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Abstract: In this paper, an asymmetric regression model for censored non-negative data based on the
centred exponentiated log-skew-normal and Bernoulli distributions mixture is introduced. To connect
the discrete part with the continuous distribution, the logit link function is used. The parameters
of the model are estimated by using the likelihood maximum method. The score function and the
information matrix are shown in detail. Antibody data from a study of the measles vaccine are used
to illustrate applicability of the proposed model, and it was found the best fit to the data with respect
to an others models used in the literature.

Keywords: centred exponentiated log-skew-normal distribution; censored data; asymmetry two-
part model

1. Introduction

Statistical models for dealing with the issue of random variables with limited or
censored responses have been approached by different authors, standing out among
others, the censored normal (CN) model, widely known in the literature as the Tobit
model, Tobin [1]. The CN or normal Tobit (NT) model is defined from the considering
the random variable yi = max{y∗i , 0}, with y∗i = x>i β + εi, for i = 1, 2, . . . , n, where
β = (β1, β2, . . . , βp)> is a p× 1 unknown parameter vector, xi = (x1i, x2i, . . . , xpi)

> is a
p× 1 vector of known independent variables, and the error term εi ∼ N(0, σ2), i = 1, . . . , n.
This can be written as:

yi =

{
x>i β + εi, if x>i β + εi > 0,
0, otherwise

(1)

The model (1) has been used in applications in various areas of knowledge, often
in situations with excess of zeros in the censoring value; however, the probability of
censoring is not well estimated by the Tobit model since the tails of the data distribution
are heavier than the normal distribution and other assumptions of the error distribution
are not satisfied. A similar situation is presented in the case of data with non-negative
support, where usually log-normal Tobit model (LNT) is used.

In some situations, the degrees of asymmetry and kurtosis of the distribution of the
errors in the model can not be captured by the normal or the log-normal models. In this case
it is not advisable to fit the CN or censored log-normal (CLN) models. To consider more
flexible models, such as the skew-normal (SN) model by Azzalini [2] or the power-normal
(PN) model of Durrans [3] is another solution. In the case of non-negative data, it can be
considered the log-skew-normal alpha-power model by Martínez-Flórez et al. [4] or the
log-power-normal model of Martínez-Flórez et al. [5].
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The Tobit model extension for censored data with high degree of kurtosis was pro-
posed by Arellano-Valle et al. [6], while the case of censored data with high or low degree
of asymmetry was studied by Martínez-Flórez et al. [7], the latter is known as the Tobit
power-normal model (TPN). When the censored part does not fit well with the Tobit
model, mixture of distributions can be used, in this situation as in the usual censored
distribution, the mean and the variance of the response variable is associated with the
linear predictor. In addition, the proportion of censored data can be explained by using the
binomial model with the logit or probit link function. This type of model has been used
in many areas of knowledge such as economics, biology, agriculture, medicine, among
others. Cragg [8], Moulton and Halsey [9,10] and Chai and Bailey [11], for example, use a
mixture of distribution (which is denoted by “/ ”) between a Bernoulli distribution and
other continuous distribution.

The probability density function (PDF) of the random variable Yi proposed by Cragg [8],
which is often called “two-part model”, is given by

g(yi) = pi Ii + (1− pi) f (yi)(1− Ii), (2)

where pi is the probability that determines the relative contribution made by the point
mass distribution to the overall mixture distribution, f is a density function with positive
support and Ii is an indicator variable given by Ii = 0 if yi > T and Ii = 1 if yi ≤ T.
The model (2) is more informative than the Tobit model because the two components are
determined by different stochastic processes, see Chai and Bailey [11].

The two-part model of Cragg [8] was generalized by Moulton and Halsey [9], by in-
troducing a new model in which the response limit can result from a censorship interval of
the PDF f , that is, a zero point can result in mass or may be a value of f in the censorship
interval (0, T) , where T is constant. Specifically, the model proposed by [9] is represented
by the PDF given by

gF (yi) =
[
pi + (1− pi)F(T)

]
Ii + (1− pi) f (yi)(1− Ii), (3)

where F(·) is the cumulative distribution function (CDF) associated to the PDF f (·). In par-
ticular, a Bernoulli variable can be used with the logit or probit link functions, see Cragg [8].
Moulton and Halsey [9] consider asymmetric log-normal and log-gamma data, while the
log-skew-normal model (LSN) and log-power-normal model (LPN) with limited response
are studied by Chai and Bailey [11] and Martínez-Flórez et al. [5], respectively.

2. Models for Asymmetric Data

Important proposals to modelling data with high/low degree of asymmetry and/or
kurtosis in relation to the normal model have arisen in recent decades. Two of these
proposals widely discussed in the statistical literature are the SN model of Azzalini [2] and
PN model by Durrans [3]. The SN model, with asymmetry parameter λ, which is denoted
by Z ∼ SN(λ) has PDF given by

φSN(z; λ) = 2φ(z)Φ(λz), z ∈ R, (4)

where λ ∈ R and, φ(·) and Φ(·) represent the PDF and CDF of the standard normal distri-
bution, respectively. The λ parameter controls the asymmetry in the model. The associated
CDF to the PDF in (4) is given by

ΦSN(z; λ) =
∫ z

−∞
φSN(t; λ)dt = Φ(z)− 2T(z, λ), z ∈ R, (5)

where T(·, λ) is the Owen’s function, see [12]. The PN model is denoted by Z ∼ PN(α)
and has the PDF given by

fPN(z; α) = αφ(z){Φ(z)}α−1, z ∈ R, (6)
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where α ∈ R+ is a shape parameter. The model (6) was introduced by Durrans [3] and it
has had multiple applications in the situations where the data distribution presents high or
low asymmetry and/or kurtosis, which can not be fitted by the normal distribution.

