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Abstract: Both poor cooling methods and complex heat dissipation lead to prominent asymmetry
in transformer temperature distribution. Both the operating life and load capacity of a power
transformer are closely related to the winding hotspot temperature. Realizing accurate prediction
of the hotspot temperature of transformer windings is the key to effectively preventing thermal
faults in transformers, thus ensuring the reliable operation of transformers and accurately predicting
transformer operating lifetimes. In this paper, a hot spot temperature prediction method is proposed
based on the transformer operating parameters through the particle filter optimization support vector
regression model. Based on the monitored transformer temperature, load rate, transformer cooling
type, and ambient temperature, the hotspot temperature of a dry-type transformer can be predicted
by a support vector regression method. The hyperparameters of the support vector regression are
dynamically optimized here according to the particle filter to improve the optimization accuracy.
The validity and accuracy of the proposed method are verified by comparing the proposed method
with a traditional support vector regression method based on the real operating data of a 35 kV
dry-type transformer.

Keywords: dry-type transformer; overheating fault; hotspot temperature prediction; online monitor-
ing; support vector regression; particle filter

1. Introduction

Power systems in offshore oil and gas platforms are of great importance as they ensure
the normal operation of platform and staff living activities. Dry-type transformers represent
pivotal piece of equipment in the power system, and stable transformer operation is of
great significance. Among all transformer faults, overheating faults are one of the most
common types [1] and accelerate transformer insulation aging and can even lead to fires
and explosions [2]. Due to the complex heat dissipation process of dry-type transformers,
the asymmetry of transformer temperature distribution between phases is prominent.
The temperature of phase-B winding is much higher than the other two-phase windings.
Meanwhile, the asymmetry of the axial temperature distribution of the same phase is also
worthy of attention, which affects the stable operation of the power system of offshore
platforms seriously and factors strengthen the asymmetry problem of the distribution
network. Hotspot temperature is an important indicator that characterizes a dry-type
transformer’s operating stat, where potential thermal faults can be predicted based on the
temperature data. By avoiding possible overheating-related faults, the operating stability
of dry-type transformers can be improved [3].
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For dry-type transformers, there are mainly two methods to obtain hotspot temper-
ature data, namely direct measurement and indirect calculation. With the development
of online monitoring technology, resistance thermometer temperature sensors [4,5] are
commonly embedded in transformer windings in transformer manufacturing. In addition,
infrared thermal imaging technology is also used in transformer state monitoring, where
the use of offline handheld imagers is most commonly used. Indirect calculation is based on
theoretical and numerical calculations, including analytical, thermal network, and numeri-
cal analysis methods. An analytical method defines the hotspot temperature as the sum
of the ambient temperature and the temperature rise of the hotspot temperature relative
to the ambient temperature under a specific load [6]. A thermal network method uses
thermoelectric analogy theory [7] to calculate the hotspot temperature of a transformer and
a simplified equivalent circuit is used to illustrate the heat flow equation of the transformer.
In the circuit, the current source represents the heat source caused by the transformer
loss, the non-linear resistance represents the transformer cooling mode, and the ideal
voltage source represents the transformer ambient temperature, where the solution of the
transformer hotspot temperature can be converted into the solution of the node voltage
of the circuit. Both a thermal network model based on the top oil temperature [8–10] and
a thermal network model based on the bottom oil temperature [11] have been proposed;
however, a dry-type transformer differs from an oil-immersed transformer in terms of
the structure and heat dissipation type, and there is no thermal network model that is
suitable for dry-type transformers. A numerical analysis method uses a finite element
method [12] or a finite volume method to establish a 2D or 3D model [13,14] of the trans-
former. Furthermore, an electromagnetic thermally coupled model [15] or a fluid–solid
coupled model [16,17] may be established to improve the accuracy of temperature esti-
mation for transformers under an asymmetry condition. Although these methods have
high accuracy and can obtain the temperature of each point inside a transformer, the long
computation times of such methods makes them impossible for use in real-time online
monitoring and analysis.

