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Abstract: As a natural extension of the fuzzy variable, a bifuzzy variable is defined as a mapping
from a credibility space to the collection of fuzzy variables, which is an appropriate tool to model the
two-fold fuzzy phenomena. In order to enrich its theoretical foundation, this paper explores some
important measures for regular bifuzzy variables, the most commonly used type of bifuzzy variables.
Firstly, we introduce the regular bifuzzy variables’ mean chance measure and some properties,
including self-duality and its calculation formulas. Furthermore, we also investigate the mean chance
distribution for strictly monotone functions of regular bifuzzy variables based on the proposed
operational law. Finally, we present the expected value operator as well as equivalent analytical
formulas of the expected value of regular bifuzzy variables and their strictly monotone functions.

Keywords: bifuzzy variable; mean chance; expected value; operational law; monotone function

1. Introduction

Since the fuzzy set theory was proposed by Zadeh [1], it has been widely adopted in
a variety of academic research and real-world applications to deal with the imprecision
implied in judgments, expertise, and linguistic descriptions. As this kind of research
was explored in depth, scholars realized that the information of the fuzzy set cannot be
accurately obtained in many cases. As a result, they paid close attention to the extensions
on the fuzzy set. On the one hand, the incomplete information on the degree of membership
attracted attention from scholars, and some well-accepted tools were developed to handle
this type of fuzziness, such as the type 2 fuzzy set by Zadeh [2] in 1975, the twofold fuzzy
set by Dubois and Prade [3] in 1983, and the intuitionistic fuzzy set by Atanassov [4]
in 1986. On the other hand, the scenario with imprecise information on objects of the
universal has also received attention. In 2002, Liu [5] initially put forward a new concept,
the bifuzzy variable, as a function from a possibility space to the fuzzy variables set;
moreover, some important attributes were also defined. As a continuation of [5], Zhou and
Liu [6,7] investigated some mathematical properties of this kind of variable, such as chance
distribution and expected value operator. Afterwards, Qin and Li [8] gave and proved a
sufficient and necessary condition for the chance distribution of the bifuzzy variable.

In addition to theoretical studies, scholars have also considered their research under
the bifuzzy environment because such complex uncertainty has extensively existed in
practical problems. Xu and Yan [9] developed a multi-objective integer model under the
bifuzzy environment to handle a vendor selection problem for material supply in large-scale
water conservancy and hydro-power construction projects. Both Chakraborty et al. [10]
and Bera et al. [11] investigated the multi-product production-inventory models with
bifuzzy parameters. Deng and Qiu [12,13] proposed the bifuzzy discrete event systems
and established the supervisory control theories on this type of system under different
observation levels successively. Taib et al. [14] formulated a group decision-making model
on the basis of conflicting bifuzzy sets and applied it in flood control projects. Shi et al. [15]
introduced a novel bifuzzy scheduling model, in order to deal with two-fold uncertainties

Symmetry 2021, 13, 1428. https://doi.org/10.3390/sym13081428 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-4515-8536
https://orcid.org/0000-0002-7560-9326
https://orcid.org/0000-0003-4599-024X
https://orcid.org/0000-0002-5449-155X
https://doi.org/10.3390/sym13081428
https://doi.org/10.3390/sym13081428
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13081428
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13081428?type=check_update&version=2


Symmetry 2021, 13, 1428 2 of 21

existed in re-manufacturing. These studies illustrate the wide presence of the bifuzzy
phenomenon in real-world applications.

However, due to the insufficient mathematical properties of the bifuzzy variable, its
development and popularization have been constrained. Hence, in this research, we pay
particular attention to the regular bifuzzy variables and investigate their mean chance and
expected value. The main contributions are as follows. On the one hand, we not only study
the mean chance measure of regular bifuzzy variables but also propose the operational
law for formulating the mean chance distribution of strictly monotone functions of regular
bifuzzy variables. On the other hand, we give theorems and equivalent analytical formulas
to explicitly and directly compute the expected value of regular bifuzzy variables and their
strictly monotone functions.

The rest of this paper is organized as follows. Section 2 recalls some fundamental
concepts of fuzzy and bifuzzy variables and defines the concept of regular bifuzzy variables.
Section 3 presents the mean chance measure and discusses its self-duality. In this section,
we also propose the operational law for the strictly monotone function of regular bifuzzy
variables. In Section 4, the calculations of the expected value of regular bifuzzy variables
and their strictly monotone functions are given. The main findings are summarized in
Section 5.

2. Fundamental Concepts

In order to measure the regular bifuzzy events, we state some important preliminaries
and definitions about fuzzy and bifuzzy variables in the following.

2.1. Fuzzy Variables

To begin with, based upon the possibility theory, the credibility space introduced by
Liu [16] is reviewed here.

Definition 1. (Liu [16]) Suppose that Θ symbolizes a nonempty set, P(Θ) stands for the power
set of Θ, and Cr represents the credibility measure, such that Cr{∅} = 0, and Cr{Θ} = 1. Then,
the triplet (Θ,P(Θ), Cr) is called a credibility space.

Definition 2. (Liu [16]) Suppose that the triplet (Θ,P(Θ), Cr) represents a credibility space.
Then, a fuzzy variable τ̃ can be regarded as a function from this space to the set of real numbers.

Definition 3. (Zadeh [1,17] and Liu and Liu [18]) Suppose that τ̃ is a fuzzy variable. If the
membership function of τ̃ is given as µτ̃ , then, to mathematically describe the fuzzy event {τ̃ ∈ B},
where B is referred to any Borel set of R, the possibility, necessity, and credibility measures can be
written, respectively, as

Pos{τ̃ ∈ B} = supx∈Bµτ̃(x),

Nec{τ̃ ∈ B} = 1− supx∈Bc µτ̃(x),

Cr{τ̃ ∈ B} = (Pos{τ̃ ∈ B}+ 1−Nec{τ̃ ∈ B})/2.

(1)

Definition 4. (Liu [19]) Suppose that τ̃ is a fuzzy variable. Then, the credibility distribution of τ̃
is defined as

Υτ̃(y) = Cr{θ ∈ Θ | τ̃(θ) ≤ y}, ∀y ∈ R. (2)

Meanwhile, since the LR-type fuzzy number was initially proposed by Dubios and
Prade [20], it has been adopted to various practical programmings. Subsequently, based on
this special fuzzy number, the following definitions are presented.

Definition 5. (Dubios and Prade [20,21]) Suppose that two shape functions are described as L(·)
and R(·). If L(·) (and R(·)) is a function that satisfies

(i) L(0) = 1;
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(ii) L(x) < 1, ∀x > 0;
(iii) L(x) > 0, ∀x < 1;
(iiii) L(1) = 0 or [L(x) > 0, ∀x and L(+∞) = 0];
(iiiii) L(x) is nonincreasing on [0,+∞),

and the fuzzy number τ̃ has the following membership function

µτ̃(x) =


L
(

b− x
ι

)
, if x ≤ b

R
(

x− b
υ

)
, if x > b,

(3)

where b is called the peak of τ̃ with µτ̃(b) = 1, and ι and υ are called the left and right spreads with
ι > 0 and υ > 0, respectively, then τ̃ is said to be an LR-type fuzzy number. Symbolically, τ̃ is
written as (b, ι, υ)LR.

Example 1. If a triangular fuzzy number τ̃ is described as T (a1, a2, a3) with real numbers a1 <
a2 < a3, and the shape functions satisfy that L(x) = R(x) = max{0, 1− x}, then the membership
function of τ̃ is presented as

µτ̃(x) =



x− a1

a2 − a1
, if a1 < x ≤ a2

a3 − x
a3 − a2

, if a2 < x ≤ a3

0, otherwise.