The extension to the location and scale version of the SN model is obtained by ap-
plying the transformation Y = ξ + ηZ, where ξ ∈ R is a location parameter, η > 0 is a
scale parameter, and Z ∼ SN(λ). This is denoted by Y ∼ SN(ξ, η, λ). In a similar way,
the extension of the location and scale version of the PN model is obtained, which is
denoted by Y ∼ PN(ξ, η, α).

A special feature of the SN and PN models is that both containing the normal model
as special case when λ = 0 and α = 1, respectively, highlighting that the SN model has
a range of asymmetry higher than the PN model, and at the same time, the PN model
has a higher range of kurtosis than the SN model, see Pewsey et al. [13]. Therefore, it is
natural to expect that respective extensions for positive data have similar characteristics.
Martínez-Flórez et al. [5] studied the extension of the PN model to the case of positive data
and they denoted it the log-power-normal (LPN) model, while the extension of the SN
distribution for positive data was studied by Azzalini et al. [14], which is denominated the
log-skew-normal (LSN) model.

The main difficult with the SN model, which does not present the PN model is that,
for λ = 0 the Fisher information matrix for the parameters vector (ξ, η, λ) is singular, see
Azzalini [2]. Hence, the regularity conditions are not satisfied in general and the usual√

n-property for the maximum likelihood estimator is kept only for λ 6= 0. The information
matrix problem for the case λ = 0 has been addressed by using the methodology proposed
by Rotnitzky et al. [15], who devised an iterative algorithm that under certain conditions
leads to a non-singular information matrix for λ = 0.

The singularity of the Fisher information matrix has been found in multiple extensions
of SN model, such as the LSN model, the skew-exponential power distribution, DiCiccio
and Monti [16] and the skew-flexible-normal model, Gómez et al. [17], to name some of
these cases. The log-skew-normal alpha-power (LSNAP) distribution is an extension of
LPN model, which is obtained by replacing in the LPN model, the PDF and the CDF of
the normal distribution for the PDF and the CDF of the SN distribution. This proposal
is based on the non-singularity property of the information matrix of the PN model,
Pewsey et al. [13], and the flexibility in terms of asymmetry in the SN model, Azzalini [2].
So, it is natural that a new model based on these two distributions can fit the distributions
with higher or lower asymmetry than the fitted by the LSN model and/or higher or lower
kurtosis than the fitted by the LPN model.

The PDF of the location and scale version of a random variable with LSNAP distribu-
tion is given by

fLSNAP(y; ξ, η, λ, α) =
α

ηy
φSN(z; λ)

[
ΦSN(z; λ)

]α−1, y ∈ R+, (7)

where z = (log(y)− ξ)/η, with ξ ∈ R being the location parameter and, η > 0 the scale
parameter. The functions φSN(·) and ΦSN(·) are the PDF and CDF of the SN distribution
given in (4) and (5), respectively. The LSPN distribution is represented by the notation
Y ∼ LSNAP(ξ, η, λ, α). One can see that, the model in (7) contains as special cases, the
log-normal (LN) model when λ = 0 and α = 1; the LSN model when α = 1, and the LPN
model when λ = 0. Thus, the LSPN model is more flexible in terms of asymmetry and
kurtosis than the LN, LSN and LPN models.

The Centred Parametrization of the Skew-Normal Model

Facing the problem of the singularity of the information matrix of the SN model and
the consequences in the estimation process of the parameters when λ = 0, Arellano-Valle
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and Azzalini [18] proposed an alternative parametrization to the SN model of Azzalini [2].
This new parametrization starts from the definition of the variable

Y = µ + σ
Z−E(Z)√

Var(Z)
,

where µ ∈ R and σ ∈ R+ are parameters of the random variable Y, and Z ∼ SN(λ).
This representation is called centred parametrization, since E(Y) = µ and Var(Y) = σ2.
The centred parametrization of the SN model is denoted by Y ∼ SNc(µ, σ, γ1), where the
parameters µ ∈ R, σ ∈ R+ and γ1 ∈ (−0.9953, 0.9953), represent the mean, standard
deviation and coefficient of asymmetry of Y, respectively. One can see that, if Z ∼ SN(λ),
then E(Z) = bδ and Var(Z) = 1− (bδ)2, where b =

√
2/π and δ = λ/

√
1 + λ2.

Thus, we have that the random variable Y is allowed to be written in the form
Y = λ1 + λ2Z, which follows a SN distribution of location and scale version denoted by
SN(λ1, λ2, λ), where

λ1 = µ− cσγ1/3
1 , λ2 = σ

√
1 + c2γ2/3

1 and λ =
cγ1/3

1√
b2 + c2(b2 − 1)γ2/3

1

(8)

with c = {2/(4− π)}1/3.
Under the centred parametrization of the SN model, the Fisher information matrix

can be written as Iγ1 = DIλD, where D is a matrix representing the derivative of the
parameters λ1, λ2 and λ of the standard representation, regarding to the new parameters µ,
σ and γ1. In addition, when λ→ 0, the information matrix converges to the diagonal matrix
Σc = diag(σ2, σ2/2, 6), which guarantees the existence and uniqueness of the maximum
likelihood estimator (MLE) of the parameters λ1 and λ2, for each fixed value of λ.