With the development of data analysis technology, intelligent learning methods such
as the support vector machines [18–20], relevance vector machines [21], and kernel extreme
learning machines [22,23] have been widely used for transformer fault diagnosis [24].
Transformer hotspot temperature prediction methods based on data analysis have also been
proposed. Hotspot temperature prediction can be regarded as a problem involving finding
the complex non-linear relationship between the hotspot temperature and the influencing
factors. For hotspot temperature prediction with an oil-immersed transformer, the top oil
temperature can be chosen as the prediction object. The temperatures of the measuring
points and transformer operating parameters are chosen as the training data for the Kalman
filter, neural network, support vector machine [25], and genetic programming method [26];
however, a dry-type transformer cannot use the top oil temperature as a prediction object
and hotspot temperature prediction for dry-type transformers needs to be performed
according to the actual heat generation mechanism. A support vector regression (SVR) [27]
method is suitable for cases with a small set of sample data and meets the requirements
for hotspot temperature prediction. Besides, the hyperparameters in SVR methods have
a greater impact on the prediction results, and thus the elucidation of an appropriate
optimization method to obtain optimal hyperparameters is of vital importance. K-fold
cross-validation, grid methods, genetic algorithms [28] and particle swarm [29] methods
are commonly used; however, in the cases with large data fluctuation, these methods
cannot track newly observed data with the required speed and prediction accuracy.

To overcome the above disadvantages, in this paper, a particle filter optimization
support vector regression method is proposed to predict the hotspot temperature of a dry-
type transformer. The method can dynamically track the changes of hyperparameters. The
hotspot temperature prediction model is a multi-input single-output problem in which the
load rate, transformer ambient temperature, cooling type, and historical data of the hotspot
temperature are used as inputs and the hotspot temperature of the dry-type transformer is
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set as the output. The input data are obtained through an online temperature monitoring
system. Since the measurement of the winding inner temperature is difficult due to the
cast resin, an online infrared thermal imager can be used for online monitoring of the
transformer temperature. The monitoring data of an existing Pt100 sensor may also be
used to improve the monitoring accuracy of the transformer temperature. The installation
position of the infrared thermal imager is determined by electromagnetic thermal multi-
physics coupling analysis. Based on the data of a dry-type transformer temperature online
monitoring system in an offshore oil and gas platform power system, the results of the
particle filter optimization support vector regression method presented here are compared
with a traditional support vector regression method for the hotspot temperature prediction
with a dry-type transformer. The accuracy of the selected particle filter support vector
regression method is also verified here.

2. Hotspot Temperature Prediction Model Based on the Particle Filter Support
Vector Regression
2.1. The Input Parameters of the Prediction Model

The hotspot temperature of a dry-type transformer is affected by many operating
factors, among which the four most important factors are the real-time load rate, the
ambient temperature, the state of the cooling fan, and the historical hotspot temperature.

1. Load rate K: The copper loss generated by the primary and secondary windings
during the operation of the dry-type transformer is the main heat source, and
the winding resistance loss is proportional to the square of the load rate. When
the load rate changes, the corresponding loss changes and consequently leads to
temperature changes.

2. Ambient temperature Ta: Based on the principle of heat convection, the iron core
and windings of dry-type transformers are directly in contact with air, and thermal
convection is the main heat dissipation method. The ambient temperature affects
the temperature of the dry-type transformer winding and consequently affects the
hotspot temperature of the transformer.

3. Cooling fan status sf: When the temperature of the transformer exceeds a certain limit,
the cooling fan will be started in order to aid heat dissipation. Forced air cooling has
a better heat dissipation effect than natural air flow. The temperature increase rate
will be reduced when the fan is turned on.

4. Historical temperature Ts: The process of temperature variation has a time lagging
characteristic. The current temperature is closely related to the temperature value of
the previous period.

The four quantities, including the load rate K, ambient temperature Ta, cooling fan
status sf, and historical temperature Ts, are used here as inputs in the hotspot temperature
prediction model xi = [K, Ta, sf, Ts]. The hotspot temperature at the next moment Ths
is the model output yi = [Ths]. This nonlinear problem is solved here by a particle filter
optimization support vector regression method which is illustrated in the following section.

