
symmetryS S

Article

Iterants, Majorana Fermions and the Majorana-Dirac Equation

Louis H. Kauffman 1,2

����������
�������

Citation: Kauffman, L.H. Iterants,

Majorana Fermions and the

Majorana-Dirac Equation. Symmetry

2021, 13, 1373. https://doi.org/

10.3390/sym13081373

Academic Editor: Peter Rowlands

Received: 8 April 2021

Accepted: 29 June 2021

Published: 28 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago,
851 South Morgan Street, Chicago, IL 60607-7045, USA; kauffman@uic.edu

2 Department of Mechanics and Mathematics, Novosibirsk State University, 630090 Novosibirsk, Russia

Abstract: This paper explains a method of constructing algebras, starting with the properties of
discrimination in elementary discrete systems. We show how to use points of view about these
systems to construct what we call iterant algebras and how these algebras naturally give rise to the
complex numbers, Clifford algebras and matrix algebras. The paper discusses the structure of the
Schrödinger equation, the Dirac equation and the Majorana Dirac equations, finding solutions via
the nilpotent method initiated by Peter Rowlands.
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1. Introduction

The square root of minus one can be seen as an oscillation between plus and minus
one. With this viewpoint, a simplest discrete system corresponds directly to the imaginary
unit. This aspect of the square root of minus one as an iterant is explained below. By
starting with a discrete time series, one has non-commutativity of observations and this
non-commutativity can be formalized in an iterant algebra as defined in Section 3 of this
paper. Iterant algebra generalizes matrix algebra and we shall see that it can be used to
formulate the Lie algebra su(3) for the Standard Model for particle physics and the Clifford
algebra for Majorana Fermions. The present paper is a sequel to [1–15] and it uses material
from these papers. The present paper represents a synthesis of these papers and contains
new material about the relationships of these algebras with the Majorana-Dirac equation.

Distinction and processes arising from distinction are at the base of the described
world. Distinctions are elemental bits of awareness. The world is composed not of things
but processes and observations. It is the purpose of this paper to explore, from this
perspective, a source of algebraic structures that have been important for the development
of both mathematics and physics. We will discuss how basic Clifford algebra comes from
very elementary processes such as an alternation of · · ·+−+−+− · · · and the fact that
one can think of

√
−1 itself as a temporal iterant, a product of an ε and an η where the ε is

the · · · −+−+−+ · · · and the η is a time shift operator. Clifford algebra is at the base of
this mathematical world, and the fermions are composed of these things.

View Figure 1. The discrete process · · · −+−+−+ · · · can be seen as an iteration
of [+1,−1] or as an iteration of [−1,+1]. Along with the structure of ordered pairs [a, b]
and their component-wise addition and multiplication, we shall introduce a time-shifting
operator η so that

η[+1,−1]η = [−1,+1].

Then, letting i = [+1,−1]η, we have

i2 = [+1,−1]η[+1,−1]η = [+1,−1][−1,+1] = [−1,−1] = −1.

Iterants formalize the intuition that i is a ± oscillation that interacts with itself through a
delay of one time-step.
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... +1, -1, +1, -1, +1, -1, +1, -1, ...

[-1,+1] [+1,-1]

Figure 1. Iterants from discrete process.

Section 2 is a discussion of the discrete Schrödinger equation and its relationship
with iterants and with the complex numbers. We see how a discrete variant of the dif-
fusion equation gives rise at once to both the complex numbers (as a summary of the
iterant behaviour of this discretization of diffusion) and the Schrödinger equation as we
know it. The section serves as an introduction to the key ideas in the rest of the paper.
Sections 3 and 4 are an introduction to the algebra of iterants and its relation with the
square root of minus one. Section 4 shows how iterants produce 2× 2 matrix algebra
and the split quaternions. Section 5 studies iterants of arbitrary period. We generalize the
iterant construction to arbitrary finite groups G. We show that by rearranging the multi-
plication table of the group so that the identity element appears on the diagonal, we get a
set of permutation matrices representing the group faithfully as n× n matrices. Section 6
discusses the relationship of iterants with the Artin braid group. Each element of the braid
group has an associated permutation. We generalize iterants so that the group acting on
the vector part of the iterant is the Artin braid group. This leads to relationships with
framed braids and we end the section with a description of a braided iterant formulation
of the particle interaction model of Sundance Bilson-Thompson [16]. Section 7 is about
Majorana Fermion operators and their associated anyonic braiding. This section is key
for this paper in relation to the later sections on the Majorana Dirac equation, as we show
in the later sections that the Clifford algebras of Majorana operators are fundamental for
the structure of solutions to the Majorana-Dirac equation. It is a main point of this paper
to make this connection in the full context of iterants. The connection between solutions
of the Majorana-Dirac equation and Majorana operators will be the subject of our further
research.

Section 8 gives an iterant interpretation of the su(3) Lie algebra for the Standard
Model. Section 9 discusses the Dirac equation and how the nilpotent and the Majorana
operators work in this context. This section provides a link between our work, the work of
Peter Rowlands [17] and with our joint work [1]. We end this section with an expression in
split quaternions for the the Majorana Dirac equation in one dimension of time and three
dimensions of space. The Majorana Dirac equation can be written as follows:

(∂/∂t + η̂η∂/∂x + ε∂/∂y + ε̂η∂/∂z− ε̂η̂ηm)ψ = 0

where η and ε are the simplest generators of iterant algebra with η2 = ε2 = 1 and
ηε + εη = 0, and ε̂, η̂ make a commuting copy of this algebra. Combining the simplest
Clifford algebra with itself is the underlying structure of Majorana Fermions, forming
indeed the underlying structure of all Fermions. The Majorana-Dirac equation is expressed
entirely with real matrices so that it can have solutions over the real numbers. It was
Majorana’s conjecture that such solutions would correspond to particles that were their
own anti-particles. Sections 10 and 11 go on to study the original Majorana-Dirac equation
and variations of involving the algebraic approach in this paper. We show how the nilpotent
method described in Section 9 gives rise to solutions to this equation, hence to fundamental
structures related to Majorana Fermions. This part of the paper reviews our work in [1]
and sets the stage for future work.



Symmetry 2021, 13, 1373 3 of 31

2. Iterants and the Schrödinger Equation

We begin with the Diffusion Equation

∂ψ/∂t = τ∂2ψ/∂x2.

We reformulate this equation as a difference equation in space and time. In writing it as a
difference equation, I shall use dt for a finite increment in time and dx for a finite increment
in space.

(ψt+dt − ψt)/dt = τ(ψt(x− dx)− 2ψt(x) + ψt(x + dx))/(dx)2.

This is equivalent to

(ψt+dt − ψt) =
dt

(dx)2 τ(ψt(x− dx)− 2ψt(x) + ψt(x + dx)),

or to
(ψt+dt − ψt) = κ(ψt(x− dx)− 2ψt(x) + ψt(x + dx)),

where κ = dt
(dx)2 τ, since for the continuum limit to exist we need to assume that dt

(dx)2 is
constant as dt and dx go to zero. We shall use dt = 1 for convenience.
Then the above equation becomes

ψt+1 − ψt = κ(ψt(x− dx)− 2ψt(x) + ψt(x + dx)).

Consider the possibility of putting a “plus or minus” ambiguity into this equation, like so:

∂ψ/∂t = ±κ∂2ψ/∂x2.

The ± coefficient should be lawful not random, for then we can follow an algebraic formu-
lation of the process behind the equation. We shall take ± to mean the alternating sequence

± = · · ·+−+−+−+− · · ·

and time will be discrete. Then the new equation will become a difference equation in
space and time

ψt+1 − ψt = (−1)tκ(ψt(x− dx)− 2ψt(x) + ψt(x + dx)).

We must consider the continuum limit. But in that limit there is no direct meaning for the
parity of the number of time steps

(−1)t.

In the discrete model the wave function ψ divides into parts with even time index ψe and
parts with odd time index ψo. So we can write (thinking of these as the corresponding
discrete equations or as the continuum limits).