Given the properties of the LSN and LPN models, the Bernoulli/log-skew-normal
(BLSN) and the Bernoulli/log-power-normal (BLPN) mixture models are alternatives to the
Bernoulli/log-normal (BLN) model for the case of positive data when the distribution of the
continuous part presents greater or lower asymmetry and/or kurtosis than the LN model.
Thus, the BLSN and BLPN mixture models are more flexible than the BLN mixture model.
Details of the inferential properties of the MLE for the BSLN mixture model when λ = 0
are not presented by Chai and Bailey [11] , since it is expected that the same difficulties are
arisen in relation to the continuous part that is fitted through the LSN model.

In this paper, we introduced a new model to fit asymmetric data, more flexible than
LN, LSN and LPN models, and with non-singular Fisher information matrix. This model
is obtained by replacing in the LPN model, the normal distribution by the SNc(µ, σ, γ1)
distribution. From the introduced model, a new regression model for censored data is
proposed, which is a mixture of the proposed asymmetric model and a random variable
with logit link function. The new model is more flexible in terms of asymmetry and kurtosis
than the proposed by Moulton and Halsey [9], Chai and Bailey [11] and Martínez-Flórez
et al. [5]. Data from a safety and immunogenicity study of measles vaccine conducted in
Haiti during 1987–1990, see Job et al. [19] are used as an illustration. Here, the goal of the
study was to demonstrate that the higher titer vaccines could effectively immunize infants
as young as 12 months of age.

The rest of the paper is organized as follows. In Section 3, the centred exponenti-
ated log-skew-normal distribution for censored data is presented. A small simulation
study to evaluate the asymptotic properties of the parameter estimators is presented.
In Section 4, the Bernoulli/centred log-skew-normal alpha-power mixture model is intro-
duced. The inference process is carried out by using the maximum likelihood method.
In Section 5, an application with measles vaccine data is presented to illustrate the pro-
posed model.
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3. The Centred Exponentiated Log-Skew-Normal Family of Distribution for
Censored Data

Based on the flexibility and the non-singularity of the Fisher information matrix of
the SNc model, the LPN model is extended to the case of the SNc model. This extension is
denominated the centred exponentiated log-skew-normal (ELSNc) distribution. The PDF
of the ELSNc distribution, with parameters µ, σ, γ1 and α is given by

fELSNc(y; µ, σ, γ1, α) =
α

λ2y
φSN(z; λ){ΦSN(z; λ)}α−1, ∈ R+ (9)

where z =
log(y)−λ1

λ2
and λ1, λ2 and λ defined as in (8). This model is denoted by

ELSNc(µ, σ, γ1, α). It is important to note that ELSNc(µ, σ, γ1, α) ≡ LSNAP(λ1, λ2, λ, α)
with λ1, λ2 and λ defined in (8), that is, the ELSNc model can be assumed as a repara-
metrization of LSNAP model, which corrects the problem of singularity in the Fisher
information matrix. In addition, if γ1 = 0, the LPN(µ, σ, α) model is obtained and, when
α = 1, the centred log-skew-normal model follows, which is denoted by LSNc(µ, σ, γ1).
Some forms of the PDF of the ELSNc distribution are presented in the Figure 1. One can
shown that, LSNc model has non-singular information matrix. Finally, if γ1 = 0 and α = 1,
the log-normal model is obtained, LN(µ, σ2). This shows that the ELSNc model is more
flexible in terms the asymmetry and kurtosis than LN, LSN and LPN models.
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Figure 1. (a) ELSNc(0, 1, 0.75, α) for α = 0.35 (solid line), α = 0.5 (dashed line), α = 0.75 (dotted line),
α = 2 (dotted–dashed line), (b) ELSNc(0, 1,γ1, 2) with γ1 = −0.50 (solid line), γ1 = −0.25 (dashed
line), γ1 = 0.50 (dotted line), γ1 = 0.90 (dotted–dashed line).

The importance of the proposed extension is that the information matrix of the model
is non-singular, since for the parameter vector θ = (µ, σ, γ1, α)>, the information matrix
is given by Iθ = DIλ,αD, where Iλ,α is the information matrix of the model (7) given in
Martínez-Flórez et al. [5] with z = (log(y)− ξ)/η, and

D =


1 −cγ1/3

1 − 1
3 cσγ−2/3

1 0

0
√

1 + c2γ2/3
1

c2σγ−1/3
1

3
√

1+c2γ2/3
1

0

0 0 cb2γ−1/3
1

3(b2+c2(b2−1)γ2/3
1 )

0

0 0 0 1

.
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therefore, when λ → 0 and α = 1 it follows from Azzalini [2] and Pewsey et al. [13] that
the information matrix of the ELSNc model converges to(

Σc Iθ1α

I>θ1α 1

)
where Iθ1,α represents the vector of mixed second derivatives of α and the rests of the
parameters θ1 = (µ, σ, γ1)

>. This turns out to be non-singular matrix, since its columns (or
rows) are linearly independent. Hence, the regularity conditions are satisfied in general and
the usual

√
n-property for the MLE θ̂ of θ is satisfied for all λ and α. This result guarantees

the asymptotic distribution of the MLE for large samples, allowing to make inferences
for the parameters of the ELSNc model, which is an advantage against to the LSN model
whose information matrix is singular for λ = 0.