2.2. PF-SVR Hotspot Temperature Prediction Model
2.2.1. Support Vector Regression Principle

Support vector regression (SVR) describes the application of support vectors in the
field of functional regression. Similar with support vector machines, SVR methods are
suitable for models with small sets of sample data. For the above hotspot temperature
prediction, the training dataset is considered in the form of D = {xi, yi}N

i=1, where xi
is a 4-dimensional input that includes the load rate, ambient temperature, cooling fan
status, and historical hotspot temperature, yi is the predicted output hotspot temperature,
and N is the number of samples. The hotspot temperature prediction problem can be
described as finding the functional relationship f between the output hotspot temperature
yi and input matrix xi. This nonlinear relationship can be described by a data fitting
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method. According to the principle of support vector regression, under linear conditions,
the functional relationship can be described as follows:

y = f (x) = wTx + b (1)

where w and b are the parameters of the support vector regression model. The nonlinear
relationship may be transformed into a linear relationship and a nonlinear mapping can be
introduced as Φ : Rl → F , where F is the feature space of the mapping Φ. The sample is
mapped from the original space Rl to the high-dimensional space F while maintaining the
simplicity of the expressed relations. The prediction can be described as per Equation (2):

y = f (x) = wTΦ(x) + b (2)

By adjusting the values of w and b, the target loss function is minimized based on the
training set D through the support vector regression model. The ε-insensitive loss function
of the optimization model can be described as follows:

l =

{
0, |y− f (x)| ≤ ε

|y− f (x)| − ε, others
(3)

The ε-insensitive loss function is defined as the difference between the predicted
output and the actual value, which is approximated to be zero when l is less than ε. When
l is greater than ε, the relaxation variables ξ and ξ* are introduced to represent the error,
where ξ represents the positive error and ξ* represents the negative error. The objective
loss function and constraints in the SVR model can be expressed as per Equation (4):

min
w,ξ,ξ∗

J(w, ξ, ξ∗) = 1
2‖w‖

2 + C
n
∑

i=1
(ξ + ξ∗)

s.t.


yi −w ·Φ(xi)− b ≤ ε + ξi
w ·Φ(xi) + b− yi ≤ ε + ξ∗i
ξi, ξ∗i ≥ 0

i = 1, . . . , N
(4)

‖w‖2 is the confidence risk, which is related to the generalization ability of the regression

model;
n
∑

i=1
(ξ + ξ∗) is the empirical risk, representing the overall error of the regression

model for the training data set; and parameter C is the compromise value of confidence
risk and empirical risk. The SVR method has the advantages of minimizing structural risks
and finding a globally optimal solution.

The Lagrange duality method may be used to optimize the solution as shown in
Equation (5):

ŷ = w ·Φ(x̂) + b =
N

∑
i=1

∧
α∗K(xi, x) + b (5)

where α̂∗ is the Lagrange multiplier in the optimization problem and K(xi,x) is a kernel
function, where any positive semidefinite function K can be used as a kernel function. This
can be written in the following form:

K(xi, x) = Φ(xi) ·Φ(x) (6)

A Gaussian kernel function is used in the SVR model.

K(x1, x2) = exp(−‖x1 − x2‖2

σ2 ) (7)
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2.2.2. Particle Filter Principle

A particle filtering (PF) method is a sequential importance sampling method that is
used to realize the model parameters that are dynamically adapted with the test data. For
the established state space model, the distribution of parameters p(z1), p(z1|zn−1), and
p(xn|zn) is known. Suppose that a time series of observation Xn−1 = (x1, x2, · · ·, xn−1) has
been obtained and that p(zn|Xn−1) has been estimated. A new observation xn is obtained
such that the known estimation zn can be corrected through xn, and the new observation
can be used to continuously modify the known estimation.

For any state, Equations (8) and (9) exist.

x(t) = f (x(t− 1), u(t), w(t)) (8)

z(t) = h(x(t), e(t)) (9)

where x(t) is the state at time t; u(t) is a control variable; w(t) and e(t) are the model noise
and observation noise, respectively; and z(t) is the observation variable. Equation (8) is the
state transition equation and Equation (9) is the observation equation.

According to Bayesian theory, the estimation problem can be converted to construct
the probability density function p (xk | z1:k) at state xk and time k when the measured value
at time k is known, which is shown in Equations (10) and (11):

p(xk|z1:k−1) =
∫

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (10)

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
(11)

p(zk|z1:k−1) =
∫

p(zk|xk)p(xk|z1:k−1)dxk−1 (12)

where p (xk−1 | z1:k−1) is the probability density function at time k − 1; p (xk|z1:k−1) is
the probability density function at time k; p (xk|xk−1) is determined by the system state
equation; p (zk|z1:k−1) is the normalization constant; and p (zk|xk) is the likelihood function.