∂tψe = κ∂2
xψo

∂tψo = −κ∂2
xψe.

We take the limit of ψe and ψo separately.
Then one can interpret the {±} as the complex number i. Recall that the complex

number i has the property that i2 = −1 so that

i(A + iB) = iA− B

when A and B are real numbers,
i = −1/i,
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and so if i = 1 then i = −1, and if i = −1 then i = 1. So i can be interpreted as oscillating
between +1 and −1, and so we shall regard i as a definition of ±1.

i = ±1.

In fact, when we multiply ii = (±1)(±1), we get −1 because (using this temporal interpre-
tation) i takes a duration to oscillate and when the second term multiplies the first term,
they are shifted by one step, and so we get either (+1)(−1) = −1 or (−1)(+1) = −1. We
formalize this point of view later in the paper.

Now i = ±1 behaves according to these rules, and we can write

ψ = ψe + iψo

so that
i∂tψ = i∂t(ψe + iψo) = i∂tψe − ∂tψo

= iκ∂2
xψo + κ∂2

xψe = κ∂2
x(ψe + iψo)

= κ∂2
xψ.

Thus
i∂ψ/∂t = κ∂2ψ/∂x2.

We have deduced the complex form of the Schrödinger equation as the limit of these dis-
crete systems. In these systems there is a mutual dependency where the temporal variation
of ψe is mediated by the spatial variation of ψo and the temporal variation of ψo is mediated
by the spatial variation of ψe. We arrive at the Schrödinger equation in the context of i = ±
as an iterant.

∂tψe = κ∂2
xψo

∂tψo = −κ∂2
xψe.

ψ = ψe + iψo

i∂ψ/∂t = κ∂2ψ/∂x2.

Remark 1. The discrete recursion, just discussed, can be implemented to approximate solutions to
the Schrödinger equation. A further study of this recursion is intended. This way of thinking about
the Schrödinger equation shows that it is intimately connected with a generalization of the discrete
diffusion process with a parity oscillation that becomes i in the limit. The temporal interpretation of
i indicated here will be given an algebraic context in the body of this paper.

3. Iterants and Idempotents

In this section we give a general context and formalization for the idea that the square
root of negative unity can be regarded as an oscillation between +1 and −1 that is phase
shifted with respect to itself via a time-step in the course of interacting with itself. We
have used this idea in the previous section to motivate a discrete model of the Schrödinger
equation. Here we will take an ordered pair [1,−1] to represent the oscillation and a
permutation operator η to represent the time-step. The permutation operator will have
order two and the property that η[a, b]η = [b, a], effecting the phase shift of the oscillation
[−1,+1] to [+1,−1]. Then we can define i = [−1,+1]η so that

i2 = [−1,+1]η[−1,+1]η = [−1,+1][+1,−1] = [−1,−1] = 1.

The details of this construction are given below. The general form of the construction
involves vectors and permutations. We will use Greek letters for permuation operators.
They are not to be confused with any Greek letters in the previous section.
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An iterant is a sum of elements of the form

[a1, a2, ..., an]σ

where [a1, a2, ..., an] is a vector of scalars (real or complex numbers in most cases) and σ
is an element of the permutation group on n letters. The vectors are sums of elementary
vectors of the form

[0, 0, ...0, 1, 0, ..., 0]σ = eiσ

where the 1 is in the i-th place. The elements ei are the basic idempotents that generate the
iterants with the help of the permutations.

If a = [a1, a2, ..., an], then we let aσ denote the vector with its elements permuted by
the action of σ.

If a and b are vectors then ab denotes the vector where (ab)i = aibi, and a + b denotes
the vector where (a + b)i = ai + bi. Note that we define the usual sum of vectors and also
the product of vectors as term-by-term combinations. Thus, for example,

[a, b, c] + [d, e, f ] = [a + d, b + e, c + f ]

and
[a, b, c][d, e, f ] = [ad, be, c f ].

Then, with vectors combined as above and the usual product (composition) of the permu-
tations, we define products and sums of iterants as shown below.

(aσ)(bτ) = (abσ)στ,

(ka)σ = k(aσ)

for a scalar k, and
(a + b)σ = aσ + bσ.

Iterant algebra is generated by the elements

eiσ

where ei is a vector with a 1 in the i-th place and zeros elsewhere, and σ is an abritrary
element of the symmetric group Sn. We have, by definition, that

eiσ = σej

where σ(j) = i. In this way, multiplication of iterants is defined in terms of the action of the
symmetric group on the vectors. For example, if σ ∈ S3 is the cyclic permutation such that
σ(1) = 2, σ(2) = 3, σ(3) = 1, then e2σ = σe1 since σ(1) = 2. Similarly, [c, b, a]σ = σ[a, b, c]
for the cyclic permutation σ in this paragraph.

By themselves, the elements ei are idempotent (e2
i = 1 for each i)and we have

1 = e1 + · · · en.

The iterant algebra is generated by these combinations of idempotents and permutations.
For example, if η is the order two permutation of two elements, then [a, b]η =

η[a, b]η = [b, a]. Define the “shift" operator η on iterants by the equation

η[a, b] = [b, a]η

with η2 = 1. Think of η as a delay operator, since it shifts the waveform

· · · ababab · · ·
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by one internal time step. We can define

i = [−1, 1]η

and then

i2 = [−1, 1]η[−1, 1]η = [−1, 1][−1, 1]ηη2 = [−1, 1][1,−1] = [−1,−1] = −1.

Complex numbers emerge from iterants. Interpret [−1, 1] as an oscillation between −1
and +1 and η as a temporal shift operator. Then i = [−1, 1]η is time sensitive and its self-
interaction equals minus one. Iterants are a formalization of elementary discrete processes.
Let ε = [−1, 1]. Then i = εη.

We can write a = [1, 0], b = [0, 1] and A = aη, B = bη where η denotes the transposi-
tion so that [x, y]η = η[y, x] and η2 = 1. Then we have

a2 = a, b2 = b, ab = 0, a + b = 1, A2 = 0 = B2, AB = a, BA = b.

This is the mixed idempotent and permutation algebra for n = 2. Then we have

i = B− A

as we can see by

ii = (B− A)(B− A) = AA− AB− BA + BB = −a− b = −1.

This is the beginning of the relationships between idempotents, iterants and Clifford algebras.
We construct an elementary Clifford algebra via

ε = [−1, 1] = b− a

and
η.

Then we have
ε2 = η2 = 1

and
εη + ηε = 0.

Note also that the non-commuting of ε and η is directly related to the interaction of the
idempotents and the permutations.

εη = [−1, 1]η = η[1,−1] = −η[−1, 1] = −ηε.

4. Iterants, Discrete Processes and Matrix Algebra

In this section we relate iterants to matrix algebra. An elementary iterant is a periodic
time series

· · · abababababab · · · .

The elements of the time series can be any mathematically well-defined objects. We
regard ordered pairs [a, b] and [b, a] as abbreviations for the time series or as two points
of view about the series (a first or b first). Call [a, b] an iterant. One has the collection of
transformations of the form T[a, b] = [ka, k−1b] leaving the product ab invariant. This tiny
model contains the seeds of special relativity, and the iterants contain the seeds of matrix
algebra. See [4,5,18–25].

Define products and sums of iterants as follows

[a, b][c, d] = [ac, bd]
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and
[a, b] + [c, d] = [a + c, b + d].

These operations are natural with respect to the structural juxtaposition of iterants:

...abababababab...

...cdcdcdcdcdcd...

Structures combine at the points where they correspond. Time series combine at the times
where they correspond

If • denotes any form of binary compositon for the elements (a,b,...) of iterants, then
we extend • to the iterants themselves by the definition [a, b] • [c, d] = [a • c, b • d].

We now show how the iterant algebra is related to matrix algebra. In order to keep
track of this patterning, lets write

[a, b] + [c, d]η =

(
a c
d b

)
where

[x, y] =
(

x 0
0 y

)
and

η =

(
0 1
1 0

)
Recall the definition of matrix multiplication.(

a c
d b

)(
e g
h f

)
=

(
ae + ch ag + c f
de + bh dg + b f

)
Matrix multiplication is isomorphic with iterant multiplication.