(4)

Example 2. If an exponential fuzzy number τ̃ is described as E(m, p, p) with real number p > 0,
and the shape functions satisfy L(x) = R(x) = e−x, then the membership function of τ̃ is
presented as

µτ̃(x) =


e−

m−x
p , if x ≤ m

e−
x−m

q , if x > m.
(5)

Theorem 1. (Zhou et al. [22]) Suppose that τ̃ is an LR-type fuzzy variable. If the credibility
distribution of τ̃ is not only strictly increasing but continuous on its support, then τ̃ is called a
regular LR fuzzy variable.

In the rest of this paper, for convenience, the triplet (b, ι, υ)LR, whose elements are
defined in Definition 5, refers to a regular LR fuzzy variable τ̃. Generally, if τ̃ has the same
shape functions (i.e., L(·) = R(·)) and same left and right spreads (i.e., ι = υ), we may call
it symmetric, which is a well-used type applied in mathematical formulations of fuzzy
programmings.

Remark 1. Clearly, for Example 1, the credibility distribution of τ̃ can be deduced via its member-
ship function according to Zhou et al. [22]. Thus, following from Definition 4 and the decreasing
shape functions L(·) and R(·), the corresponding continuous and strictly increasing credibility
distribution is obtained. Analogously, the same conclusions can be drawn for Example 2. Thus,
these two LR-type fuzzy variables are obviously regular.

The credibility distributions and their inverse functions, named inverse credibility
distributions, of the triangular fuzzy number and the exponential fuzzy variable are
developed in Examples 3 and 4.
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Example 3. If a triangular fuzzy number τ̃ is described by T (a1, a2, a3), then its credibility
distribution Υτ̃ and inverse credibility distribution Υ−1

τ̃ are given as

Υτ̃(y) =



0, if y ≤ a1

0.5
y− a1

a2 − a1
, if a1 < y ≤ a2

1− 0.5
a3 − y
a3 − a2

, if a2 < y ≤ a3

1, if y > a3,

(6)

and

Υ−1
τ̃ (β) =

a1 + 2β(a2 − a1), if 0 < β ≤ 0.5

(2− 2β)a2 + (2β− 1)a3, if 0.5 < β < 1.
(7)

Example 4. If an exponential fuzzy number τ̃ is described by E(m, p, p), then its credibility
distribution Υτ̃ and inverse credibility distribution Υ−1

τ̃ are given as

Υτ̃(y) =


0.5e−

m−y
p , if y ≤ m

1− 0.5e−
y−m

p , if y > m,
(8)

and

Υ−1
τ̃ (β) =

m + p ln(2β), if 0 < β ≤ 0.5

m− p ln(2− 2β), if 0.5 < β < 1.
(9)

Apparently, note that for the triangular fuzzy number defined in Example 3, when
a2 = 0.5(a1 + a3), it is said to be symmetric. Meanwhile, by virtue of the parametric form
of an exponential fuzzy number, the variable defined in Example 4 is also absolutely a
symmetric regular LR fuzzy variable.

2.2. Bifuzzy Variables

In addition, several definitions of extension of the fuzzy variable have been proposed
aiming at describing the two-fold uncertain phenomena, such as the bifuzzy variable, type-
2 fuzzy variable, intuitionistic fuzzy variable, etc. In this paper, the concept of the bifuzzy
variable introduced by Liu [6] is adopted for further study, which is shown as follows.

Definition 6. (Liu [19]) Suppose that the triplet (Θ,P(Θ), Cr) represents a credibility space. Then,
a bifuzzy variable ˜̃κ can be regarded as a function from this space to the collection of fuzzy variables.

Remark 2. Generally speaking, we may view ˜̃κ as a fuzzy variable κ̃ defined on the universal
collection of fuzzy variables. For the sake of convenience, κ̃ is called a primary fuzzy number, and
for each θ ∈ Θ, ˜̃κ(θ) is called a secondary fuzzy number. Therefore, the set of all secondary fuzzy
numbers is exactly the above universal collection.
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Example 5. If τ̃i is a fuzzy variable and νi is a real-valued number in [0, 1], i = 1, 2, · · · , m and
ν1 ∨ ν2 ∨ · · · ∨ νm = 1, then the function

˜̃κ =



τ̃1, with possibility ν1

τ̃2, with possibility ν2

· · ·

τ̃m, with possibility νm,

(10)

is obviously a bifuzzy variable according to Definition 6.

Example 6. If a variable ˜̃κ is given as T (κ̃ − ι, κ̃, κ̃ + υ), where κ̃ represents a triangular fuzzy
number, denoted as T (a1, a2, a3), then ˜̃κ is also a bifuzzy variable. For example, if we take ι = υ = 1
(i.e., ˜̃κ = T (κ̃ − 1, κ̃, κ̃ + 1)) and a1 = 1, a2 = 2, a3 = 3 (i.e., κ̃ = T (1, 2, 3)), then the interval
[0, 4] is absolutely the domain of ˜̃κ. Furthermore, the sketch map of the bifuzzy variable ˜̃κ is
depicted in Figure 1, where the membership function of the primary fuzzy number is described
by the blue line, and the membership functions of secondary fuzzy numbers are shown on the
three-dimensional graph.

Figure 1. The function curve of the bifuzzy variable in Example 6.

Definition 7. (Liu [6]) Suppose that ˜̃κ is a bifuzzy variable. Then, for any x ∈ R, the primitive
chance of the bifuzzy event that ˜̃κ takes a value not larger than x, i.e., { ˜̃κ ≤ x}, is a function from
(0, 1] to [0, 1], defined as

Ch{ ˜̃κ ≤ x}(α) = sup
{

β
∣∣ Cr{θ ∈ Θ

∣∣ Cr{ ˜̃κ(θ) ≤ x} ≥ β} ≥ α
}

. (11)

Definition 8. (Liu [19]) Suppose that ˜̃κ is a bifuzzy variable. Then, the expected value of ˜̃κ is
defined as

E[ ˜̃κ] =
∫ +∞

0
Cr
{

θ ∈ Θ
∣∣ E[ ˜̃κ(θ)] ≥ x

}
dx−

∫ 0

−∞
Cr
{

θ ∈ Θ
∣∣ E[ ˜̃κ(θ)] ≤ x

}
dx, (12)

provided that at least one of the two integrals is finite.

2.3. Regular Bifuzzy Variables

On the foundation of the above definitions, we restrict our attention to the special
type of bifuzzy variable, named the regular bifuzzy variable, and its definition and some
elementary properties are discussed here as follows.
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Definition 9. A regular bifuzzy variable, ˜̃κ, is a regular LR fuzzy variable κ̃ defined on the special
set of regular LR fuzzy variables satisfying the following conditions:

(i) the left(and right) shape functions are the same;
(ii) the left and right spreads are all denoted by two positive numbers;
(iii) for θ ∈ Θ, the peak of ˜̃κ(θ) is determined by κ̃(θ).

Obviously, the bifuzzy variable defined in Example 6 is called regular, and yet, in
Example 5, it is not this type due to the discontinuity of the membership function of its
primary fuzzy number. For simplicity, the general form of a regular bifuzzy variable is
given in the following.

Remark 3. Suppose that ˜̃κ is a regular bifuzzy variable. If ι1 > 0 and υ1 > 0, the general form
of ˜̃κ can be written as ˜̃κ = (κ̃, ι1, υ1)L1R1 , where κ̃ = (b, ι2, υ2)L2R2 with real numbers ι2 > 0 and
υ2 > 0. That is, the membership function of the primary fuzzy number κ̃ is

µκ̃(x) =


L2

(
b− x

ι2

)
, if x ≤ b

R2

(
x− b

υ2

)
, if x > b,

(13)

and for any θ ∈ Θ, the membership function of the secondary fuzzy number ˜̃κ(θ) is

µ ˜̃κ(θ)(x) =


L1

(
κ̃(θ)− x

ι1

)
, if x ≤ κ̃(θ)

R1

(
x− κ̃(θ)

υ1

)
, if x > κ̃(θ).