The Figures 2 and 3 represent of the log-likelihood profiled of the ELSNc(0, 1, 0, 1) ≡
LPN(0, 1, 1) ≡ LSNc(0, 1, 0) ≡ LN(0, 1) distribution for samples sizes 50, 100 and 150. The
graphics show a regularity in the behaviour of the log-likelihood function, which gives
strong evidence for the existence and uniqueness of the MLE.
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Figure 2. Log-likelihood profiled for γ1 assuming ELSNc distribution with samples sizes (a) 50,
(b) 100 and (c) 150 from a simulated LN(0, 1) ≡ ELSNc(0, 1) distribution.
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Figure 3. Log-likelihood profiled for α assuming ELSNc distribution with samples sizes (a) 50, (b) 100
and (c) 150 from a simulated LN(0, 1) ≡ ELSNc(0, 1) distribution.

3.1. The ELSNc Regression Models

Azzalini [2] ensures that the properties of existence and uniqueness of the MLE model
SNc can be extended to the more general models case such as yi = x>i β+ σZi, i = 1, 2, . . . , n,
where xi is a p × 1 vector of covariates, β = (β0, β1, . . . , βp)> is an unknown vector of
regression coefficients and z1, . . . , zn are independent and identically distributed random
variables SN(λ).
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In this section, the location and scale version of the ELSNc(µ, σ, γ1, α) model, is ex-
tended to situations of the regression models, that is, we consider the regression model

log(yi) = x>i β + εi, i = 1, 2, . . . , n, (10)

where εi ∼ ELSNc(0, σ, γ1, α). The model (10) is denominated the centred exponentiated
log-skew-normal regression (ELSNRc) model and is denoted by ELSNRc(β>, σ, γ1, α).
Estimates for the components of the parameters vector (β>, σ, γ1, α)> of the ELSNRc
model can be obtained by using the maximum likelihood method.

To analyse the behaviour of the estimators of the parameters in the ELSNRc model,
we carried out a small Monte Carlo simulation study, so, we analysed the behaviour of the
estimators in the model (10). Since the coefficients βi, for i = 0, 1, . . . , p, have no restrictions
on the values that can be assumed, without loss of generality we took p = 1 and the
particular values β0 = 1.5, β1 = 2.5. Furthermore, without loss of generality, we took
the value of the scale parameter equal to σ = 1.0; however, the following results can be
obtained for any value of the scale parameter from the simple transformation εi = σδi
with δi ∼ ELSNc(0, 1, γ1, α). The values of shape parameter were taken as α = 0.75, 1.5 to
take into account different configurations in the form of the pdf of the random variable
εi. Finally, we took values for the asymmetry parameter γ1 = 0.25, 0.50, 0.75, to take into
account different degrees of asymmetry in the distribution of the data.

To analyse some statistical measures of the MLE, we considered small, moderate and
large sample sizes: n = 60, 70, 80 and 500, and 1000 iterations were performed for each
sample size. The studied characteristics were the bias and the root of the mean square error
(RMSE) of the MLEs of the parameters. All calculations and estimates were obtained by
using optim function of R Development Core Team [20].

Table 1 presents the results of the simulation study, where it can be observed that the
bias (in absolute value) and the RMSE of the MLEs tend to decrease when the sample size
increases, which guarantees the asymptotic convergence of the MLEs. Another important
fact, is the good estimation of the regression coefficients for all sample sizes considered,
with a strong evidence that the model achieves to fit the high levels of skewness and
kurtosis present in the response variable. On the other hand, the near zero values of the
bias for the parameters γ1 and α for large sample sizes (n = 500), the values indicate that
average iterations fences were true parameter value and therefore, there are no problems
of identifiability in the estimation process.

Table 1. Simulation study with 1000 iterations for α = 0.75, 1.5, γ = 0.25, 0.5, 0.75, β0 = 1.5, and
β1 = 2.5, with sample sizes of n = 60, 70, 80 and 500.

β0 = 1.5 β1 = 2.5 α = 0.75 γ1 = 0.25

n Bias RMSE Bias RMSE Bias RMSE Bias RMSE

60 −0.0307 0.5331 0.0019 0.1405 −0.0168 0.3787 0.1614 0.5477
70 −0.0296 0.5073 0.0015 0.1305 −0.0130 0.3581 0.1410 0.5616
80 −0.0170 0.4640 −0.0012 0.1255 −0.0204 0.3342 0.1083 0.4157

500 0.0080 0.1700 0.0011 0.0462 −0.0046 0.1199 0.0068 0.1224

β0 = 1.5 β1 = 2.5 α = 0.75 γ1 = 0.50

n Bias RMSE Bias RMSE Bias RMSE Bias RMSE

60 −0.0568 0.6625 0.0060 0.1384 −0.0048 0.3726 0.2956 1.0945
70 −0.0536 0.6290 −0.0015 0.1276 −0.0205 0.3309 0.2515 0.8024
80 −0.0301 0.6118 0.0031 0.1189 −0.0091 0.3135 0.2018 0.6585

500 0.0209 0.2970 −0.0006 0.0448 0.0023 0.1156 0.0197 0.2412

β0 = 1.5 β1 = 2.5 α = 0.75 γ1 = 0.75

n Bias RMSE Bias RMSE Bias RMSE Bias RMSE

60 −0.0508 0.6767 0.0072 0.1211 0.1848 1.9833 0.3443 1.2177
70 −0.0481 0.67 0.0045 0.1174 0.184 2.0431 0.3243 1.1201
80 −0.0368 0.6483 0.003 0.1047 0.1284 1.0011 0.2918 1.0173

500 −0.0287 0.3889 −0.0015 0.0387 0.0201 0.1639 0.1173 0.4708
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Table 1. Cont.