([a, b] + [c, d]η)([e, f ] + [g, h]η) =

[a, b][e, f ] + [c, d]η[g, h]η + [a, b][g, h]η + [c, d]η[e, f ] =

[ae, b f ] + [c, d][h, g] + ([ag, bh] + [c, d][ f , e])η =

[ae, b f ] + [ch, dg] + ([ag, bh] + [c f , de])η =

[ae + ch, dg + b f ] + [ag + c f , de + bh]η

Notation. We have the shift operation η[x, y]η = [y, x] which we shall denote by an overbar
as shown below

[x, y] = [y, x].

Ordinary matrix multiplication can be written in a concise form using the following rules:

ηη = 1

ηQ = Qη

where Q is any two element iterant. Note the correspondence(
a b
c d

)
=

(
a 0
0 d

)(
1 0
0 1

)
+

(
b 0
0 c

)(
0 1
1 0

)
= [a, d]1 + [b, c]η.

This means that [a, d] corresponds to a diagonal matrix.

[a, d] =
(

a 0
0 d

)
,
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η corresponds to the anti-diagonal permutation matrix.

η =

(
0 1
1 0

)
,

and [b, c]η corresponds to the product of a diagonal matrix and the permutation matrix.

[b, c]η =

(
b 0
0 c

)(
0 1
1 0

)
=

(
0 b
c 0

)
.

Note also that

η[c, b] =
(

0 1
1 0

)(
c 0
0 b

)
=

(
0 b
c 0

)
.

This is the matrix interpretation of the equation

[b, c]η = η[c, b].

A two by two matrix is combinatorially the union of the identity pattern (the diagonal)
and the interchange pattern (the antidiagonal). These correspond to the operators 1 and η
for iterants. (

∗ @
@ ∗

)
In the case of complex numbers we represent(

a −b
b a

)
= [a, a] + [−b, b]η = a1 + b[−1, 1]η = a + bi.

The square root of minus one takes the form of the matrix

i = εη = [−1, 1]η =

(
0 −1
1 0

)
.

If we identify the ordered pair (a, b) with a + ib, then this means taking the identification

(a, b) =
(

a −b
b a

)
.

i(a, b) =
(

0 −1
1 0

)(
a −b
b a

)
=

(
−b −a
a −b

)
= b + ia = (−b, a).

In iterant terms we have

i[a, b] = εη[a, b] = [−1, 1][b, a]η = [−b, a]η,

and this corresponds to the matrix equation

i[a, b] =
(

0 −1
1 0

)(
a 0
0 b

)
=

(
0 −b
a 0

)
= [−b, a]η.

More generally, we see that

(A + Bη)(C + Dη) = (AC + BD) + (AD + BC)η

writing the 2× 2 matrix algebra as a system of hypercomplex numbers. Note that

(A + Bη)(A− Bη) = AA− BB
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The formula on the right equals the determinant of the matrix. Thus we define the conjugate
of Z = A + Bη by the formula

Z = A + Bη = A− Bη,

and we have the formula
D(Z) = ZZ

for the determinant D(Z) where

Z = A + Bη =

(
a c
d b

)
where A = [a, b] and B = [c, d]. Note that

AA = [ab, ba] = ab1 = ab,

so that
D(Z) = ab− cd.

Note also that we assume that a, b, c, d are in a commutative base ring.

Note also that for Z as above,

Z = A− Bη =

(
b −c
−d a

)
.

This is the classical adjoint of the matrix Z.
We leave it to the reader to check that for matrix iterants Z and W,

ZZ = ZZ

and that
ZW = WZ

and
Z + W = Z + W.

Note also that
η = −η,

whence
Bη = −Bη = −ηB = ηB.

We can prove that
D(ZW) = D(Z)D(W)

as follows
D(ZW) = ZWZW = ZWW Z = ZZWW = D(Z)D(W).

That WW is in the commutative base ring allows us to remove it from in between the appear-
ance of Z and Z. Iterants as 2× 2 matrices form a direct non-commutative generalization
of the complex numbers.

The split quaternions are the system

{±1,±ε,±η,±i}.
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The quaternions arise directly from the split quaternions once we construct an extra square
root of minus one that commutes with them. Call this extra root of minus one

√
−1. Then

the quaternions are generated by

I =
√
−1ε, J = εη, K =

√
−1η

with
I2 = J2 = K2 = I JK = −1.

In the next section we give a number of other ways to construct the quaternions,
and we show how the iterant point of view is related to matrix representations of the
quaternions such as matrices over the complex numbers in SU(2).

5. Iterants of Arbirtarily High Period

As a next example, consider a waveform of period three.

· · · abcabcabcabcabcabc · · ·

Here we see three viewpoints (depending upon whether one starts at a, b or c).

[a, b, c], [b, c, a], [c, a, b].

The appropriate shift operator is given by the formula

[x, y, z]S = S[z, x, y].

Thus, with T = S2,
[x, y, z]T = T[y, z, x]

and S3 = 1. With this we obtain a closed algebra of iterants whose general element is of the
form

[a, b, c] + [d, e, f ]S + [g, h, k]S2.

in this formalism a, b, c, d, e, f , g, h, k are real or complex numbers. The algebra is denoted
Vect3(R) with the scalars in a commutative ring with unit F. For matrices, M3(F) is the
3× 3 matrix algebra over F.

Lemma 1. Iterant algebra Vect3(F) is isomorphic to the 3× 3 matrix algebra M3((F).

Proof. Map 1 to the matrix  1 0 0
0 1 0
0 0 1

.

Map S to the matrix  0 1 0
0 0 1
1 0 0

,

and map S2 to the matrix  0 0 1
1 0 0
0 1 0

,

Map [x, y, z] to the diagonal matrix  x 0 0
0 y 0
0 0 z

.
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Then it follows that
[a, b, c] + [d, e, f ]S + [g, h, k]S2

maps to the matrix  a d g
h b e
f k c

,

preserving the algebra structure. It follows that Vect3(F) is isomorphic to the full 3× 3
matrix algebra M3(F).

The pattern behind the 3× 3 matrices is held by the symbolic matrix 1 S T
T 1 S
S T 1

.

T occupies positions in the matrix corresponding to a permutation matrix. The letter S
occupies the positions corresponding to its permutation matrix. The 1’s occupy the diagonal
for the an identity matrix. In this case the matrices form a permutation representation of
the cyclic group of order 3, C3 = {1, S, S2}.

It should be clear to the reader that this construction generalizes directly for iterants
of any period and hence for a set of operators forming a cyclic group of any order. In fact
we can generalize further to any finite group G. See [13] for more information about these
generalizations.

1. In this example we consider the group G = C2 × C2, often called the “Klein 4-Group."
We take G = {1, A, B, C} where A2 = B2 = C2 = 1, AB = BA = C. Thus G has the
multiplication table, which is also its G-Table for Vect4(G,F).

1 A B C
A 1 C B
B C 1 A
C B A 1

.

Thus we have the permutation matrices that I shall call E, A, B, C whose entries
are obtained from the matrix above by writing 1 for the places occupied by the
corresponding letter and 0 for the other places. For example,

A =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

.

The reader will verify that A2 = B2 = C2 = 1, AB = BA = C. Recall that [x, y, z, w] is
iterant notation for the diagonal matrix

[x, y, z, w] =


x 0 0 1
0 y 1 0
0 1 z 0
1 0 0 w

.

Let
α = [1,−1,−1, 1], β = [1, 1,−1,−1], γ = [1,−1, 1,−1].

And let
I = αA, J = βB, K = γC.
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Then we have
I2 = J2 = K2 = I JK = −1, I J = K, J I = −K.

The quaternions are iterants in relation to the Klein Four Group. Figure 2 illustrates
these quaternion generators with string diagrams for the permutations. The reader
can check that the permutations correspond to the permutation matrices constructed
for the Klein Four Group.