(14)

Remark 4. Suppose that ˜̃κ is a regular bifuzzy variable If one of the following two conditions holds:

(i) for each θ ∈ Θ, ˜̃κ(θ) is a real number instead of a regular LR fuzzy variable;
(ii) the nonempty set Θ contains only one singleton;

then a regular LR fuzzy variable can be taken as a special type of ˜̃κ.

Example 7. In particular, a regular bifuzzy variable ˜̃κ is said to be triangular if its primary fuzzy
number and secondary fuzzy numbers are both triangular. Roughly speaking, ˜̃κ is a triangular fuzzy
number taking triangular fuzzy values. Therefore, it is not hard to see that the variable defined in
Example 6 is clearly a triangular regular bifuzzy variable. Analogously, a regular bifuzzy variable
is said to be exponential if it is an exponential fuzzy number taking exponential fuzzy values.

For the purpose of deriving the arithmetic operations for independent regular bifuzzy
variables, we recall the definition of the monotonicity of functions in the following.

Definition 10. Suppose that a real-valued function is n-ary, described as g(s1, s2, · · · , sn). If the
function is strictly increasing with reference to s1, s2, · · · , st and strictly decreasing with reference
to st+1, st+2, · · · , sn, then it is called strictly monotone. That is, the following conditions should be
satisfied simultaneously:

(i) For all δi ≥ 0, i = 1, 2, · · · , n, we have

g(s1, s2, · · · , sn) ≤ g(s1 + δ1, · · · , st + δt, st+1 − δt+1, · · · , sn − δn);

(ii) For all δi > 0, i = 1, 2, · · · , n, we have

g(s1, s2, · · · , sn) < g(s1 + δ1, · · · , st + δt, st+1 − δt+1, · · · , sn − δn).

Example 8. Some strictly monotone functions are given as examples:
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(i) g(s1, s2, · · · , sn) = s1 + s2 + · · ·+ st − st+1 − st+2 − · · · − sn;

(ii) g(s1, s2, · · · , sn) =
s1 × s2 × · · · × st

st+1 × st+2 × · · · × sn
.

Remark 5. Suppose that ˜̃κi is a regular bifuzzy variable, for i = 1, 2, · · · , n. If ˜̃κ1, ˜̃κ2, · · · , ˜̃κn are
independent and the function g(s1, s2, · · · , sn) is strictly monotone with reference to s1, s2, · · · , sn,
then g( ˜̃κ1, ˜̃κ2, · · · , ˜̃κn) is clearly a regular bifuzzy variable.

3. Mean Chance Measure

In this section, the concept of mean chance measure of regular bifuzzy variables is
presented, and some elementary properties are proved. In addition, the analysis formulas
are discussed below. After that, the operational law for the measurability of the strictly
monotone function of the regular bifuzzy variables is discussed, which will have extensive
applications in solving the uncertain programmings, such as dependent-chance program-
ming and chance-constrained programming, without simulation. In other words, using
the operational law, the bifuzzy optimization problems, which consist of strictly monotone
functions and regular bifuzzy variables, can be converted to their corresponding crisp
equivalent programmings and then solved with well-developed software.

3.1. Mean Chance Distribution

In order to construct the chance of the occurrence of bifuzzy events, various definitions
of the primitive chance have been suggested in Liu [19], including Pos-Pos, Nec-Nec, and
Cr-Cr, etc. However, by referring to Liu and Liu [23], none of them are scalar values, not to
mention self-dual, and so they are not suitable measures in terms of some mathematical
properties, which may lead to counter-intuitive results in practice. Therefore, in light of the
concept of the mean chance in [23], for a regular bifuzzy variable, we initialize its mean
chance distribution through the Riemann integral as follows.

Definition 11. Suppose that ˜̃κ is a regular bifuzzy variable. Then, it has the mean chance distribution

ChM{ ˜̃κ ≤ x} =
∫ 1

0
Cr{θ ∈ Θ | Cr{ ˜̃κ(θ) ≤ x} ≥ ρ}dρ, ∀x ∈ R. (15)

For simplicity, we could denote it as Ψ ˜̃κ : R→ [0, 1].

According to Equation (15) and the characteristics of credibility measure, we could
easily obtain the conclusion that the mean chance distribution is non-decreasing with
respect to x. Specifically, Ψ ˜̃κ(−∞) = 0 and Ψ ˜̃κ(+∞) = 1. Following this, in order to prove
the properties of the mean chance measure of bifuzzy variables, its self-duality should be
firstly established.

Theorem 2. (Self-duality) Suppose that ˜̃κ is a regular bifuzzy variable. Then, for any x ∈ R,
we have

ChM{ ˜̃κ ≤ x} = 1−ChM{ ˜̃κ ≥ x}. (16)

That is, the mean chance measure is self-dual.

Proof of Theorem 2. It is noteworthy that the self-duality of the credibility measure has
been proven by Liu and Liu [18], i.e., Cr{τ̃ ≥ x} = 1− Cr{τ̃ ≤ x}, where τ̃ is a fuzzy
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variable and x is a real number. Based on this, it follows from the definition of the mean
chance measure that

ChM{ ˜̃κ ≥ x} =
∫ 1

0
Cr{θ ∈ Θ | Cr{ ˜̃κ(θ) ≥ x} ≥ r}dr

=
∫ 1

0
Cr{θ ∈ Θ | Cr{ ˜̃κ(θ) ≤ x} ≤ 1− r}dr

=
∫ 1

0

[
1−Cr{θ ∈ Θ | Cr{ ˜̃κ(θ) ≤ x} ≥ 1− r}

]
dr

= 1−
∫ 0

1
Cr{θ ∈ Θ | Cr{ ˜̃κ(θ) ≤ x} ≥ ρ}d(1− ρ)

= 1−
∫ 1

0
Cr{θ ∈ Θ | Cr{ ˜̃κ(θ) ≤ x} ≥ ρ}dρ

= 1−ChM{ ˜̃κ ≤ x}.

Thus, this theorem is naturally verified.

Theorem 3. Suppose that ˜̃κ is a regular bifuzzy variable. If the credibility distribution of the
primary fuzzy number κ̃ of ˜̃κ is described as Υκ̃ , then the mean chance of { ˜̃κ ≤ x} is calculated by

ChM{ ˜̃κ ≤ x} =
∫ +∞

−∞
Cr{ξ̃ ≤ x}dΥκ̃(y), (17)

where ξ̃ is a secondary fuzzy number of ˜̃κ, expressed as (y, ι, υ)LR, with respect to y.

Proof of Theorem 3. Following from Definition 9, it is obvious that ˜̃κ(θ) is a regular LR
fuzzy number for a determined θ. Consequently, if x is a real number, then Cr{ ˜̃κ(·) ≤ x}
is a measurable function of θ. In fact, through Equation (15), the mean chance of the
occurrence of the bifuzzy event { ˜̃κ ≤ x} could be regarded as the expectation of the fuzzy
variable Cr{ ˜̃κ(·) ≤ x}. In other words, ChM{ ˜̃κ ≤ x} = E[Cr{ ˜̃κ(·) ≤ x}]. Then, we have

ChM{ ˜̃κ ≤ x} =
∫ 1

0
Cr{θ ∈ Θ | Cr{ ˜̃κ(θ) ≤ x} ≥ ρ}dρ

= E[Cr{ ˜̃κ(·) ≤ x}]

=
∫

Θ
Cr{ ˜̃κ(θ) ≤ x}Cr(dθ)

=
∫ +∞

−∞
Cr{ξ̃ ≤ x}dΥκ̃(y),

where ξ̃ is called the secondary fuzzy number for any real number y. This is simply
Equation (17).