In reality, it is usually difficult to solve for the optimal solution in most cases. Particle
filtering provides a relatively easy and approximate optimal Bayesian solution. The core
idea is that the posterior probability density function p (x0:k|z1:k) of the state xk at time k
can be expressed by

{
xi

0:k, wi
k
}Ns

i=1, where wk represents the weight and x0:k represents the
set of particles from time 0 to time k. The posterior probability density function of the true
state of the system at time k can be expressed as follows:

p(x0:k|z1:k) ≈
Ns

∑
i=1

ωi
kδ(xk − xi

0:k) (13)

where δ is the Dirac function.
Assuming the importance density function q (x0:k | z1:k) is used to determine

{
xi

0:k
}Ns

i=1,
the weights wi

k should satisfy the following condition.

wi
k ∝

p
(
xi

0:k

∣∣z1:k
)

q
(
xi

0:k

∣∣z1:k
) (14)

Since q (x0:k | z1:k) = q (xk | x0:k, z1:k) q (x0:k−1 | z1:k−1), the weight can be updated
according to Equation (15).

wi
k ∝ wi

k−1

p
(
zk
∣∣xi

k
)

p
(

xi
k

∣∣∣xi
k−1

)
q
(

xi
k

∣∣∣xi
k−1, z1:k

) (15)
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The state vector xk can be estimated by the sampling particles and related weights:

x̂k =
Ns

∑
i=1

wi
kxi

k (16)

2.2.3. SVR Parameter Optimization

It should be noted that the penalty coefficient C, the width of insensitive region ε, the
kernel function parameters σ, and the correlations among these three parameters have a
great impact on the complexity, generalization ability, and calculation speed of a SVR-based
model. The value of the penalty coefficient C should be neither too small nor too large.
If it is too small, then the modeling process will feature under-learning, and if it is too
large then the modeling process will feature over-learning. Similarly, if the width of the
insensitive region ε is too large, this will simultaneously reduce the calculation burden
and learning accuracy. If the kernel function parameter σ is too small, the accuracy of
the regression model will be poor; however, if σ is too large, the model will have a weak
generalization ability. Consequently, the values of the three parameters (C, ε, and σ) need
to be comprehensively considered in order to produce a good optimization result when
using a SVR-based model.

K-fold cross-validation is a common method for selecting SVR parameters. The pa-
rameter space is subdivided into several continuous cells and a discrete parameter set is
selected for each cell, indicating a combination of parameter values. The training data are
randomly divided into k mutually exclusive subsets of equal size and the regression func-
tion with the given parameter set is obtained using k − 1 subsets, where the performance of
the remaining subset is then tested. The same process is repeated k times with each subset
being tested once. The average performance index over k trials represents an estimation of
the expected generalization error obtained using a specific parameter set. The parameter
set with the best performance can finally be obtained by repeating the above process for
different parameter sets; however, as the parameter space size and the number of partition
subsets increase, the computational burden also increases.

Some intelligent optimization algorithms are already used to optimize the SVR pa-
rameters, such as genetic algorithms and particle swarm optimization algorithms. First,
the input and output datasets are divided into training and test subsets, and then the best
parameter values of the model are determined based on the training data. In each search
iteration, the model parameters are updated by the optimization algorithm to predict the
output. The prediction error is calculated and verified until the iteration convergence
criteria are met. The optimal parameter value of the model can thus be found based on
the test dataset; however, the optimal parameters obtained this way are determined by the
training data and remain to be fixed after the training process. If the data of the test subset
are significantly different from the training data, the accuracy of the model is not optimal
as the parameters of the SVR cannot be adjusted dynamically based on the new input and
output data. As such, the elucidation of an optimal method to realize dynamic updates
and optimization for SVR parameters is the key point of interest.