β0 = 1.5 β1 = 2.5 α = 1.5 γ1 = 0.25

n Bias RMSE Bias RMSE Bias RMSE Bias RMSE

60 −0.0973 0.5842 0.0500 0.1251 0.0519 0.4253 0.8683 3.2124
70 −0.0815 0.5433 0.0102 0.1165 0.0360 0.4137 0.7459 3.0357
80 −0.0716 0.4592 −0.0068 0.1073 0.0081 0.3963 0.5457 2.2340

500 −0.0151 0.1480 0.0013 0.0408 0.0001 0.1253 0.0564 0.2874

β0 = 1.5 β1 = 2.5 α = 1.5 γ1 = 0.5

n Bias RMSE Bias RMSE Bias RMSE Bias RMSE

60 −0.0179 0.6981 −0.0092 0.1203 0.0774 0.6987 1.0013 5.0588
70 0.0173 0.6716 0.0085 0.1153 0.0441 0.4326 0.6727 3.2734
80 0.0154 0.6311 0.0065 0.1057 0.0427 0.3569 0.6311 3.1535

500 −0.0404 0.2858 0.0005 0.0395 0.0190 0.1496 0.1793 0.6559

β0 = 1.5 β1 = 2.5 α = 1.5 γ1 = 0.75

n Bias RMSE Bias RMSE Bias RMSE Bias RMSE

60 0.0789 0.6885 0.0053 0.1218 0.1973 1.4280 0.4340 3.1930
70 0.0784 0.6413 0.0025 0.1134 0.1630 1.0152 0.4212 2.4414
80 0.0623 0.6046 0.0012 0.1059 0.1366 0.6108 0.3358 1.8002

500 0.0316 0.3572 −0.0005 0.0380 0.0723 0.3008 0.0890 0.6704

3.2. The Censored ELSNc Distribution

In this section, the centred ELSNc model for censored positive data is introduced.
Suppose that random variable Y∗ follows a ELSNc(µ, σ, λ, α) model, and let Y∗1 , Y∗2 , . . . , Y∗n
a random sample of size n, where only those values of Y∗ greater than constant T are
recorded; and for values Y∗ ≤ T only the value T is recorded. The observed values, which
we denote by Yi can be written as

Yi =

{
T, if Y∗i ≤ T,
Y∗i , if Y∗i > T.

The PDF of Yi is

Pr(Yi = T) = Pr(Y∗i ≤ T) = {ΦSN(tc; λ)}α, if Yi = T,

Yi ∼ ELSNc(µ, σ, λ, α), if Yi > T,
(11)

where tc =
log(T)−λ1

λ2
, with λ, λ1 y λ2 defined in (8). This model is represented by the

notation Yi ∼ CELSNc(µ, σ, γ1, α). One can see that, if γ1 = 0 and α = 1, the CELSNc
distribution is identical to the log-normal Tobit model, see Moulton and Halsey [9]. This
shows that the CELSNc model is much more flexible than the log-normal Tobit model.
Furthermore, for α = 1, the centred LSN model for censored data follows, while for γ1 = 0
the censored LPN model of Martínez-Flórez et al. [5] is obtained.

Extensions of the CELSNc model to the case of regression models are defined in the
same way, by assuming εi ∼ ELSNc(0, σ, γ1, α), and defining

tci =
log(T)− x>i β + cσγ1/3

1
λ2

and ti =
log(yi)− x>i β + cσγ1/3

1
λ2

, (12)

with λ2 defined as in (8).

4. The Bernoulli/ Centred Log-Skew-Normal Alpha-Power Mixture Model

This section aims to make an extension of the generalized two-part model presented
by Moulton and Halsey [9], where the Logit/Log-normal model is proposed.
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4.1. The Logit/Centred Log-Skew-Normal Alpha-Power Model

The extension of the Moulton and Halsey [9] model to the case of the ELSNc distri-
bution is obtained by following Martínez-Flórez et al. [5]. We assume the existence of
two random variables which define two different stochastic processes, D with Bernoulli
distribution and Y with ELSNc distribution. According to the model (3), the PDF is given by

gC(yi) =
(

p0i + (1− p0i){ΦSN(tci; λ)}α
)Ii
(
(1− p0i)

α

λ2yi
φSN(ti; λ){ΦSN(ti; λ)}α−1

)1−Ii

where λ2 and λ were defined in Equation (8).
One can get a more informative model if covariates are introduced to explain the

response variable Y and covariates to explain the associated distribution to censored part,
that is, the random variable D. Thus, we consider two sets of covariates,

• If Ii = 0, i.e., the non-censored part, the covariates vector will be denoted by x(2)i =
(1, X2i1, X2i2, . . . , X2iq0)

> with the parameter vector given by β(2) = (β20, β21, . . . , β2q0)
>.

• If Ii = 1 and Yi = T, i.e., the censored part, the covariates vector will be de-
noted by x(1)i = (1, X1i1, X1i2, . . . , X1iq1)

> with the parameter vector given by β(1) =

(β10, β11, . . . , β1q1)
>.