Theorem 4. Suppose that ˜̃κ is a regular bifuzzy variable. If the inverse credibility distribution
of the primary fuzzy number κ̃ of ˜̃κ is described as Υ−1

κ̃ , then the equivalent representation of
ChM{ ˜̃κ ≤ x} is

ChM{ ˜̃κ ≤ x} =
∫ 1

0
Cr{ζ̃ ≤ x}dβ, (18)

where ζ̃ is a secondary fuzzy number of ˜̃κ, expressed as (Υ−1
κ̃ (β), ι, υ)LR, with respect to β.

Proof of Theorem 4. Following from Theorem 3, substitute Υκ̃(y) with β, and so y = Υ−1
κ̃ (β).

Taking into account Equation (17), this theorem is naturally verified.

In the subsequent content, by taking advantage of the simple form of the credibility
distribution of the symmetric regular LR fuzzy variable, the following two kinds of regular
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bifuzzy variables are adopted as examples to illustrate how to calculate their correspond-
ing mean chance distributions. For simplicity, we only show the detailed processes of
Theorem 4, and similar results can be obtained by Theorem 3.

Example 9. Assume that ˜̃κ is a triangular regular bifuzzy variable, given as T (κ̃ − 1, κ̃, κ̃ + 1)
with κ̃ = T (1, 2, 3). Then, the inverse credibility distribution of κ̃ can be derived as Υ−1

κ̃ (β) = 2β+

1 according to Equation (7). Subsequently, for any β ∈ (0, 1), the triplet T (2β, 2β + 1, 2β + 2)
represents a secondary fuzzy number of ˜̃κ, and so using Equation (6), the measurable function
Cr{ζ̃ ≤ x} is

Cr{ζ̃ ≤ x} =


0, if x ≤ 2β

x− 2β

2
, if 2β < x ≤ 2β + 2

1, if x > 2β + 2.

(19)

Based on that, by Theorem 4, the triangular regular bifuzzy variable ˜̃κ has the mean chance distribution

ChM{ ˜̃κ ≤ x} =



∫ 1

0
0dβ, if x ≤ 0∫ x

2

0

x− 2β

2
dβ, if 0 < x ≤ 2

∫ x−2
2

0
1dβ +

∫ 1

x−2
2

x− 2β

2
dβ, if 2 < x ≤ 4∫ 1

0
1dβ, if x > 4

=



0, if x ≤ 0

1
8

x2, if 0 < x ≤ 2

x− 1− 1
8

x2, if 2 < x ≤ 4

1, if x > 4,

(20)

which is depicted in Figure 2a.

Example 10. Assume that ˜̃κ is an exponential regular bifuzzy variable, given as E(κ̃, 1, 1), where
κ̃ = E(0, 1, 1). According to Equation (9), the inverse credibility distribution of κ̃ is

Υ−1
κ̃ (β) =

ln(2β), if 0 < β ≤ 0.5

− ln(2− 2β), if 0.5 < β < 1.
(21)

Subsequently, for β ∈ (0, 0.5), by using Equation (8), the measurable function Cr{ζ̃ ≤ x} is

Cr{ζ̃ ≤ x} =


1
2

ex−ln(2β), if x ≤ ln(2β)

1− 1
2

eln(2β)−x, if x > ln(2β),
(22)
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and for β ∈ (0.5, 1),

Cr{ζ̃ ≤ x} =


1
2

ex+ln(2−2β), if x ≤ − ln(2− 2β)

1− 1
2

e− ln(2−2β)−x, if x > − ln(2− 2β).
(23)

Then, the computing result of the mean chance distribution of the exponential regular bifuzzy
variable ˜̃κ is

ChM{ ˜̃κ ≤ x} =



∫ 1
2 ex

0
Adβ +

∫ 0.5

1
2 ex

1
2

ex−ln (2β)dβ +
∫ 1

0.5
Bdβ,

if x ≤ 0

∫ 0.5

0
Adβ +

∫ 1− 1
2 e−x

0.5
(1− 1

2
e− ln (2−2β)−x)dβ +

∫ 1

1− 1
2 e−x

Bdβ,

if x > 0

=


ex

2
− xex

4
, if x ≤ 0

1− e−x

2
− xe−x

4
, if x > 0,

(24)

where A and B represent the functions 1− 1
2 eln (2β)−x and 1

2 ex+ln (2−2β), respectively. Afterwards,
this distribution is shown in Figure 2b.
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(a)Triangular regular bifuzzy variable
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(b)Exponential regular bifuzzy variable

Figure 2. The mean chance distributions of ˜̃κ in Examples 9 and 10.

3.2. Operational Law

In particular, to provide arithmetic operations for analytically and explicitly calcu-
lating the mean chance distribution of the strictly monotone and continuous function of
independent regular bifuzzy variables, we first review the operational law for regular LR
fuzzy numbers introduced by Zhou et al. [22], which is documented as follows.

Theorem 5. (Zhou et al. [22]) Suppose that τ̃i is a regular LR fuzzy variable with the inverse
credibility distribution Υ−1

κ̃i
, for i = 1, 2, · · · , n. If τ̃1, τ̃2, · · · , τ̃n are independent, and the function

g(s1, s2, · · · , sn) is strictly increasing with reference to s1, s2, · · · , st and strictly decreasing with
reference to st+1, st+2, · · · , sn, then denote τ̃ = g(τ̃1, τ̃2, · · · , τ̃n), and the inverse credibility
distribution of τ̃ is

Υ−1
τ̃ (β) = g(Υ−1

τ̃1
(β), · · · , Υ−1

τ̃t
(β), Υ−1

τ̃t+1
(1− β), · · · , Υ−1

τ̃n
(1− β)). (25)
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Next, based on the special type function with the characteristics of strictly monotone
and continuous, the useful arithmetic operations for regular bifuzzy variables on the basis
of Theorem 5 will be presented in the following.

Theorem 6. (Operational law) Suppose that ˜̃κi is a regular bifuzzy variable and the primary fuzzy
number κ̃i of ˜̃κi has the inverse credibility distribution Υ−1

κ̃i
, for i = 1, 2, · · · , n. If ˜̃κ1, ˜̃κ2, · · · , ˜̃κn are

independent, and the function g(s1, s2, · · · , sn) is strictly increasing with reference to s1, s2, · · · , st
and strictly decreasing with reference to st+1, st+2, · · · , sn, then g( ˜̃κ1, ˜̃κ2, · · · , ˜̃κn), denoted as ˜̃κ,
has the mean chance distribution

ChM{g( ˜̃κ1, ˜̃κ2, · · · , ˜̃κn) ≤ x} =
∫ 1

0
Cr{g(ζ̃1, ζ̃2, · · · , ζ̃n) ≤ x}dβ, ∀x ∈ R, (26)

where ζ̃ i is a secondary fuzzy number of ˜̃κi, expressed as

ζ̃ i =

(Υ−1
κ̃i

(β), ιi, υi)Li Ri , i = 1, 2, · · · , t

(Υ−1
κ̃i

(1− β), ιi, υi)Li Ri , i = t + 1, t + 2, · · · , n,
(27)

with respect to β.