+ + + + + +- - - - - -+ + + +

1 I J K

+ +- -

I

+ + - -

J

+ +- -

+ +- -

K
= =

IJ = K

II = JJ = KK = IJK = -1

Figure 2. Quaternions from the Klein Four group.

2. The set of matrices of the form a1 + bI + cJ + dK with a2 + b2 + c2 + d2 = 1 is
isomorphic to the group SU(2). To see this, note that SU(2) is the set of matrices with
complex entries z and w with determinant 1 so that zz̄ + ww̄ = 1.

M =

(
z w
−w̄ z̄

)
.

Letting z = a + bi and w = c + di, we have

M =

(
a + bi c + di
−c + di a− bi

)
= a

(
1 0
0 1

)
+ b
(

i 0
o −i

)
+ c
(

0 1
−1 0

)
+ d
(

0 i
i 0

)
.

With a commutative i =
√
−1 we obtain

I =
√
−1ε, J = εη, K =

√
−1η

as described in the previous section. This construction shows how the structure of
the quaternions comes directly from the non-commutative structure of period two
iterants. In other, words, quaternions can be represented by 2× 2 matrices. This is the
way it has been presented in standard language as in the group SU(2).

3. Here ι =
√
−1. Let

H = [a, b] + [c + dι, c− dι]η =

(
a c + dι

c− dι b

)
.

represents a Hermitian 2× 2 matrix and hence an observable for quantum processes
mediated by SU(2). Hermitian matrices have real eigenvalues.
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Take a = T + X, b = T− X, c = Y, d = Z, then we obtain an iterant representation for
a point in Minkowski spacetime.

H = [T + X, T − X] + [Y + Zι, Y− Zι]η =

(
T + X Y + Zι
Y− Zι T − X

)
.

Note that we have the formula

Det(H) = T2 − X2 −Y2 − Z2.

The eigenvalues of H are T ±
√

X2 + Y2 + Z2. H can observe the time and the invari-
ant spatial distance from the origin of the event (T, X, Y, Z). Here quantum mechanics
and special relativity are reconciled.

4. Iterants generate Hamilton’s Quaternions. We express them algebraically as shown
below.

I = [+1,−1,−1,+1]s

J = [+1,+1,−1,−1]l

K = [+1,−1,+1,−1]t

where

s = (12)(34)

l = (13)(24)

t = (14)(23).

The permutations are products of transpositions (ij).
One can verify that

I2 = J2 = K2 = I JK = −1.

For example,

I2 = [+1,−1,−1,+1]s[+1,−1,−1,+1]s

= [+1,−1,−1,+1][−1,+1,+1,−1]ss

= [−1,−1,−1,−1]

= −1.

and

I J = [+1,−1,−1,+1]s[+1,+1,−1,−1]l

= [+1,−1,−1,+1][+1,+1,−1,−1]sl

= [+1,−1,+1,−1](12)(34)(13)(24)

= [+1,−1,+1,−1](14)(23)

= [+1,−1,+1,−1]t.

Remark 2. We take an eigenform to mean a fixed point for a transformation in any mathe-
matical domain. Transformations of a given domain do not always have fixed points in that
domain. For example in a boolean logical domain the avaliable values are 0 and 1. If we take the
transformation T(x) =∼ x, then T(0) = 1 and T(1) = 0 so that there is no fixed point for
T. There is no boolean value J such that ∼ J = J. We can make extended logics that contain
such values. Similarly, there is no fixed point for G(x) = 1 + 1/x in the rational numbers,
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since such a fixed point would equal an irrational number. Finally, in the real numbers there is
no fixed point for the transformaton R(x) = −1/x since such a fixed point would have square
equal to minus one. If we have a domain D where every element of the domain corresponds
to a mapping of the domain to itself, then one can define special transformations of the form
Gx = F(xx) for every F in D. Then GG = F(GG) and every F in D has a fixed point. This
is the method of the lambda calculus of Church and Curry [4]. Constructions for fixed points
that extend given domains is a way of thinking about the nature of our constructions in this
paper. This theme is the subject of other work of the author [26]. Here i is an eigenform for
R(x) = −1/x. Indeed, each generating quaternion is an eigenform for the transformation
R(x) = −1/x. The richness of the quaternions comes from the closed algebra that arises
with its infinity of eigenforms that satisfy the equation U2 = −1 : U = aI + bJ + cK where
a2 + b2 + c2 = 1.

5. Clifford algebras Cn generated by elements {e1, e2, · · · , en} with e2
i = 1 and eiej =

−ejei when i 6= j occur very often in both mathematics and physics. These algebras
are often used as part of what is called geometric algebra [27]. It is worth noting that
these algebras fit naturally into the iterants framework via their self-action. That is,
if we take Cn as a vector space over a field K, then it has basis consisting of all the
ordered products of the form ei1 ei2 · · · eik for k = 1, 2, · · · , n and i1 < i2 < · · · < ik.
We can list the basis and obtain signed permutation matrices that represent the left
action of the algebra on itself, just as we have done with the group representations
in this section. For example, when n = 2 we have the basis list (1, e1, e2, e1e2) and
e1(1, e1, e2, e1e2) = (e1, 1, e1e2, e2) while e2(1, e1, e2, e1e2) = (e2,−e1e2, 1,−e2). Thus
if σ = (12)(34) and τ = (13)(24), then we can represent e1 = [1, 1, 1, 1]σ and
e2 = [1,−1, 1,−1]τ as iterants. In the case n = 2 we have already given a simpler
iterant representation of this algebra at the beginning of the paper, using e1 = [−1,+1]
and e2 = η where η denotes the transposition in S2. It is interesting how this represen-
tation appears doubled in the one we deduced from the multiplication table of the
algebra. It is of interest to carry out corresponding calculations for higher values of n.

6. Iterants Associated with the Framed Braid Group

The Symmetric Group Sn has presentation

Sn = (T1, · · · Tn−1|T2
i = 1, TiTi+1Ti = Ti+1TiTi+1, TiTj = TjTi; |i− j| > 1).

The Artin Braid Group Bn has presentation

Bn = (σ1, · · · σn−1|σiσi+1σi = σi+1σiσi+1, σiσj = σjσi; |i− j| > 1).

Thus there is a natural homomorphism from the Artin Braid Group to the Symmetric
Group. In Figure 3 are shown the generators σ1, σ2, σ3 of the 4-strand braid group with
the topological relation σ1σ2σ1 = σ2σ1σ2 and the commuting relation σ1σ3 = σ3σ1. The
elementary braid generators σi correspond to the interchange of the i-th strand iwith the
i + 1-th strand.

The homomorphism π : Bn −→ Sn defined on generators by π(σi) = Ti. It is natural
to generalize iterants to braided iterants by first generalizing the braid group to the framed
braid group. In this generalization, we associate integers ta to the top of each braid strand.
One can replace each braid strand by a ribbon and interpret ta as a 2πa twist in the ribbon.
In Figure 4 it is shown how to multiply two framed braids. The braids A and B are given
by the formulas

A = [ta, tb, tc]σ1σ2σ3,

B = [td, te, t f ]σ2σ3.

The framed braid group on three strands is denoted FB3. As the Figure 4 illustrates, there
is the formula

vσ = σvπ(σ)
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where v is a vector of the form v = [ta, tb, tc] (for n = 3) and vπ(σ) is the result of permuting
the vector by the permutation associated with the braid.

We can form an algebra Alg[FBn] by taking formal sums of framed braids of the
form ∑ ckvkgk where ck is a scalar, vk is a framing vector and gk is an element of the
Artin Braid group Bn. This algebra is a generalization of iterant algebra, based on the action
of the Artin Braid Group. The representation π : Bn −→ Sn induces a map of algebras
π̂ : Alg[FBn] −→ Alg[FSn] where we recognize Alg[FSn] as exactly an iterant algebra
based in the symmetric group Sn.