If Ii = 1 and Yi < T, we will also have an associated distribution; however, in this case
is assumed that there is no observations for Yi < T due the censorship. For the variable D,
we consider the logit link function, so that

logit
(

P[D = 1 | x(1)]
)
= x>(1)β(1),

then, we have

p0i =
(

1 + exp
(
x>(1)iβ(1)

))−1
,

For non-censored part is considered

Yi ∼ ELSNc(x>(2)iβ(2), σ2, γ1, α), Yi > T. (13)

The model (13) is a generalization of the models of Martínez-Flórez et al. [5], Moul-
ton and Halsey [9] and Chai and Bailey [11]. It is denominated the Bernoulli/centred
exponentiated log-skew-normal mixture model, and it will be represented by the notation
Yi ∼ BELSNMc(β(1), β(2), σ, γ1, α).

One can see that, when γ1 = 0, the BELSNMc model is identical to the Logit/log-
power-normal (logit/LPN) mixture model, for α = 1, the BELSNMc model is identical
to the Logit/centred log-skew-normal (Logit/LSNc) mixture model, γ1 = 0 and α = 1,
the BELSNMc model is identical to the Logit/log-normal (Logit/LN) mixture model, see
Martínez-Flórez et al. [5], Chai and Bailey [11] and Moulton and Halsey [9]. It can be
concluded from the above results and the characteristics of the ELSNc model to fit positive
data with higher (or lower) degree of asymmetry and kurtosis than LPN and LSN models,
that, the BELSNMc model is a great extension of the logit/log-normal model. This new
distribution turns out to be more flexible in terms of asymmetry and kurtosis than the
models of Moulton and Halsey [9], Chai and Bailey [11] and Martínez-Flórez et al. [5],
becoming a great alternative to censored asymmetric positive data or distributions with
excess of zeros.

Is necessary to emphasize that β̂(2)0 is the biased estimation for the intercept in the
regression model. In fact, since E(Y | Y > 0) 6= Xβ, then, to correct the bias, it is
necessary to calculate β̂∗(2)0 = β̂(2)0 + Ê(ê), where E(e) = αη

∫ 1
0 ΦISN(y)yα−1dy, where

ΦISN(·) represents the inverse function of the SNc distribution ΦSN(·).
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4.2. Fitting Model

The parameters vector θ = (β>(1), β>(2), σ, γ1, α)> for the BELSNMc model can be
estimated by using the maximum likelihood method. The log-likelihood function based on
a random sample Y1, Y2, . . . , Yn, with Yi ∼ BELSNMc(θ), given X(1), X(2) is given by

`(θ; X(1), X(2), Y) = ∑
i

Ii log
[
1 + exp

(
x>(1)iβ(1)

)
{ΦSN(tci; λ)}α

]
+ ∑

i
(1− Ii)

[
log(α)− log(λ2yi) + x>(1)iβ(1)

+ log{φSN(ti; λ)}+ (α− 1) log{ΦSN(ti; λ)}
]

−∑
i

log
{

1 + exp
(

x>(1)iβ(1)

)}
,

(14)

where tci and ti are as defined in (12). The equations scores obtained by equating the score
function to zero are given by (for j = 1, 2, . . . , q1 and k = 1, 2, . . . , q0).

−∑
i

Ii
x1ij exp(x>(1)iβ(1))

1 + exp(x>
(1)iβ(1)){ΦSN(tci; λ)}α

1− {ΦSN(tci; λ)}α

1 + exp(x>
(1)iβ(1))

+ ∑
i

x1ij

1 + exp(x>
(1)iβ(1))

= 0, for j = 1, 2, . . . , q1

−∑
i

Ii
x2ik exp(x>(1)iβ(1))φPSN(tci; λ, α)

1 + exp(x>
(1)iβ(1)){ΦSN(tci; λ)}α

− 1
λ2

∑
i
(1− Ii)x2ik{ti + λω(λti) + (α− 1)ωλ(ti)} = 0, for k = 1, 2, . . . , q0

−∑
i

Ii
tci exp(x>(1)iβ(1))φPSN(tci; λ, α)

1 + exp(x>
(1)iβ(1)){ΦSN(tci; λ)}α

− 1
λ2

∑
i
(1− Ii)×

(
1− t2

i + λtiω(λti) + (α− 1)tiωλ(ti)
)
= 0

−
√

2
π

1
1 + λ2 ∑

i
Ii

exp(x>(1)iβ(1)){ΦSN(tci; λ)}α−1φ
(√

1 + λ2tci

)
1 + exp(x>

(1)iβ(1)){ΦSN(tci; λ)}α

+ ∑
i
(1− Ii)

(
tiω(λti)−

√
2
π

α− 1
1 + λ2 νλ(ti)

)
= 0

∑
i

Ii
exp(x>(1)iβ(1)){ΦSN(tci; λ)}α log{ΦSN(tci; λ)}

1 + exp(x>
(1)iβ(1)){ΦSN(tci; λ)}α

+ ∑
i
(1− Ii)

(
1
α
+ log{ΦSN(ti; λ)}

)
= 0

where ω(t) = φ(t)/Φ(t), ωλ(t) = φSN(t; λ)/ΦSN(t; λ), νλ(t) = φ(
√

1 + λ2t)/ΦSN(t; λ)
and φPSN(·; λ, α) is the PDF of the ELSNc model. The system of score equations has no
closed form solution and have to be obtained numerically. The solutions of this system
of equations provide the MLE of the parameters vector (β>(1), β>(2), σ, γ1, α)>. The log-
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likelihood function can be maximized by implementing some statistical packages such as
R Development Core Team [20], which has the x-Optim, optim, nlem, x-maxLIK or maxLIK
commands to maximize non-linear functions.