Proof of Theorem 6. At first, it is obvious that the primary fuzzy number of ˜̃κ can be
written as κ̃ = g(κ̃1, κ̃2, · · · , κ̃n), and on account of Theorem 5, its inverse credibility
distribution could be formulated by

Υ−1
κ̃ (β) = g(Υ−1

κ̃1
(β), · · · , Υ−1

κ̃t
(β), Υ−1

κ̃t+1
(1− β), · · · , Υ−1

κ̃n
(1− β)).

Subsequently, following from Theorems 4, this theorem is naturally verified.

Theoretically, it is not easy to obtain the measurable function, i.e., Cr{g(ζ̃1, ζ̃2, · · · , ζ̃n) ≤ x},
directly in Equation (26). Thus, considering the relationship between the credibility dis-
tribution and the inverse credibility distribution of a regular LR fuzzy number, we can
further derive the equivalent form of the above theorem via an inverse operation.

Theorem 7. Suppose that ˜̃κi is a regular bifuzzy variable and the primary fuzzy number κ̃i of ˜̃κi
has the inverse credibility distribution Υ−1

κ̃i
, for i = 1, 2, · · · , n. If ˜̃κ1, ˜̃κ2, · · · , ˜̃κn are independent,

and the function g(s1, s2, · · · , sn) is strictly increasing with reference to s1, s2, · · · , st and strictly
decreasing with reference to st+1, st+2, · · · , sn, then for any x ∈ R, we have

ChM{g( ˜̃κ1, ˜̃κ2, · · · , ˜̃κn) ≤ x} =
∫ 1

0
F(g(ζ̃1, ζ̃2, · · · , ζ̃n))dβ, (28)

where F(g(ζ̃1, ζ̃2, · · · , ζ̃n)) is the solution α of the equation that the inverse credibility distribution
of g(ζ̃1, ζ̃2, · · · , ζ̃n) is equal to x, i.e.,

g(Υ−1
ζ̃1

(α), · · · , Υ−1
ζ̃ t

(α), Υ−1
ζ̃ t+1

(1− α), · · · , Υ−1
ζ̃n

(1− α)) = x, (29)

and ζ̃ i is a secondary fuzzy number of ˜̃κi, expressed as

ζ̃ i =

(Υ−1
κ̃i

(β), ιi, υi)Li Ri , i = 1, 2, · · · , t

(Υ−1
κ̃i

(1− β), ιi, υi)Li Ri , i = t + 1, t + 2, · · · , n,
(30)

with respect to β.

Proof of Theorem 7. It follows from Theorem 6 that this case is valid if and only if for
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any real number β, the equation F(g(ζ̃1, ζ̃2, · · · , ζ̃n)) = Cr{g(ζ̃1, ζ̃2, · · · , ζ̃n) ≤ x} holds.
In fact, since the fuzzy variables ζ̃1, ζ̃2, · · · , ζ̃n are regular LR, on account of Theorem 5,
if we write ζ̃ = g(ζ̃1, ζ̃2, · · · , ζ̃n), then ζ̃ is a regular LR fuzzy variable with the inverse
credibility distribution

Υ−1
ζ̃

(α) = g(Υ−1
ζ̃1

(α), · · · , Υ−1
ζ̃ t

(α), Υ−1
ζ̃ t+1

(1− α), · · · , Υ−1
ζ̃n

(1− α)).

Meanwhile, we know that the credibility distribution of ζ̃ can be described as Υ
ζ̃
(x) =

Cr{g(ζ̃1, ζ̃2, · · · , ζ̃n) ≤ x}, and so the root value α obtained in Equation (29) is exactly
equal to Υ

ζ̃
(x) for any real number x. That is, this theorem is naturally verified.

Remark 6. Note that for any β ∈ (0, 1), the inverse credibility distributions of the regular LR fuzzy
variables ζ̃1, ζ̃2, · · · , ζ̃n are determined, respectively. Thus, the function g(Υ−1

ζ̃1

(α), · · · , Υ−1
ζ̃ t

(α),

Υ−1
ζ̃ t+1

(1− α), · · · , Υ−1
ζ̃n

(1− α)) is strictly monotone and continuous with regard to α, and so we

could simulate the value of the root in Equation (29) through the golden section or bisection method.

Example 11. Assume that ˜̃κ1 and ˜̃κ2 are two triangular regular bifuzzy variables, e.g., ˜̃κ1 =
T (κ̃1 − 1, κ̃1, κ̃1 + 1) with κ̃1 = T (1, 2, 3) and ˜̃κ2 = T (κ̃2 − 1, κ̃2, κ̃2 + 1) with κ̃2 = T (3, 4, 5).
The inverse credibility distributions of the primary fuzzy numbers of ˜̃κ1 and ˜̃κ2 are described as
2β+ 1 and 2β+ 3, respectively. If the function g1(s1, s2) = s1− s2, then we denote ˜̃κ = g1( ˜̃κ1, ˜̃κ2).
For any β ∈ (0, 1), we have ζ̃1 = T (2β, 2β + 1, 2β + 2) and ζ̃2 = T (4− 2β, 5− 2β, 6− 2β).
Consequently, the triplet T (4β− 6, 4β− 4, 4β− 2) represents a secondary fuzzy number of ˜̃κ with
respect to β. Then,

Cr{g1(ζ̃1, ζ̃2) ≤ x} =


0, if x ≤ 4β− 6

6 + x− 4β

4
, if 4β− 6 < x ≤ 4β− 2

1, if x > 4β− 2,

(31)

and so by means of Theorem 6, it can be concluded that

ChM{g1( ˜̃κ1, ˜̃κ2) ≤ x} =



∫ 1

0
0dβ, if x ≤ −6

∫ x+6
4

0

6 + x− 4β

4
dβ, if − 6 < x ≤ −2

∫ x+2
4

0
1dβ +

∫ 1

x+2
4

6 + x− 4β

4
dβ, if − 2 < x ≤ 2∫ 1

0
1dβ, if x > 2

=



0, if x ≤ −6

(x + 6)2

32
, if − 6 < x ≤ −2

x
4
− (x− 2)(x + 6)

32
+

1
2

, if − 2 < x ≤ 2

1, if x > 2,

(32)

which is depicted in Figure 3a.
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Example 12. Assume that ˜̃κ1 and ˜̃κ2 are two triangular regular bifuzzy variables, e.g., ˜̃κ1 =
T (κ̃1 − 1, κ̃1, κ̃1 + 1) with κ̃1 = T (1, 2, 3) and ˜̃κ2 = T (κ̃2 − 1, κ̃2, κ̃2 + 1) with κ̃2 = T (3, 4, 5).
Set the function g2(s1, s2) = s1/s2 and denote ˜̃κ = g2( ˜̃κ1, ˜̃κ2). Obviously, since ˜̃κ1 is non-
negative and ˜̃κ2 is positive, it follows from Theorem 7 that for any β ∈ (0, 1), the inverse credibility
distribution of g2(ζ̃1, ζ̃2) can be deduced as 2β+2α

6−2β−2α , and according to Equation (29), the root value

α is equal to 3x−xβ−β
1+x . Thus, we have

Cr{g2(ζ̃1, ζ̃2) ≤ x} =



0, if x ≤ 2β

6− 2β

3x− xβ− β

1 + x
, if

2β

6− 2β
< x ≤ 2β + 2

4− 2β

1, if x >
2β + 2
4− 2β

,

(33)

and so the mean chance distribution of ˜̃κ is formulated as

ChM{g2( ˜̃κ1, ˜̃κ2) ≤ x} =



∫ 1

0
0dβ, if x ≤ 0

∫ 3x
1+x

0

3x− xβ− β

1 + x
dβ, if 0 < x ≤ 0.5

∫ 2x−1
1+x

0
1dβ +

∫ 1

2x−1
1+x

3x− xβ− β

1 + x
dβ, if 0.5 < x ≤ 2∫ 1

0
1dβ, if x > 2

=



0, if x ≤ 0

9x2

2(x + 1)2 , if 0 < x ≤ 0.5

12x + 3
2(x + 1)2 −

3
x + 1

+
1
2

, if 0.5 < x ≤ 2

1, if x > 2,

(34)

which is depicted in Figure 3b.
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(a) ˜̃κ1 − ˜̃κ2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(x
)

(b) ˜̃κ1/ ˜̃κ2

Figure 3. The mean chance distributions of ˜̃κ in Examples 11 and 12.

