I Road Manan II Road Manan III Road Manan IV Road

Harmonic
responsibility

index /%
3.66 80.12 7.63 4.67

5. Conclusions

This paper proposes a sliding window based canonical correlation analysis method
that can select out appreciated data even when the background harmonics fluctuate greatly,
and then divides the multi-harmonic responsibility by partial least square regression
method without relying on phase angle information.

In the case study, the following observations are made:

1. Compared with applying traditional partial least squares algorithm and the mean
shift method in the harmonic responsibility division, the proposed method shows
higher accuracy and restricts the error within 10% in the studied cases.

2. Compared with the M estimation robust regression method, the proposed method
shows a similar accuracy that is within the allowable error range of 8%. However, the
limited amount of selected data from the M estimation robust regression method in the
practical cases will be difficult to reflect the overall situation of harmonic responsibility.

3. Merely using available data from the online power quality monitoring system and
focusing on long-term stable operation of power grids, the proposed method realizes
harmonic responsibility division on a longer time scale, weakens the impact of short-
term measurement and analysis errors and is applicable to practical projects.

As for future work, methodologies for parameter adjustment can be developed to
further improve the accuracy of responsibility division for different types of customers,
especially users with severe background harmonic fluctuations.
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