The initial values for the parameters β(1) and β(2) can be obtained from the fit of a
Tobit model, while, initial values for γ1 and α can be obtained by fitting the ELSNc model
for the response variable Y. The standard errors of the MLE can be obtained as the square
root of the inverse of the observed information matrix J(·), which converges asymptotically
to the Fisher information matrix, this matrix is given by

J(β>(1), β>(2), σ, γ1, α) = B> J(β>(1), β>(2), η, λ, α)B

where the elements of the J(β>(1), β>(2), η, λ, α) matrix are in the Appendix A, and

B =



Iq1+1 0q1+1 0(q1+1)×q0
0q1+1 0q1+1 0q1+1

0>q1+1 1 0>q0
−cγ1/3

1 − 1
3 cσγ−2/3

1 0
0q0×(q1+1) 0q0 Iq0 0q0 0q0 0q0

0>q1+1 0 0>q0

√
1 + c2γ2/3

1
c2σγ−1/3

1

3
√

1+c2γ2/3
1

0

0>q1+1 0 0>q0
0 cb2γ−1/3

1
3(b2+c2(b2−1)γ2/3

1 )
0

0>q1+1 0 0>q0
0 0 1


.

Then, the Fisher information matrix is given by

I(β>(1), β>(2), σ, γ1, α) = E
(

J(β>(1), β>(2), σ, γ1, α)
)
= B> I(β>(1), β>(2), λ2, λ, α)B,

where
I
(

β>(1), β>(2), λ2, λ, α
)
= E

(
J
(

β>(1), β>(2), λ2, λ, α
))

. (15)

From the information matrix in (15), it can be obtained the asymptotic distribution
of the MLE for large samples with covariance matrix Σ = (I(β>(1), β>(2), σ, γ1, α))−1. Confi-
dence intervals for the model parameters can be obtained from the MLE and the standard
errors of the MLE.

5. An Application to Antibody Response to Vaccine

Data from a safety and immunogenicity study of measles vaccine conducted in Haiti
during 1987–1990 are used as an illustration, see Job et al. [19]. In this case, the goal of
the study was to demonstrate that the higher titer vaccines could effectively immunize
infants as young as 12 months of age. The response variable was neutralization antibody
and the covariates involved in the study were: EZ (vaccine type; 0 =: Schwarz, 1 =:
Edmonston-Zagreb), HI (vaccine dose; 0 =: medium, 1 =: high) and FEM (gender; 0 =:
male, 1 =: female). The sample size was 330 children, of which 86 were at or below the
lower detection limit, (LDL). The number of expected zeros by considering the usual Tobit
model was four. The response variable was the neutralization antibody, with LDL equal
to 0.1 international units (UI), and the covariates involved in the study were encoded as
EZ = X1 , HI = X2 and FEM = X3.

The high asymmetry degree for values above 0.1 indicated by the sample asymmetry
coefficient

(√
b1
)

reveals that it seems worthwhile trying to fit an asymmetric model for
this data set, so we fit the Moulton and Halsey [9], Martínez-Flórez et al. [4] and the centred
version of the Chai and Bailey [11] models, with X(1) = X(2) = (X1, X2, X3)

>, and the
results are presented in Table 2. The parameter estimates of the fitted models were obtained
by using the optim function of R Development Core Team [20]. The source codes of the
fitted models can be obtained by requesting them by email to the authors.
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Table 2. Estimated parameters (standard error) of the fitted model.

Density AIC β10 β11 β12 γ1/α β20 β23

Logit/LN 986.19 0.652 0.808 0.422 −0.401 0.264
(0.220) (0.304) (0.288) (0.112) (0.155)

Logit/LSNc 944.15 0.503 0.648 0.974 0.899 −0.284 0.108
(0.203) (0.277) (0.303) (0.537) (0.059) (0.079)

Logit/LPN 976.11 0.640 0.765 0.357 9.660 −3.030 0.221
(0.209) (0.280) (0.269) (4.306) (0.607) (0.138)

We also fit the BELSNMc model, initially only with covariates in the continuous part
and subsequently with covariates in the two components. The fitted models are shown in
Table 3. To compare the fitted models, we computed the Akaike information criterion [21],
namely AIC = −2`(·) + 2p, where p is the number of parameters for the considered model.
The best model is the one with the smallest AIC value.

Table 3. Parameter estimation (standard error) and model fitting.

AIC β10 β11 β12 β20 β21 β22 β23 γ1 α

985.21 1.106 – – −1.786 −0.166 0.115 0.176 0.291 4.281
(0.134) – – (0.633) (0.136) (0.138) (0.137) (0.432) (1.459)

938.32 0.349 0.975 0.689 0.045 – – 0.156 0.923 0.613
(0.199) (0.274) (0.295) (0.101) – – (0.084) (0.407) (0.090)

According to the AIC criterion, the best fit is presented by the BELSNMc model. To cor-
roborate the good performance of the BELSNMc model, the proportion of the data set com-
ing from units with low response was estimated. For the BELSNMc model without covari-
ates the estimator of the Bernoulli intercept is 1.106, so that the estimator of the proportion
of observations at or below the detection limit is 100× 1/[1 + exp(1.106)] = 24.86% which,
compared to the observed 26.1%, indicates good agreement with the proposed model.