Thus far, we have illustrated how to obtain the mean chance distribution via the
credibility distributions and inverse credibility distributions of the primary and secondary
fuzzy numbers. Apparently, this important aspect can be utilized to assist decision makers
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to adopt effective decisions in practical problems, e.g., the confidence level that the total
cost is less than the budget.

4. Expected Value Operator

Usually, as one of the fundamental measures for uncertain events, the expected value
has been given great attention by researchers, such as Dubois and Prade [24], Heilpern [25],
Liu and Liu [18], etc. It should be mentioned that the first two are both defined on the
basis of possibility measure, which has been proven not to satisfy the self-duality. Thus,
in light of the work by Liu and Liu [18] and the self-duality of the mean chance measure
demonstrated above, the expected value operator of a regular bifuzzy variable ˜̃κ, defined
by Choquet integrals, is given in this paper.

Theorem 8. Suppose that ˜̃κ is a regular bifuzzy variable, and ChM is the mean chance measure.
Then, the expected value of the variable ˜̃κ, E[ ˜̃κ], can be stated as

E[ ˜̃κ] =
∫ +∞

0
ChM{ ˜̃κ ≥ x}dx−

∫ 0

−∞
ChM{ ˜̃κ ≤ x}dx, (35)

where integrals are defined in case either of the two takes a finite value.

Proof of Theorem 8. Following from Definition 8 and Theorem 3, we have

E[ ˜̃κ] =
∫ +∞

0
Cr
{

θ ∈ Θ
∣∣ E[ ˜̃κ(θ)] ≥ x

}
dx−

∫ 0

−∞
Cr
{

θ ∈ Θ
∣∣ E[ ˜̃κ(θ)] ≤ x

}
dx

=
∫

Θ
E[ ˜̃κ(θ)]Cr(dθ)

=
∫

Θ

[∫ +∞

0
Cr{ ˜̃κ(θ) ≥ x}dx−

∫ 0

−∞
Cr{ ˜̃κ(θ) ≤ x}dx

]
Cr(dθ)

=
∫ +∞

0

∫
Θ

Cr{ ˜̃κ(θ) ≥ x}Cr(dθ)dx−
∫ 0

−∞

∫
Θ

Cr{ ˜̃κ(θ) ≤ x}Cr(dθ)dx

=
∫ +∞

0
ChM{ ˜̃κ ≥ x}dx−

∫ 0

−∞
ChM{ ˜̃κ ≤ x}dx.

That is, this theorem is naturally verified.

Theorem 9. Suppose that ˜̃κ is a regular bifuzzy variable. Then, it has the expected value

E[ ˜̃κ] =
∫ +∞

−∞
xdΨ ˜̃κ(x), (36)

where Ψ ˜̃κ represents the mean chance distribution of ˜̃κ.

Proof of Theorem 9. According to Equation (15), it is known that the mean chance distri-
bution Ψ ˜̃κ(x) is strictly increasing and continuous, and so denote Ψ ˜̃κ(x) =

∫ x
−∞ dΨ ˜̃κ(y)

and 1−Ψ ˜̃κ(x) =
∫ +∞

x dΨ ˜̃κ(y), respectively. Following from Theorem 8, if we set ChM{ ˜̃κ ≥
x} = 1−Ψ ˜̃κ(x), then an equivalent formula of Equation (35) is developed as
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E[ ˜̃κ] =
∫ +∞

0
(1−Ψ ˜̃κ(x))dx−

∫ 0

−∞
Ψ ˜̃κ(x)dx

=
∫ +∞

0

∫ +∞

x
dΨ ˜̃κ(y)dx−

∫ 0

−∞

∫ x

−∞
dΨ ˜̃κ(y)dx

=
∫ +∞

0

∫ y

0
dxdΨ ˜̃κ(y)−

∫ 0

−∞

∫ 0

y
dxdΨ ˜̃κ(y)

=
∫ +∞

0
ydΨ ˜̃κ(y)−

∫ 0

−∞
(−y)dΨ ˜̃κ(y)

=
∫ +∞

−∞
ydΨ ˜̃κ(y),

which is the commonly used form to calculate the expected value in uncertainty theory.
Thus, Equation (36) is naturally obtained.

Theorem 10. Suppose that ˜̃κ is a regular bifuzzy variable. If the mean chance distribution of ˜̃κ is
described as Ψ ˜̃κ , and its inverse function is denoted as Ψ−1

˜̃κ
, then ˜̃κ has the expected value

E[ ˜̃κ] =
∫ 1

0
Ψ−1

˜̃κ
(β)dβ. (37)

Proof of Theorem 10. Following from Theorem 9, through the change of variables of the
integral, set β = Ψ ˜̃κ(x), and so x = Ψ−1

˜̃κ
(β). Then, we have

E[ ˜̃κ] =
∫ +∞

−∞
xdΨ ˜̃κ(y)

=
∫ 1

0
Ψ−1

˜̃κ
(β)dβ.

Thus, Equation (37) is naturally obtained.

Thus far, two methodologies have been introduced to mathematically formulate
the expected value of the regular bifuzzy variable on the foundation of its mean chance
distribution. However, it seems somewhat complicated to calculate the expectation using
the above methods. Alternatively, in this regard, the following equivalent analytical
formulas are proposed to obtain the expected value in a straightforward manner on the
basis of works by Li [26] and Zhou et al. [22].

Theorem 11. Suppose that ˜̃κ is a regular bifuzzy variable and the primary fuzzy number κ̃ of ˜̃κ
has the credibility distribution Υκ̃ . Then, the expected value of ˜̃κ can be calculated by

E[ ˜̃κ] =
∫ +∞

−∞

∫ +∞

−∞
xdΥ

ξ̃
(x)dΥκ̃(y), (38)

where ξ̃ is a secondary fuzzy number of ˜̃κ, expressed as (y, ι, υ)LR, with respect to y, and Υ
ξ̃

represents the credibility distribution of ξ̃.

Proof of Theorem 11. According to Theorems 2 and 3, for all x ∈ R, we have ChM{ ˜̃κ ≥
x} = 1−

∫ +∞
−∞ Cr{ξ̃ ≤ x}dΥκ̃(y). Then, following from Theorem 8, we have
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E[ ˜̃κ] =
∫ +∞

0
ChM{ ˜̃κ ≥ x}dx−

∫ 0

−∞
ChM{ ˜̃κ ≤ x}dx

=
∫ +∞

0

[
1−

∫ +∞

−∞
Cr{ξ̃ ≤ x}dΥκ̃(y)

]
dx−

∫ 0

−∞

∫ +∞

−∞
Cr{ξ̃ ≤ x}dΥκ̃(y)dx

=
∫ +∞

−∞

∫ +∞

0
dxdΥκ̃(y)−

∫ +∞

−∞

∫ +∞

0
Cr{ξ̃ ≤ x}dxdΥκ̃(y)

−
∫ +∞

−∞

∫ 0

−∞
Cr{ξ̃ ≤ x}dxdΥκ̃(y)

=
∫ +∞

−∞

[∫ +∞

0

(
1−Cr{ξ̃ ≤ x}

)
dx−

∫ 0

−∞
Cr{ξ̃ ≤ x}dx

]
dΥκ̃(y)

=
∫ +∞

−∞

[∫ +∞

0
Cr{ξ̃ ≥ x}dx−

∫ 0

−∞
Cr{ξ̃ ≤ x}dx

]
dΥκ̃(y)

=
∫ +∞

−∞
E[ξ̃]dΥκ̃(y)

=
∫ +∞

−∞

∫ +∞

−∞
xdΥ

ξ̃
(x)dΥκ̃(y).