In [16] Fermions are represented as framed braids. See Figure 5. The positron and the
electron are given by the framed braids

e+ = [t, t, t]σ1σ−1
2 ,

and
e− = σ2σ−1

1 [t−1, t−1, t−1],

1 2

3 1
-1

=

=

=

σ

σ σ

σ

Braid Generators

1
σ

1
-1

σ = 1

1
σ 2σ

1
σ 2σ

1
σ 2σ=

1
σ 3

σ 1
σ

3
σ=

Figure 3. Braid Generators.

a b c

ef
abc d

d e f

a b c +d+e+f

=

= =

t t t

t t t

t t t

t t t

t t t

d e f

t t t

a b c

t t t

A B

AB  =

Figure 4. Framed Braids.
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Figure 5. Sundance Bilson-Thompson Fermions.

Here we use [ta, tb, tc] for the framing numbers (a, b, c). Products of framed braids
catalog particle interactions. The electron and the positron are algebraic inverses. In
Figure 6 are bosons, including a photon γ. Figure 7 illustrates the muon decay

µ→ νµ + W− → νµ + ν̄e + e−.

The muon decay is a multiplicative identity in the braid algebra:

µ = νµW− = νµν̄ee−.

Figure 6. Bosons.

Figure 7. Representation of µ→ νµ + W− → νµ + ν̄e + e−.

7. Fermions, Majorana Fermions and Anyonic Braiding

In this section we consider the algebras of Femions and Majorana fermions. The
generators of this Clifford algebra represent fermions that are their own anti-particles. For a
long time it has been conjectured that neutrinos may be Majorana fermions. More recently,
it has been suggested that Majorana fermions may occur in collective electronic phenomena
and in subtle correlations in nano-wires and in two dimensional anyonic physics [28–31].

In order to explain this association, we first give a short exposition of the algebra of
fermion operators. In a standard collection of fermion operators m1, · · · , mk one has that
each mi is a linear operator on a Hilbert space with an adjoint operator m†

i (corresponding
to the anti-particle for the particle created by mi) and relations

m2
i = 0,

mim†
i + m†

i mi = 1,

mimj + mjmi = 0
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when i 6= j.
There is another brand of Fermion algebra where we have generators c1, · · · ck and

c2
i = 1 while cicj = −cjci for all i 6= j. These are the Majorana fermions. There is a

algebraic translation between the fermion algebra and Majorana fermion algebra. Given
two Majorana fermions a and b with a2 = b2 = 1 and ab = −ba, define

m = (a + ib)/2

and
m† = (a− ib)/2.

It is then easy to see that a2 = b2 = 1 and ab = −ba imply that m and m† form a fermion in
the sense that m2 = (m†)2 = 0 and mm† + m†m = 1. Thus pairs of Majorana fermions can
be construed as ordinary fermions. Conversely, if m is an ordinary fermion, then formal
real and imaginary parts of m yield a mathematical pair of Majorana fermions. A chain of
electrons in a nano-wire, conceived in this way can give rise to a chain of Majorana fermions
with a non-localized pair corresponding to the distant ends of the chain. The non-local
nature of this pair is promising for creating topologically protected qubits, and there is
at this writing an experimental search for evidence for the existence of such end-effect
Majorana fermions.

Remark 3. It is common to refer to the Clifford algebra generated by a and b with a2 = b2 = 1
and ab = −ba as a pair of Majorana Fermions. The reference is to Majorana [30] who rewrote the
Dirac equation so that it could be seen as a coupled system of equations over the real numbers. This
Majorana-Dirac equation can have solutions that are their own anti-particles. This is reflected in the
algebra where a† = a and b† = b. The Fermion operators that we construct from these Majorana
operators m = (a + ib)/2 and m† = (a− ib)/2 form a particle-antiparticle pair. It is of interest
to see if the Majorana operators actually are related to Majorana’s original formalism. It is one of
the main points of this paper that this is the case. See Sections 9 through 11 for more about this
point. This paper and its predecessor [1] are a beginning for us in uncovering deeper relationships
between Majorana operators as Clifford algebra and the properties of the Majorana-Dirac equation.

Here is an example that shows how topology is related to the Majorana Fermion
operators. Let x, y, z be three Majorana fermions. Let A = yx, B = zy, C = xz. We have
already seen that A, B, C represent the quaternions. Now define

σ1 = (1 + A)/
√

2, σ2 = (1 + B)/
√

2, σ3 = (1 + C)/
√

2.

It is easy to see that σi and σj satisfy the braiding relation for any i 6= j. For example, here is
the verification for i = 1, j = 2.

σ1σ2σ1 = (1/2
√

2)(1 + A)(1 + B)(1 + A)

= (1/2
√

2)(1 + A + B + AB)(1 + A)

= (1/2
√

2)(1 + A + B + AB + A + A2 + BA + ABA)

= (1/2
√

2)(1 + A + B + AB + A− 1− AB + B)

= (1/
√

2)(A + B).

Similarly,
σ2σ1σ2 = (1/2

√
2)(1 + B)(1 + A)(1 + B)

= (1/2
√

2)(1 + A + B + BA)(1 + B)

= (1/2
√

2)(1 + A + B + BA + B + AB + B2 + BAB)

= (1/2
√

2)(1 + A + B + BA + B− BA− 1 + A)
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= (1/
√

2)(A + B).

Thus
σ1σ2σ1 = σ2σ1σ2,

and so a natural braid group representation arises from the Majorana fermions. This
braid group representation is significant for possible applications in topological quantum
computing. For the purpose of this discussion, the braid group representation shows that
the Clifford algebraic representation for knot sets is related to topology at more than one
level. The relation x2 = 1 for generators makes the individual sets, taken as products of
generators, invariant under the Reidemeister moves (up to a global sign). But braiding
invariance of certain linear combinations of sets is a relationship with knotting at a second
level. This multiple relationship certainly deserves more thought. We will make one more
remark here, and reserve further analysis for a subsequent paper.

The braiding operators act on the complex vector space spanned by the fermions
x, y, z.

σ =
1 + yx√

2
,

T(p) = σpσ−1 = (
1 + yx√

2
)p(

1− yx√
2

),

It follows that T(x) = y and T(y) = −x. In Figure 8 where we show an interpretation
for the braiding of two fermions. In the interpretation the two fermions are joined by a
belt. On particle interchange, the belt is twisted by 2π. A twist of 2π corresponds to a
phase change of −1. See [32]. It may not be evident which particle should receive the phase
change. Topology alone tells only the relative change of phase. The Clifford algebra makes
a specific choice and so fixes the representation of the braiding.

T(x) = y

T(y) = - x

x

x

x x

y

y

y

y

Figure 8. Braiding Action on a Pair of Fermions.

8. Iterants and the Standard Model

Here we give an iterant interpretation for the Lie algebra of the special unitary group
SU(3). The Lie algebra su(3) is generated by the following eight Gell Man Matrices [33].

λ1 =

 0 1 0
1 0 0
0 0 0

, λ2 =

 0 −i 0
i 0 0
0 0 0

, λ3 =

 1 0 0
0 −1 0
0 0 0

,
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λ4 =

 0 0 1
0 0 0
1 0 0

, λ5 =

 0 0 i
0 0 0
−i 0 0

, λ6 =

 0 0 0
0 0 1
0 1 0

,

λ7 =

 0 0 0
0 0 −i
0 i 0

, λ8 =
1√
3

 1 0 0
0 1 0
0 0 −2


The group SU(3) consists in the matrices U(ε1, · · · , ε8) = ei ∑a εaλa where ε1, · · · , ε8

are real numbers and a ranges from 1 to 8. The Gell Man matrices satisfy the relations:

tr(λaλb) = 2δab,

[λa/2, λb/2] = i fabcλc/2.