2.2.4. PF-SVR Optimization Method

The model parameters obtained by a PS-SVR method can be dynamically adapted
with test data. If a SVR method based on the initial parameters cannot derive the required
fitting performance for the test data, the particle filter (PF) will correct the SVR model
until the model can meet the accuracy requirements. In order to predict the output at
time instant k + 1, the SVR parameters at time instant k must first be estimated by PF. The
estimation process includes the prediction and update stages. In the prediction step, the
measured values from the beginning to time instant k − 1 are input into the historical
dataset, while the SVR parameters are predicted based on the historical data. When a new
measured value is obtained at time k, the PF updates the SVR parameters at time k + 1
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based on the new data. The updated parameter is used to predict the new output at time
k + 1 and the new parameters at time k are also sent to the PF for the next iteration.

The estimation steps of the PF-SVR method are illustrated as follows and the flowchart
is shown in Figure 1:

1. Particle initialization of the particle filter. The optimal SVR hyperparameters x0
at the initial time are obtained through the cross-validation and the range of the
number of particles Ns is set to be 300 to 500. The initial particle set is set to be{

xi
0 = x0, ωi

0 = 1/Ns
}

, i= 1, . . . , Ns.
2. Prediction model updating. When k = 1, 2, . . . , the particle set is recorded as{

xi
k−1, ωi

k−1

}
, i= 1, . . . , Ns.

• Perform particle resampling and particle drift operation on the particle set{
xi

k−1, ωi
k−1

}
, i= 1, . . . , Ns in order to obtain a new particle set (xi

k−1, 1/Ns).

• Perform a small random drift for each particle as follows:

x̂i
k = xi

k−1 + ui
k−1 (17)

• Update the particle weight by measuring the possibility function value of zk and
the predicted value of x̂i

k at each state as follows:

ω̂i
k ∝ ωi

k−1 p(yk

∣∣∣x̂i
k) (18)

• Perform weight normalization as follows:

ωi
k−1 = ωi

k−1/∑Ns
j=1 ω

j
k−1 (19)

• Eliminate particles with lower weights, copy particles with higher weights, and
regenerate new random particles as per

{
xi

k, ωi
k
}

, i= 1, . . . , Ns.

3. Output the prediction result and establish a prediction model based on each particle

xk
i in the new particle set to obtain the prediction ŷi

k + 1 = g(xj
k, sk) at time instant

k + 1. The final prediction result is shown in Equation (20):

ŷk + 1 =
1

Ns

Ns

∑
i=1

ŷi
k + 1 (20)

4. Update the prediction model and return to step (2).

Figure 1. PF-SVR forecast flow chart.
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3. Dry-Type Transformer Temperature Online Monitoring

An online temperature monitoring system of the dry-type transformer can be estab-
lished to obtain the prediction model data. The position of the hotspot temperature cannot
be determined with sufficient precision and only the area where the hotspot temperature
exists can be roughly estimated. The Pt100 sensor is installed in a transformer for fixed-
point monitoring and an infrared thermal imager is installed to obtain the winding surface
temperature. These sensors together allow uninterrupted online monitoring of information
regarding the real-time temperature, historical temperature, load current, fan status, and
ambient temperature, thus enabling multi-parameter fusion, temperature trend analysis,
overheating alarm support, and hotspot temperature prediction. Such a system allows one
to track the latest temperature data and determine temperature abnormalities in real time.
The specific features of such a system are the following:

1. Display and store the hotspot temperature of the three-phase winding and display and
store the highest temperature in the monitoring area of the infrared thermal imager;

2. an overheat alarm threshold is set to the initial value and can be adjusted;
3. display the trend curve of historical temperature data and the initial value of historical

time can be adjusted;
4. the hotspot temperature can be combined with the historical temperature, load current,

ambient temperature, fan status, and other characteristics to comprehensively judge
the transformer temperature status.

The advantages of online temperature monitoring can be summarized as follows:

1. Any continuous temperature changes of the transformer can be monitored, which is help-
ful for the long-term statistics and overall status assessment of a dry-type transformer;

2. From point detection to surface detection, the temperature images of the entire moni-
toring area can be obtained, and the hotspot temperature can be recorded;

3. The non-contact temperature sensor can be combined with an existing embedded
temperature sensor, which does not affect the normal operation of the transformer;

4. Online temperature monitoring enables the measure of a large temperature range with
a high monitoring accuracy. The temperature measurement range of infrared thermal
imaging is generally −20 ◦C to 180 ◦C, and the monitoring error is typically ±2 ◦C.