Thus, Equation (38) is naturally obtained.

Theorem 12. Suppose that ˜̃κ is a regular bifuzzy variable and the primary fuzzy number κ̃ of ˜̃κ
has the inverse credibility distribution Υ−1

κ̃ . Then,

E[ ˜̃κ] =
∫ 1

0

∫ 1

0
Υ−1

ζ̃
(α)dαdβ, (39)

where ζ̃ is a secondary fuzzy number of ˜̃κ, expressed as (Υ−1
κ̃ (β), ι, υ)LR, with respect to β, and

Υ−1
ζ̃

represents the inverse credibility distribution of ζ̃.

Proof of Theorem 12. Analogously, if we denote ChM{ ˜̃κ ≥ x} = 1−
∫ 1

0 Cr{ζ̃ ≤ x}dβ,
then we have

E[ ˜̃κ] =
∫ +∞

0
ChM{ ˜̃κ ≥ x}dx−

∫ 0

−∞
ChM{ ˜̃κ ≤ x}dx

=
∫ +∞

0

[
1−

∫ 1

0
Cr{ζ̃ ≤ x}dβ

]
dx−

∫ 0

−∞

∫ 1

0
Cr{ζ̃ ≤ x}dβdx

=
∫ 1

0

[∫ +∞

0
Cr{ζ̃ ≥ x}dx−

∫ 0

−∞
Cr{ζ̃ ≤ x}dx

]
dβ

=
∫ 1

0
E[ζ̃]dβ

=
∫ 1

0

∫ 1

0
Υ−1

ζ̃
(α)dαdβ.

Thus, Equation (39) is naturally obtained.

By using Theorem 12, for triangular and exponential regular bifuzzy variables, we may
obtain the following conclusions for their expected values. Particularly, for Theorems 9–11,
the same results will be developed.
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Example 13. If ˜̃κ is a triangular regular bifuzzy variable, i.e., ˜̃κ = T (κ̃ − ι1, κ̃, κ̃ + υ1) with
κ̃ = T (m− ι2, m, m + υ2), then the expectation of ˜̃κ, E[ ˜̃κ], can be deduced as

E[ ˜̃κ] =
∫ 1

0

∫ 1

0
Υ−1

ζ̃
(α)dαdβ

=
∫ 0.5

0

∫ 0.5

0
(m + ι2(2β− 1) + ι1(2α− 1))dαdβ

+
∫ 0.5

0

∫ 1

0.5
(m + ι2(2β− 1)− υ1(1− 2α))dαdβ

+
∫ 1

0.5

∫ 0.5

0
(m− υ2(1− 2β) + ι1(2α− 1))dαdβ

+
∫ 1

0.5

∫ 1

0.5
(m− υ2(1− 2β)− υ1(1− 2α))dαdβ

=
2m− ι1 − ι2

8
+

2m + υ1 − ι2
8

+
2m− ι1 + υ2

8
+

2m + υ1 + υ2

8

=
4m− ι1 + υ1 − ι2 + υ2

4
,

(40)

and for Example 9, E[ ˜̃κ] = 2.

Example 14. If ˜̃κ is an exponential regular bifuzzy variable, i.e., ˜̃κ = E(κ̃, p1, p1) with κ̃ =
E(m, p2, p2), then its expected value is

E[ ˜̃κ] =
∫ 1

0

∫ 1

0
Υ−1

ζ̃
(α)dαdβ

=
∫ 0.5

0

∫ 0.5

0
(m + p2 ln(2β) + p1 ln(2α))dαdβ

+
∫ 0.5

0

∫ 1

0.5
(m + p2 ln(2β)− υ1 ln(2− 2α))dαdβ

+
∫ 1

0.5

∫ 0.5

0
(m− υ2 ln(2− 2β) + p1 ln(2α))dαdβ

+
∫ 1

0.5

∫ 1

0.5
(m− p2 ln(2− 2β)− p1 ln(2− 2α))dαdβ

=
m− p1 − p2

4
+

m + p1 − p2

4
+

m− p1 + p2

4
+

m + p1 + p2

4
= m,

(41)

and for Example 10, E[ ˜̃κ] = 0.

Not surprisingly, the expected value of a strictly monotone function with regular
bifuzzy variables can be deduced via its mean chance distribution. Furthermore, based
on the operational law for regular LR fuzzy variables, a novel formula is constructed for
computing the expected value. Consequently, we could explicitly obtain the expectation
without having to calculate the mean chance distribution.

Theorem 13. Suppose that ˜̃κi is a regular bifuzzy variable and the primary fuzzy number κ̃i of ˜̃κi
has the inverse credibility distribution Υ−1

κ̃i
, for i = 1, 2, · · · , n. If ˜̃κ1, ˜̃κ2, · · · , ˜̃κn are independent,

and the function g(s1, s2, · · · , sn) is strictly increasing with reference to s1, s2, · · · , st and strictly
decreasing with reference to st+1, st+2, · · · , sn, then denote ˜̃κ = g( ˜̃κ1, ˜̃κ2, · · · , ˜̃κn) and the expected
value of ˜̃κ is written as

E[ ˜̃κ] =
∫ 1

0

∫ 1

0
g(Υ−1

ζ̃1

(α), · · · , Υ−1
ζ̃ t

(α), Υ−1
ζ̃ t+1

(1− α), · · · , Υ−1
ζ̃n

(1− α))dαdβ, (42)
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where ζ̃ i is a secondary fuzzy number of ˜̃κi, expressed as

ζ̃ i =


(Υ−1

κ̃i
(β), ιi, υi)Li Ri , i = 1, 2, · · · , t

(Υ−1
κ̃i

(1− β), ιi, υi)Li Ri , i = t + 1, t + 2, · · · , n,
(43)

with respect to β.

Proof of Theorem 13. According to Equations (16) and (26), we set ChM{g( ˜̃κ1, ˜̃κ2, · · · , ˜̃κn) ≥
x} = 1−

∫ 1
0 Cr{g(ζ̃1, ζ̃2, · · · , ζ̃n) ≤ x}dβ. Then, following from Theorem 8, a similar pro-

cess adopted in Theorems 11 and 12 may prove this case.

E[ ˜̃κ] =
∫ +∞

0
ChM{g( ˜̃κ1, ˜̃κ2, · · · , ˜̃κn) ≥ x}dx−

∫ 0

−∞
ChM{g( ˜̃κ1, ˜̃κ2, · · · , ˜̃κn) ≤ x}dx

=
∫ +∞

0

[
1−

∫ 1

0
Cr{g(ζ̃1, ζ̃2, · · · , ζ̃n) ≤ x}dβ

]
dx

−
∫ 0

−∞

∫ 1

0
Cr{g(ζ̃1, ζ̃2, · · · , ζ̃n) ≤ x}dβdx

=
∫ 1

0

[∫ +∞

0
Cr{g(ζ̃1, ζ̃2, · · · , ζ̃n) ≥ x}dx−

∫ 0

−∞
Cr{g(ζ̃1, ζ̃2, · · · , ζ̃n) ≤ x}dx

]
dβ

=
∫ 1

0
E[g(ζ̃1, ζ̃2, · · · , ζ̃n)]dβ

=
∫ 1

0

∫ 1

0
f (Υ−1

ζ̃1

(α), · · · , Υ−1
ζ̃ t

(α), Υ−1
ζ̃ t+1

(1− α), · · · , Υ−1
ζ̃n

(1− α))dαdβ.