We sum over repeated indices. tr is matrix trace, [A, B] = AB− BA. δab equals 1 when a = b
and equals 0 otherwise. Structure coefficients fabc have the non-zero values shown below.

f123 = 1, f147 = 1/2, f156 = −1/2, f246 = 1/2, f257 = 1/2,

f345 = 1/2, f367 = −1/2, f458 =
√

3/2, f678 =
√

3/2

An iterant representation for the Gell Man matrices that is based on the pattern 1 A B
B 1 A
A B 1


as we have previously described. We use the cyclic group of order three to represent all
3× 3 matrices as iterants based on the permutation matrices

A =

 0 1 0
0 0 1
1 0 0

, B =

 0 0 1
1 0 0
0 1 0

.

Recalling that [a, b, c] denotes a diagonal matrix

[a, b, c] =

 a 0 0
0 b 0
0 0 c

,

it is easy to verify the formulas for the Gell Mann Matrices in the iterant format:

λ1 = [1, 0, 0]A + [0, 1, 0]B

λ2 = [−i, 0, 0]A + [0, i, 0]B

λ3 = [1,−1, 0]

λ4 = [1, 0, 0]B + [0, 0, 1]A

λ5 = [i, 0, 0]B + [0, 0,−i]A

λ6 = [0, 1, 0]A + [0, 0, 1]B

λ7 = [0,−i, 0]A + [0, 0, i]B

λ8 =
1√
3
[1, 1,−2].
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Letting Fa = λa/2, the Lie algebra rewrites as iterants of the form [a, b, c]G where G is
cyclic. Compare with [34]. Let

T± = F1 ± iF2,

U± = F6 ± iF7,

V± = F4 ± iF5,

T3 = F3,

Y =
2√
3

F8.

Then we have the specific iterant formulas

T+ = [1, 0, 0]A,

T− = [0, 1, 0]B,

U+ = [0, 1, 0]A,

U− = [0, 0, 1]B,

V+ = [0, 0, 1]A,

V− = [1, 0, 0]B,

T3 = [1/2,−1/2, 0],

Y =
1√
3
[1, 1,−2].

Then A[x, y, z] = [y, z, x]A and B = A2 = A−1 so that B[x, y, z] = [z, y, x]B. Thus the
basic su(3) Lie algebra reduces to iterants.

9. The Dirac Equation and Majorana Fermions

We construct the Dirac equation. The speed of light is equal to 1 by convention. Energy
E, momentum p and mass m are related by the relativisitic equation

E2 = p2 + m2.

We obtain Dirac’s operator by first taking the case where p is a scalar (one dimension of
space and one dimension of time). Let E = αp + βm where α and β are elements of a a
possibly non-commutative, associative algebra. Then

E2 = α2 p2 + β2m2 + pm(αβ + βα).

Hence we will satisfiy E2 = p2 + m2 if α2 = β2 = 1 and αβ + βα = 0. This is our familiar
Clifford algebra pattern and we can use the iterant algebra generated by e and η if we wish.
Then, because the quantum operator for momentum is −i∂/∂x and the operator for energy
is i∂/∂t, we have the Dirac equation

i∂ψ/∂t = −iα∂ψ/∂x + βmψ.

Let
O = i∂/∂t + iα∂/∂x− βm

so that the Dirac equation takes the form

Oψ(x, t) = 0.

Now note that
Oei(px−Et) = (E− αp− βm)ei(px−Et).
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We let
∆ = (E− αp− βm)

and let
U = ∆βα = (E− αp− βm)βα = βαE + βp− αm,

then
U2 = −E2 + p2 + m2 = 0.

This nilpotent element leads to a (plane wave) solution to the Dirac equation as follows:
We have shown that

Oψ = ∆ψ

for ψ = ei(px−Et). It then follows that

O(βα∆βαψ) = ∆βα∆βαψ = U2ψ = 0,

from which it follows that
ψ = βαUei(px−Et)

is a (plane wave) solution to the Dirac equation.
In fact, this calculation suggests that we should multiply the operator O by βα on the

right, obtaining the operator

D = Oβα = iβα∂/∂t + iβ∂/∂x− αm,

and the equivalent Dirac equation
Dψ = 0.

In fact for the specific ψ above we will now have D(Uei(px−Et)) = U2ei(px−Et) = 0. This
idea of reconfiguring the Dirac equation in relation to nilpotent algebra elements U is due
to Peter Rowlands [17].

We see that U = βαE + βp− αm with U2 = 0. .

9.1. U and U†

We recapitulate and start again. ψ = ei(px−Et) and the operators

Ê = i∂/∂t

and
p̂ = −i∂/∂x

so that
Êψ = Eψ

and
p̂ψ = pψ.

The Dirac operator is
O = Ê− α p̂− βm

and the modified Dirac operator is

D = Oβα = βαÊ + β p̂− αm,

so that
Dψ = (βαE + βp− αm)ψ = Uψ.

If we let
ψ̃ = ei(px+Et)
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(reversing time), then we have

Dψ̃ = (−βαE + βp− αm)ψ = U†ψ̃,

giving a definition of U† corresponding to the anti-particle for Uψ.
We have

U = βαE + βp− αm

and
U† = −βαE + βp− αm.

Note that here we have

(U + U†)2 = (2βp− 2αm)2 = 4(p2 + m2) = 4E2,

and
(U −U†)2 = (2βαE)2 = −4E2.

We have that
U2 = (U†)2 = 0

and
UU† + U†U = 4E2.

The decomposition of U and U† into the corresponding Majorana Fermion operators
corresponds to E2 = p2 + m2. Dividing by 2E we have

A = (βp− αm)/E

and
B = −iβα.

so that
A2 = B2 = 1

and
AB + BA = 0.

then
U = (A + Bi)E

and
U† = (A− Bi)E.

Fermion creation and annihilation algebra arises naturally in the nilpotent formulation.

9.2. Writing in the Full Dirac Algebra

We have written the Dirac equation so far in one dimension of space and one di-
mension of time. Now the formalism is shifted to three dimensions of space. Take an
independent Clifford algebra with generators σ1, σ2, σ3 with σ2

i = 1 for i = 1, 2, 3 and
σiσj = −σjσi for i 6= j. Assume that α and β generate an independent Clifford algebra com-
muting with the σi. Replace scalar momentum p by 3-vector momentum p = (p1, p2, p3).
Let p • σ = p1σ1 + p2σ2 + p3σ3. Replace ∂/∂x with ∇ = (∂/∂x1, ∂/∂x2, ∂/∂x2) and ∂p/∂x
with ∇ • p.

We then have the following form of the Dirac equation.

i∂ψ/∂t = −iα∇ • σψ + βmψ.

Let
O = i∂/∂t + iα∇ • σ− βm
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so that the Dirac equation takes the form

Oψ(x, t) = 0.

Let
ψ(x, t) = ei(p•x−Et).

Apply the Dirac operator to this ψ. For nilpotency, the modified Dirac operator is

D = iβα∂/∂t + β∇ • σ− αm.

Then
Dψ = Uψ

where
U = βαE + βp • σ− αm.

So U2 = 0 and Uψ is a solution to the modified Dirac Equation. We have the structure of
the Fermion operators and Majorana Fermion operators.

9.3. Majorana Fermions

We now make a Dirac algebra distinct from the one generated by α, β, σ1, σ2, σ3 and
obtain an equation that can have real solutions. Majorana [30] followed this strategy to
construct his new equation. A real equation may have solutions invariant under complex
conjugation. Such solutions correspond to particles that are their own anti-particles. We
construct the Majorana algebra in terms of the split quaternions ε and η. We will use the
matrix representation given below. It can be formulated in iterants as we have discussed.

ε =

(
−1 0
0 1

)
, η =

(
0 1
1 0

)
.

Let ε̂ and η̂ generate a second algebra of split quaternions, that commutes with the first
algebra generated by ε and η. A real Majorana Dirac equation can be written:

(∂/∂t + η̂η∂/∂x + ε∂/∂y + ε̂η∂/∂z− ε̂η̂ηm)ψ = 0.

To see that this is a correct Dirac equation, note that

Ê = αx p̂x + αy p̂y + αz p̂z + βm

(Here the “hats” denote the quantum differential operators corresponding to the energy
and momentum.) will satisfy

Ê2 = p̂x
2 + p̂y

2 + p̂z
2 + m2

if the algebra generated by αx, αy, αz, β satisfies the conditions: Each generator has square
one. Each distinct pair of generators anti-commute.