3.1. Analysis of Hotspot Temperature Location Based on Electromagnetic Thermal Coupled Model

The loss inside each point of a dry-type transformer is different, resulting in different
heat source properties. The heat loss calculation will affect the results of field temperature
analyses. In order to accurately calculate temperature fields and determine hotspot loca-
tions, this paper establishes an electromagnetic thermally coupled model to analyze the
internal temperature distribution of a dry-type transformer. First, a 3D finite element elec-
tromagnetic field model is established with corresponding material properties for different
components. An external circuit is used to realize the coupled field–circuit calculation
to obtain each part of the loss. The core and winding losses obtained by the analysis
are coupled to the temperature field analysis with a heat source input for temperature
analysis. The corresponding heat dissipation coefficient for convection is set to obtain the
temperature distribution for each region of interest. The rates of temperature change are
far smaller than the rates of change for the electromagnetic field. The temperature of the
transformer is calculated by indirect coupling. The coupling method is shown in Figure 2
and the coupling steps are given as follows:

1. A field–circuit coupled finite element model is established where the electric and
magnetic fields are coupled, and the core loss and winding loss may then be analyzed;

2. The dry-type transformer losses obtained from the simulation are compared with
theoretical values to verify the accuracy of the model;

3. An indirect coupling method is used to couple the electromagnetic and temperature
fields, in which the loss is used as the transmission medium to realize coupling and
the distribution of the temperature field of each part is analyzed;



Symmetry 2021, 13, 1320 9 of 19

4. Different load rates and ambient temperatures are set, and the transformer tempera-
ture distribution and hotspot locations in different states are analyzed;

5. The temperature distribution is solved iteratively.

Figure 2. Iterative flowchart of the indirect coupling calculation.

Based on the actual parameters of a transformer on an offshore platform, a three-
dimensional finite element electromagnetic simulation model was established as shown in
Figure 3.

Figure 3. 3D finite element simulation model of a transformer.

Mesh division will directly affect the simulation calculation results. The finer the mesh
division is, the higher the accuracy of the analysis; however, a larger computer memory
capacity is also required as a result. The mesh results for this work are shown in Figure 4.

Figure 4. Mesh result for the electromagnetic field (left) and temperature field (right).

By using the ANSYS Workbench simulation platform, the core and winding losses
obtained by a Maxwell electromagnetic field simulation were coupled in a steady-state
thermal field simulation software package to determine the temperature field distribution.
Combined with the ambient temperature information recorded by the offshore platform,
the ambient temperature was set to 22 ◦C and the temperature distributions under different
working conditions were simulated as shown in Figures 5–8 for the temperature distribu-
tions inside the transformer under various rated working conditions. It can be seen from
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the distribution diagram that a hotspot temperature location appeared in the low-voltage
winding. This is because the dry-type transformer mainly dissipates heat by natural air
convection, and the internal heat dissipation methods are mainly heat conduction, convec-
tion, and radiation. Specifically, the core and winding are internal heat sources and the heat
is transferred to a solid surface through the iron core and the winding by heat conduction.
Air channels for heat dissipation exist between the windings in general and additionally
between the low-voltage winding and the core. Due to the high current flowing through
the low-voltage winding, the low-voltage winding generates more heat than the core and
the high-voltage winding. Meanwhile, the heat dissipation effect is not optimal, so the
temperature of the low-voltage winding is higher than the other two parts.

Figure 5. Overall temperature distribution of the transformer.

Figure 6. Low-voltage winding temperature distribution.

Figure 7. Core temperature distribution.
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Figure 8. High-voltage winding temperature distribution.

It can be seen from the temperature distribution diagrams of the iron core, low-voltage
winding, and high-voltage winding that the air is heated and then expands to move upward
from the bottom area, which makes the air temperature in the bottom area lower. The
temperature in the upper region is due to the improved heat dissipation conditions and as
the nearby lower temperature causes the heat to gather in the middle region. This results in
a hotspot appearing in the upper middle part of the transformer. Thus, the hotspot of the
transformer was determined to be located in the upper half of the low-voltage winding, and
the temperature of the middle phase (phase B) is higher than that of the other two phases.