Thus, Equation (42) is naturally obtained.

Remark 7. Suppose that ˜̃κ1, ˜̃κ2, · · · , ˜̃κn are independent regular bifuzzy variables. Then,

(i) according to the strictly monotone definition of the function, if g(s1, s2, · · · , sn) is strictly
increasing with reference to s1, s2, · · · , sn, we have

E[g( ˜̃κ1, ˜̃κ2, · · · , ˜̃κn)] =
∫ 1

0

∫ 1

0
f (Υ−1

ζ̃1

(α), Υ−1
ζ̃2

(α), · · · , Υ−1
ζ̃n

(α))dαdβ, (44)

where ζ̃ i is a secondary fuzzy number of ˜̃κi, expressed as (Υ−1
κ̃i

(β), ιi, υi)Li Ri , with respect to
β, for i = 1, 2, · · · , n;

(ii) if g(s1, s2, · · · , sn) is strictly decreasing with reference to s1, s2, · · · , sn, we have

E[g( ˜̃κ1, ˜̃κ2, · · · , ˜̃κn)] =
∫ 1

0

∫ 1

0
f (Υ−1

ζ̃1

(1− α), Υ−1
ζ̃2

(1− α), · · · , Υ−1
ζ̃n

(1− α))dαdβ, (45)

where ζ̃ i is a secondary fuzzy number of ˜̃κi, expressed as (Υ−1
κ̃i

(1− β), ιi, υi)Li Ri , with respect
to β, for i = 1, 2, · · · , n.

Example 15. Assume that ˜̃κ1 and ˜̃κ2 are two independent regular bifuzzy variables, and the inverse
credibility distributions of their primary fuzzy numbers are described as Υ−1

κ̃1
and Υ−1

κ̃2
, respectively.

If we denote the function g1(x1, x2) = x1 − x2, following from Theorem 13, the expected value of
g1( ˜̃κ1, ˜̃κ2) is

E[g1( ˜̃κ1, ˜̃κ2)] =
∫ 1

0

∫ 1

0
(Υ−1

ζ̃1

(α)− Υ−1
ζ̃2

(1− α))dαdβ. (46)

For Example 11, we have ζ̃1 = T (2β, 2β + 1, 2β + 2) and ζ̃2 = T (4− 2β, 5− 2β, 6− 2β)
with respect to β. Therefore, the equations Υ−1

ζ̃1

(α) = 2β + 2α and Υ−1
ζ̃2

(1− α) = 6− 2β− 2α

can be derived via Equation (7), respectively. Then, the expected value of g1( ˜̃κ1, ˜̃κ2) is formulated as
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E[g1( ˜̃κ1, ˜̃κ2)] =
∫ 1

0

∫ 1

0
((2β + 2α)− (6− 2β− 2α))dαdβ = 2. (47)

Example 16. Assume that ˜̃κ1 and ˜̃κ2 are two independent regular bifuzzy variables, and the inverse
credibility distributions of their primary fuzzy numbers are described as Υ−1

κ̃1
and Υ−1

κ̃2
, respectively.

Denote the function g2(x1, x2) = x1/x2. For x1 ≥ 0 and x2 > 0, g2(x1, x2) is strictly increasing
with regard to x1 and strictly decreasing with regard to x2. Therefore, if ˜̃κ1 is non-negative and ˜̃κ2
is positive, then g2( ˜̃κ1, ˜̃κ2) has the expected value

E[g2( ˜̃κ1, ˜̃κ2)] =
∫ 1

0

∫ 1

0

Υ−1
ζ̃1

(α)

Υ−1
ζ̃2

(1− α)
dαdβ. (48)

Accordingly, for Example 12, it is obvious that

E[g2( ˜̃κ1, ˜̃κ2)] =
∫ 1

0

∫ 1

0

2β + 2α

6− 2β− 2α
dαdβ = 9 ln 3− 12 ln 2− 1. (49)

Furthermore, the linearity of the expected value operator of independent bifuzzy
variables defined in Liu [6] can be mathematically proved.

Theorem 14. Suppose that ˜̃κ1 and ˜̃κ2 are two independent regular bifuzzy variables. If E[ ˜̃κ1] and
E[ ˜̃κ2], the expected values of ˜̃κ1 and ˜̃κ2, are finite, then for any two real numbers m and n, we have

E[m ˜̃κ1 + n ˜̃κ2] = mE[ ˜̃κ1] + nE[ ˜̃κ2]. (50)

Proof of Theorem 14. We only prove the case m ≥ 0 and n ≤ 0. According to Definition 10,
the function m ˜̃κ1 + n ˜̃κ2 is clearly strictly increasing with regard to ˜̃κ1 and strictly decreasing
with regard to ˜̃κ2. Following from Theorem 13, we have

E[m ˜̃κ1 + n ˜̃κ2] =
∫ 1

0

∫ 1

0

[
mΥ−1

ζ̃1

(α) + nΥ−1
ζ̃2

(1− α)

]
dαdβ

= m
∫ 1

0

∫ 1

0
Υ−1

ζ̃1

(α)dαdβ + n
∫ 1

0

∫ 1

0
Υ−1

ζ̃2

(1− α)dαdβ.

Using the substitutions in multiple integrals, the equation∫ 1

0

∫ 1

0
Υ−1

ζ̃2

(1− α)dαdβ =
∫ 1

0

∫ 1

0
Υ−1

ˆ̃ζ2
(α)dαdβ,

where ζ̃2 = (Υ−1
κ̃2

(1− β), ι2, υ2)LR and ˆ̃ζ2 = (Υ−1
κ̃2

(β), ι2, υ2)LR, holds. Seeing Theorem 12,

that is exactly the expected value of ˜̃κ2. Therefore, we have

E[m ˜̃κ1 + n ˜̃κ2] = mE[ ˜̃κ1] + nE[ ˜̃κ2],

and similar proof procedures can be utilized to verify the other situations, i.e., m ≥ 0 and
n ≥ 0, m ≤ 0 and n ≥ 0, and m ≤ 0 and n ≤ 0. Then, this theorem is naturally verified.

5. Conclusions

In this paper, we restricted our attention on the special case of bifuzzy variables,
namely regular bifuzzy variables, especially the most frequently used types, e.g., triangular
and exponential regular bifuzzy variables. Two kinds of important measures were investi-
gated in-depth, mean chance and expected value. The major contributions of this research
include the following aspects: (1) the notion of mean chance measure of regular bifuzzy
variables was presented, and some properties were provided; (2) the operational law for
regular bifuzzy variables was proposed, and on this foundation, the mean chance distribu-
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tion of strictly monotone functions of this type of variable was developed; (3) an equivalent
form of the expected value operator was constructed, and some theorems for computing
the expected value of regular bifuzzy variables, as well as their strictly monotone functions,
were also deduced.

Moreover, we believe that the proposed arithmetic operations and operational law are
of great importance for optimization and decision making in the bifuzzy environment. In
uncertain fields, dependent-chance programming, chance-constrained programming, and
the expected value model are three frequently utilized approaches in handling practical
problems, such as the vehicle routing problem, joint replenishment problem, and hub
location problem, etc. Our proposed arithmetic operations enable the implementation of
these programmings with strictly monotone functions and regular bifuzzy variables and
provide a sound theoretical foundation for modeling bifuzzy phenomena, which is also
one of the critical future directions of this research.
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