The general Dirac equation occurs by replacing Ê by i∂/∂t, and p̂x with −i∂/∂x (and
same for y, z).

(i∂/∂t + iαx∂/∂x + iαy∂/∂y + iαz∂/∂y− βm)ψ = 0.

This is the same as

(∂/∂t + αx∂/∂x + αy∂/∂y + αz∂/∂y + iβm)ψ = 0.

Thus, here we take
αx = η̂η, αy = ε, αz = ε̂η, β = iε̂η̂η,
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and observe that these elements satisfy the requirements for the Dirac algebra.

10. Nilpotents and the Majorana-Dirac Equation

Let D = (∂/∂t + η̂η∂/∂x + ε∂/∂y + ε̂η∂/∂z − ε̂η̂ηm). In the last section we have
shown how D can be taken as the Majorana operator for which we can look for real
solutions to the Dirac equation. Letting ψ(x, t) = ei(p•r−Et), we have

Dψ = (−iE + i(η̂ηpx + εpy + ε̂ηpz)− ε̂η̂ηm)ψ.

Let
Γ = (−iE + i(η̂ηpx + εpy + ε̂ηpz)− ε̂η̂ηm)

and
U = εηΓ = (i(−ηεE− η̂εpx + ηpy − εε̂pz) + εε̂η̂m).

The element U is nilpotent, U2 = 0, and we have that

U = A + iB,

AB + BA = 0,

A = εε̂η̂m,

B = −ηεE− η̂εpx + ηpy − εε̂pz,

A2 = −m2,

and
B2 = −E2 + p2

x + p2
y + p2

z = −m2.

Letting
∇ = εηD,

we have a new Majorana Dirac operator with

∇ψ = Uψ

so that
∇(Uψ) = U2ψ = 0.

Letting
θ = (p • r− Et),

we have
Uψ = (A + Bi)eiθ = (A + Bi)(cos(θ) + isin(θ)) =

(Acos(γ)− Bsin(θ)) + i(Bcos(θ) + Asin(θ)).

Thus we have found two real solutions to the Majorana Dirac Equation:

Φ = Acos(θ)− Bsin(θ)

and
Ψ = Bcos(θ) + Asin(θ)

with
θ = (p • r− Et)

and A and B the Majorana operators described above. Note how the Majorana Fermion
algebra generated by A and B comes into play in the construction of these solutions.

We take it as quite significant that the Majorana algebra is directly involved in these
solutions. In other work [2,5,13,32] we review the main features of recent applications of
the Majorana algebra and its relationships with representations of the braid group and
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with topological quantum computing. We are now in a position to assess the relationship
of the Majorana algebra with actual solutions to the Majorana-Dirac equation.

Spacetime in 1 + 1 Dimensions

Using the method of this section and spacetime with one dimension of space (x), we
can write a real Majorana Dirac operator in the form

∂/∂t + ε∂/∂x + εηm

where, the matrix representation is now two dimensional with

ε =

(
−1 0
0 1

)
, η =

(
0 1
1 0

)
, εη =

(
0 −1
1 0

)
.

We obtain a nilpotent operator, D by multiplying by iη :

D = iη∂/∂t + iηε∂/∂x− iεm.

Letting ψ = ei(px−Et), we have
Dψ = (A + iB)ψ

where
A = ηE + εηp

and
B = −εm.

Note that A2 = E2 − p2 = m2 and B2 = m2, from which it is easy to see that A + iB is
nilpotent. A and B are the Majorana operators for this decomposition. Multiplying out,
we find

(A + iB)ψ = (A + iB)(cos(θ) + isin(θ)) =

(Acos(θ)− Bsin(θ)) + i(Bcos(θ) + Asin(θ))

where θ = px− Et. We now examine the real part of this expression, as it will be a real
solution to the Dirac equation. The real part is

Acos(θ)− Bsin(θ) = (ηE + εηp)cos(θ) + emsin(θ)

=

(
−msin(θ) (E− p)cos(θ)

(E + p)cos(θ) msin(θ)

)
.

Each column vector is a solution to the original Dirac equation corresponding to the operator

∇ = ∂/∂t + ε∂/∂x + εηm

written as a 2× 2 matrix differential operator. We can see this in an elegant way by changing
to light-cone coordinates:

r =
1
2
(t + x), l =

1
2
(t− x).

(Recall that we take the speed of light to be equal to 1 in this discussion.) Then

θ = px− Et = −(E− p)r− (E + p)l.

and the Dirac equation

(∂/∂t + ε∂/∂x + εηm)

(
ψ1
ψ2

)
= 0
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becomes the pair of equations
∂ψ1/∂l = mψ2,

∂ψ2/∂r = −mψ1.

Note that these equations are satisfied by

ψ1 = −msin(−(E− p)r− (E + p)l),

ψ2 = (E + p)cos(−(E− p)r− (E + p)l)

exactly when E2 = p2 + m2 as we have assumed. It is quite interesting to see these direct
solutions to the Dirac equation emerge in this 1 + 1 case. The solutions are fundamental
and they are distinct from the usual solutions that emerge from the Feynman Checkerbooad
Model [7,35]. It is the above equations that form the basis for the Feynman Checkerboard
model that is obtained by examining paths in a discrete Minkowski plane generating a
path integral for the Dirac equation. We will investigate the relationship of this approach
with the Checkerboard model in a subsequent paper.

11. Spacetime Algebra

Another way to put the Dirac equation is to formulate it in terms of a spacetime
algebra. By a spacetime algebra we mean a Clifford algebra with generators {e1, e2, e3, e4}
such that e2

1 = e2
2 = e2

3 = 1, e2
4 = −1 and eiej + ejei = 0 for i 6= j. Thus the generators

of the algebra fit the Minkowski metric and we can represent a point in space time by
p = xe1 + ye2 + ze3 + te4 so that p2 = x2 + y2 + z2 − t2 corresponds to the spacetime
metric with the speed of light c = 1. (The reader may wish to compare this approach with
Hestenes [27].)

Since the Dirac algebra demands {α1, α2, α3, β} with all elements squaring to 1 and
anti-commuting, we see that spacetime algebra is interchangeable with Dirac algebra via
the translation:

α1 = e1, α2 = e2, α3 = e3, β = −ie4

where i =
√
−1 is a square root of negative unity that commutes with all algebra elements.

The standard Dirac equation is
Oψ = 0

where
O = i∂/∂t + iα1∂/∂x + iα2∂/∂y + iα3∂/∂z− βm.

Thus we can rewrite O as

O = i∂/∂t + ie1∂/∂x + ie2∂/∂y + ie3∂/∂z + ie4m.

Then, multiply the whole Dirac equation by −i and we find the equivalent operator

O′ = ∂/∂t + e1∂/∂x + e2∂/∂y + e3∂/∂z + e4m.

This point of view makes it clear how to search for Majorana algebra since we can search
for a spacetime algebra of real matrices. Then the Dirac equation in the form

O′ψ = 0

will be an equation over the real numbers. In fact the algebra that we have already written
for Majorana is a spacetime algebra:

e1 = η̂η, e2 = ε, e3 = ε̂η, e4 = ε̂η̂η.

Furthermore, we can see that the following lemma gives us a guide to constructing nilpotent
formulations of the Dirac equation.
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Definition 1. Suppose that {e′1, e′2, e′3, e′4} generates a spacetime algebraA and that µ is an element
of A with µ2 = −1 and so that {e1 = µe′1, e2 = µe′2, e3 = µe′3, e4 = µe′4} is also a spacetime
algebra with e2

1 = e2
2 = e2

3 = 1, e2
4 = −1 and eiej + ejei = 0 for i 6= j. Under these circumstances,

we call the spacetime algebra A nilpotent.

Lemma 2. Let A be a nilpotent spacetime algebra, with notation as in Definition 1 above. Then
the operator

D = µ∂/∂t + e1∂/∂x + e2∂/∂y + e3∂/∂z + e4m

generates a nilpotent Dirac equation.