In order to monitor the hotspot temperature, a temperature sensor should be installed
in the upper half of the B-phase low-voltage winding. It is considered that there is an
abnormal temperature if the temperature at this time exceeds the threshold.

3.2. Temperature Monitoring Based on Infrared Thermal Imager

In offshore oil and gas platform power systems, it is difficult to install an embedded
temperature sensor in a dry-type transformer that has been put into operation; however,
regarding non-contact sensors, infrared temperature sensors are more suitable, especially
infrared thermal imagers, which can obtain visual temperature information optically
and can intuitively observe the given temperature status. Such systems are widely used
in power equipment fault monitoring. As a dry-type transformer does not feature an
insulating oil package, the temperature of a high-voltage winding can be directly observed.
Consequently, an infrared thermal imager was introduced to measure the temperature of
the transformer. This paper is based on the original Pt100 temperature measurement sensor
and the online infrared thermal imager was used to help determine the temperature status
of the transformer.

3.2.1. Principle of Infrared Thermal Imager

According to the Stefan–Boltzmann law of thermodynamics, the surface temperature
of an object changes with the thermal power emitted by the object. An infrared thermal
imager is based on this principle and measures the power of an object through the principle
of radiation to obtain the surface temperature of the object, which reflects the status of the
transformer as follows:

P = εδT4 (21)

where P is the radiation power of the object; ε is the emissivity; and δ is the Stefan–
Boltzmann constant. The principle of infrared thermal imager is shown in Figure 9.
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Figure 9. Infrared thermal imaging schematic.

3.2.2. Design of the Thermal Monitoring System

The infrared thermal imager temperature measurement design diagram is shown in
Figure 9, which is composed of hardware and software. First, the infrared thermal imager
obtains the temperature information of the dry-type transformer winding through the prin-
ciple of thermal radiation and forms the temperature image and temperature information
through internal processing. Then, through the data transmission interface, the hotspot
temperature value is transmitted to the host computer for data analysis and processing, and
the hotspot temperature value and temperature change trends are displayed for reference
in operation and for use by maintenance personnel, as is shown in Figure 10.

Figure 10. Infrared thermal imaging schematic.

The technical parameters of the infrared temperature sensor include the spectral
response range, temperature measurement range, emissivity, and optical resolution, etc.
Considering the monitoring accuracy and economy, this paper selected a DM20 network
temperature measurement module as an online infrared thermal imager. As shown in
Figure 11, the module has a small size and is easily integrated. Additionally, the module
features a network interface, analog video interface, alarm interface, and RS485 interface.
The temperature measurement range of the module is approximately−20 ◦C to 150 ◦C. The
temperature measurement error is ±2%. The intended working environment temperature
is approximately −15 ◦C to 65 ◦C and the intended working environment humidity is
≤95%. Moreover, the modules meets the IEC68-2-6 standard for vibration testing and is
suitable for installation at sea.

Figure 11. DM20 infrared thermal imager.
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According to the analysis of the temperature field of the 35 kV dry-type transformer,
the hotspot temperature of the B-phase (middle-phase) winding was slightly higher than
that of the A- and C-phase windings. The hotspot temperature appeared in the upper half
of the low-voltage winding and the winding temperature presented with a circumferential
characteristic. The distribution was uniform; however, the low-voltage winding was
located between the iron core and the high-voltage winding, which could not be directly
observed by the infrared thermal imager. The heat transfer relationship between the high-
voltage winding and the low-voltage winding is known. For the middle and upper parts of
the high-voltage winding of the phase, we selected one side for easy installation as shown
in Figure 12.

Figure 12. Schematic diagram of installation location.

4. Results Analysis

The temperature sensor monitored the transformer temperature continuously and data
were recorded every hour. The measured data obtained from a 35 kV dry-type transformer
for use in an offshore oil and gas platform power system were used as the sample data for
prediction. The transformer parameters are shown in Table 1. Figure 13 demonstrates data
for the factor under consideration, including the historical hotspot temperature, ambient
temperature, and load rate. Furthermore, the figure hints at the times at which the hotspot
temperature exceeded 80 ◦C, fan turned on, and state changed from 0 to 1.