We also consider the problem of testing the null hypothesis of no difference between
the BELSNMc model and the censored log-normal (CLN) model, i.e.,

H0 : (γ1, α) = (0, 1) versus H1 : (γ1, α) 6= (0, 1)

We use the likelihood ratio statistic

Λ =
LCLN

(
θ̂
)

LBELSNMc

(
θ̂
) .

where LF(·) is the likelihood function under model F. Numerical evaluations indicate that

−2 log(Λ) = −2(−511.18 + 461.36) = 99.63,

which is greater than the 5% chi-square critical value with two degree of freedom,
χ2

2,5% = 5.991. Hence, the null hypothesis is rejected and we conclude that the BELSNMc
fits the data better than the logit/LN model.

Hypothesis testing for the Logit/LPN (CLPN) and Logit/LSNc (CLSNc) models
against the BELSNMc model are also conducted. Formally the hypotheses

H01 : γ1 = 0 versus H11 : γ1 6= 0, and H02 : α = 1 versus H12 : α 6= 1

can be tested by using the statistics

Λ1 =
LCLPN(θ̂)

LBELSNMc(θ̂)
and Λ2 =

LCLSNc(θ̂)

LBELSNMc(θ̂)
.
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After numerical evaluations, we obtained

−2 log(Λ1) = 39.39 and − 2 log(Λ2) = 11.66,

which are greater than the 5% chi-square critical value with one degree of freedom,
χ2

1,5% = 3.8414. The null hypothesis are rejected and we conclude that the BELSNMc
model fits the data better than the Logit/LPN and Logit/LSNc models.

Using distributions LN, LPN and ELSNc for the continuous part, the scaled residuals
ei = (log(yi)− x>(2)i β̂(2))/η̂ are evaluated and presented in the Figures 4 and 5.

The figures reveal good performance of the BELSNMc distribution, further indicating
that it is a viable alternative for asymmetric data with censored responses.
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Figure 4. Histogram of the scaled residuals ei for (a) LN model, (b) LPN model, (c) ELSNc model.
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Figure 5. QQ-plots of the scaled residuals ei for (a) LN model, (b) LPN model, (c) ELSNc model.

6. Final Discussion

In this paper, a more flexible model than the Logit/LN, Logit/LSN and Logit/LPN
distributions is proposed. The new model is able to fit data with greater degree asymmetry
and kurtosis than the Moulton and Halsey [9], Chai and Bailey [11] and Martínez-Flórez
et al. [5] models. The score function and the maximum likelihood estimator (MLE) of
the model parameters are presented. A small Monte Carlo simulation study carried out
showed a good performance of the MLE. An illustration with safety and immunogenicity
data was presented in which the BELSNMc model makes a better fit with respect to the
Logit/LN, Logit/LSN and Logit/LPN models.

Among the main advantages that can be seen from the proposed models, there is
greater flexibility with respect to the log-normal (log-Tobit), log-SN and log-PN models.
On the other hand, the logit link function allows us to estimate the point mass probability
with greater precision compared to the Tobit and log-Tobit models. As a disadvantage, the
number of parameters in the model—although making it more flexible—also make it less
parsimonious. However, even though the model is less parsimonious, it continues to be a
good proposal, especially in cases where the asymmetry and kurtosis indices are high.
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Appendix A

Letting:
ω(t) = φ(t)/Φ(t), ωλ(t) = φSN(t; λ)/ΦSN(t; λ), νλ(t) = φ(

√
1 + λ2t)/ΦSN(t; λ), the ele-

ments of the observed information matrix J(β>(1), β>(2), λ2, λ, α), denoted jβ(1)j β(1)j′
, jβ(2)k β(1)j

,
. . . , jαα, are given by

jβ(1)j β(1)j′
= −∑ Ii

x1ijx1ij′ exp(x>(1)iβ(1)){ΦSN(tci; λ)}α[
1 + exp(x>

(1)iβ(1)){ΦSN(tci; λ)}α
]2 + ∑

i

x1ijx1ij′ exp(x>(1)iβ(1)){
1 + exp(x>

(1)iβ(1))
}2

jβ(1)j β(2)k
= ∑

i
Ii

x1ijx2ik exp(x>(1)iβ(1))φPSN(tci; λ, α)[
1 + exp(x>

(1)iβ(1)){ΦSN(tci; λ)}α
]2

jηβ(1)j
= ∑

i
Ii

x1ijtci exp(x>(1)iβ(1))φPSN(tci; λ, α)[
1 + exp(x>

(1)iβ(1)){ΦSN(tci; λ)}α
]2

jλβ(1)j
=

√
2
π

α

1 + λ2 ∑
i

Ii

x1ij exp(x>(1)iβ(1)){ΦSN(tci; λ)}α−1φ
(√

1 + λ2tci

)
[
1 + exp(x>

(1)iβ(1)){ΦSN(tci; λ)}α
]2

jαβ(1)j
= −∑

i
Ii

x1ij exp(x>(1)iβ(1)){ΦSN(tci; λ)}α log{ΦSN(tci; λ)}[
1 + exp(x>

(1)iβ(1)){ΦSN(tci; λ)}α
]2
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jβ(2)k β(2)k′
=

1
λ2

∑
i

Ii
x2ikx2ik′ exp(x>(1)iβ(1))φPSN(tci; λ, α)

1 + exp(x>
(1)iβ(1)){ΦSN(tci; λ)}α

[
tci − (α− 1)ωλ(ti)

]

−
√

2
π

αλ

λ2
∑

i
Ii

x2ikx2ik′ exp(x>(1)iβ(1))φPSN(tci; λ, α)φ
(√

1 + λ2ti

)(
ΦSN(tci; λ)

)α−1

1 + exp(x>
(1)iβ(1)){ΦSN(tci; λ)}α

+ ∑
i

Iix2ikx2ik′

[
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