Proof. We wish to show that if ψ = ei(p•(x,y,z)−Et) and Dψ = Uψ then U2 = 0. Calculating,
we find that

U = i(−µE + p • (e1, e2, e3)) + e4m.

It follows that

U2 = −(−E2 + p2
x + p2

x + p2
x)−m2 = E2 − p2

x − p2
y − p2

z −m2 = 0.

This completes the proof.

Example 1. Before proceeding to the Majorana structure, consider the standard Dirac algebra. Here
we have σ1, σ2, σ3 with σ2

i = 1 for each i = 1, 2, 3 and each pair of distinct operators anticommutes.
This can be taken to be the Pauli algebra and is represented by matrices over the complex numbers.
We take α and β as before to generate a Clifford algebra that commutes with the Pauli algebra and is
independent of it. Then the associated spacetime algebra has generators

e′1 = ασ1, e′2 = ασ2, e′3 = ασ3, e′4 =
√
−1β

and the nilpotency corresponds to the fact that these generators, multiplied by βα, yield another
spacetime algebra. This is given by

e1 = µe′1 = βαασ1 = βσ1

e2 = µe′2 = βαασ2 = βσ2

e3 = µe′3 = βαασ3 = βσ3

e4 = µe′4 = βα
√
−1β = −

√
−1α

The corresponding nilpotent Dirac operator is

D = µ∂/∂t + e1∂/∂x + e2∂/∂y + e3∂/∂z + e4m.

Hence
D = βα∂/∂t + βσ1∂/∂x + βσ2∂/∂y + βσ3∂/∂z−

√
−1αm.

Applying this operator to ψ = e
√
−1(p•r−Et) we obtain the nilpotent

A = −βα
√
−1E + βσ1

√
−1px + βσ2

√
−1py + βσ3

√
−1pz −

√
−1αm.

This can be replaced by the nilpotent

U = −βαE + βσ1 px + βσ2 py + βσ3 pz − αm

by factoring out the common square root of minus one. This is the same nipotent that we have previ-
ously derived. Note that in relation to this standard Dirac algebra we have the conjugate nilpotent

U† = −βαE + βσ1 px + βσ2 py + βσ3 pz − αm,
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and that
U + U† = 2(βσ1 px + βσ2 py + βσ3 pz − αm)

so that
UU† + U†U = (U + U†)2 = 4(p2 + m2) = 4E2.

This is as we have derived earlier in the paper. The decomposition into Clifford operators follows
these lines, giving Clifford elements that square to E. When we work with the real spacetime algebras
(below) that correspond to the Majorana Dirac equation, the decomposition into Clifford algebras
takes a different pattern, centering on the mass m rather than the energy E.

Example 2. In the case we have considered with

e′1 = η̂η, e′2 = ε, e′3 = ε̂η, e′4 = ε̂η̂η.

We take µ = εη and we find
e1 = εηη̂η = εη̂,

e2 = εηε = −η,

e3 = εηε̂η = εε̂,

e4 = εηε̂η̂η = εε̂η̂.

Indeed this gives a spacetime algebra and hence a nilpotent Majorana Dirac operator

D = εη∂/∂t + εη̂∂/∂x− η∂/∂y + εε̂∂/∂z + εε̂η̂m.

Example 3. Here is another example. We take

e′1 = ε̂, e′2 = η̂, e′3 = εηε̂η̂, e′4 = εε̂η̂

and µ = ηε̂η̂ and find
e1 = ηε̂η̂ε̂ = −ηη̂,

e2 = ηε̂η̂η̂ = ηε̂,

e3 = ηε̂η̂εηε̂η̂ = ε,

e4 = ηε̂η̂εε̂η̂ = −ηε.

This gives a spacetime algebra and hence a nilpotent Dirac operator

D = ηε̂η̂∂/∂t− ηη̂∂/∂x + ηε̂∂/∂y + ε∂/∂z− ηεm.

Example 4. We now give a number of examples of spacetime algebras. For this purpose it is useful
to change notation. We will use

I = ε, J = η, i = ε̂, j = η̂.

Thus I2 = J2 = i2 = j2 = 1 and I J + J I = 0 and ij + ji = 0. We will indicate a spacetime algebra
as a 4-tuple (e1, e2, e3, e4) where we require that the ei anti-commute and that the squares of the
first three ei are 1 while e2

4 = −1. The following are spacetime algebras.

A = (J j, I, Ji, Jij)

B = (Ii, j, Ji, I Ji)

C = (i J, I, jJ, ijJ)

D = (i J, I, jJ, I J)
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It is easy to see that A, B, C and D are nilpotent. Note that (up to signs) B is obtained from A by
interchanging i, j with I, J and then interchanging i and j. C is obtained from A by interchanging
i and j directly. To see that A is nilpotent, multiply by I J. The algebra D is also nilpotent, via
multiplying by ijJ.

The General Case. We are now in a position to prove the following Theorem.

Theorem 1. All real Majorana spacetime algebras are nilpotent and, up to permutations and
substitutions, they are of the following types:

{i, jI, jJ, ij},

{j, iI, i J, I Ji},

{ijI J, I, J, I Ji}.

Here the notation of types of algebras is as we have explained in the previous examples.
The proof will proceed in the form of the discussion below. In subsequent work we shall
return to this result and its possible physical consequences, since each spacetime algebra
gives a Dirac equation that can be studied both for its physics and for its mathematics.

Suppose that we are given a nilpotent spacetime algebra specified by {e′1, e′2, e′3, e′4}
and µ with µ2 = −1 so that {e1, e2, e3, e4} is also a spacetime algebra with ei = µe′i for
i = 1, 2, 3, 4. Then we have the nilpotent Dirac operator associated with this algebra:

D = µ∂/∂t + e1∂/∂x + e2∂/∂y + e3∂/∂z + e4m.

Let ι =
√
−1, a square root of negative unity that commutes with all algebra elements.

Applying D to ψ = eι(p•r−Et) we obtain the nilpotent

A = ι(−µE + e1 px + e2 py + e3 pz) + e4m.

The nilpotent A is directly decomposed into its two (Majorana) Clifford parts as the real and
imaginary parts of A, just as in our previous discussion of a special case. Other examples
lead to real solutions to the Majorana Dirac equation just as we have done above. Note that
the Clifford parts are

ρ = −µE + e1 px + e2 py + e3 pz

and
τ = e4m

with ρ2 = τ2 = −m2 and ρ and τ anticommute. It is of interest to note that the Clifford
algebra is collapsed when the mass is equal to zero.

Consider that the fourth elememt of a spacetime algebra has square −1. Up to sym-
metries the possibilities are ij and I Ji. Take each of these cases in turn. First suppose that
e4 = ij. Then consider first all square one elements. These are

S = {i, j, I, J, ijI J, iI, i J, jI, jJ}.

The subset of elements of S that anti-commute with ij is

S[ij] = {i, j, iI, i J, jI, jJ},

and the (up to order and symmetry) the only triplet in S[ij] that mutually anti-commutes is

{i, jI, jJ}.

This gives the spacetime algebra
{i, jI, jJ, ij}.
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This algebra is nipotent via multiplication by I Ji.
Now consider the subset of elements of S that anti-commute with I Ji. This subset is

S[I Ji] = {j, I, J, ijI J, iI, i J}.

The triplets that anti-commute are
{j, iI, i J}

and
{ijI J, I, J}.

These give rise to spacetime algebras

{j, iI, i J, I Ji}

and
{ijI J, I, J, I Ji}.

The first is nilpotent via the multiplier ij and the second is nilpotent via the multiplier I J j.
Up to symmetries these are all the cases and so we have proved the result

Theorem 2. All real Majorana spacetime algebras are nilpotent and, up to permutations and
substitutions, they are of the following types:

{i, jI, jJ, ij},

{j, iI, i J, I Ji},

{ijI J, I, J, I Ji}.

In a subsequent paper we shall follow up the consequences of this result.
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