In this section, the Gaussian kernel function was chosen as the kernel function of
the support vector regression algorithm. The initial value x0 (C, ε, σ) of the parameter
optimization in the particle filter algorithm was obtained by a 10-fold cross-validation
method. The effect of the prediction method was evaluated by means of the root-mean-
square error (RMSE), standard root-mean-square error (NRMSE), and mean absolute
percentage error (MAPE). The indicator formulae are given below:

RMSE =

√
1
n

n

∑
i=1

(∧
yi − yi

)2
(22)

where n is the number of samples,
∧
yi is the predicted value, and yi is the actual measured

value. The range of the RMSE was [0, + ∞), where smaller values result in smaller errors
and more accurate prediction.
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Table 1. Electrical parameters of the transformer.

Type Value Type Value

Model PSCZ10-8000/6.3/35 Rated capacity 8000
Rated voltage/kV

Phase number
Group label

Tapping range
No-load loss/W

6.3/35
3

YNd11
±4 × 2.5%

12,100

Rated current/A
Rated frequency/Hz

Insulation class
Rated load loss/W

733/132
50
F

40,400 (120 ◦C)

Figure 13. Original data for the factors under consideration.

NRMSE =

√√√√√√√
n
∑

i=1

(∧
yi − yi

)2

n
∑

i=1
yi

(23)

The range of the NRMSE was [0, + ∞), where smaller values result in smaller errors
and more accurate prediction.

MAPE =
100%

n

n

∑
i=1

∣∣∣∣∣∣
∧
yi − yi

yi

∣∣∣∣∣∣ (24)

In order to show the superiority of the PF-SVR prediction method, a traditional
support vector regression algorithm was compared here. Fifty sets of data from January
2019 were selected. The input data included the ambient temperature, load rate, fan status,
and historical hotspot temperature, and the output included the predicted temperature.
The first 30 sets were used for training and the remaining 20 sets were used for testing.

Table 2 shows that the RMSE and NRMSE values of the PF-SVR model were smaller
than those of the CV-SVR model. According to the definition of the three indicators, the
smaller the error, the better the prediction effect, and as such the prediction of the PF-
SVR model was better. It can be seen from Figure 14 that the hotspot temperature of the
transformer was around 45 ◦C. On the one hand, the load rate of the transformer was low at
this time. On the other hand, the ambient temperature in winter is low, and the transformer
is safe and stable when operating in such conditions. The PF-SVR prediction results were
better than CV-SVR as the PF-SVR method could adaptively update the model parameters
according to new observation data. This made the model very robust to changes in data
trends, while the CV-SVR model parameters were only optimized with the training data,
and the prediction accuracy thus decreased accordingly.
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Table 2. Comparative table of the prediction results.

RMSE (◦C) NRMSE (◦C1/2) MAPE

CV-SVR 0.1147 0.1565 0.1645
PF-SVR 0.0812 0.1107 0.0876

Figure 14. Forecast for the hotspot temperature with data from January in 2019.

The timespan of 50 sets of data was short and the ambient temperature changes
were not obvious. Consequently, the data of other months were chosen to verify the
proposed method. Figures 15 and 16 show the prediction results for April 2019 and July
2019, respectively. It can also be seen from Tables 3 and 4 that the PF-SVR results always
maintained high prediction accuracy, while the CV-SVR prediction results fluctuated greatly.
This is because when the training set data and the test set data are significantly different,
the CV-SVR cannot update the optimal parameters of the SVR, consequently resulting in a
decline in prediction performance.

Figure 15. Forecast for the hotspot temperature with data from April in 2019.

Figure 16. Forecast for the hotspot temperature with data from July in 2019.
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Table 3. Comparative table of the prediction results.

RMSE (◦C) NRMSE (◦C1/2) MAPE

CV-SVR 0.1152 0.1687 0.1614
PF-SVR 0.0530 0.0776 0.0675

Table 4. Comparison table of prediction results.

RMSE (◦C) NRMSE (◦C1/2) MAPE

CV-SVR 0.0632 0.1335 0.3035
PF-SVR 0.0338 0.0713 0.2635

In order to analyze the impact of training dataset size on the prediction results, another
100 datasets from December 2018 were selected. The first 70 sets of data were used for
training and the other 30 sets were used for testing. It can be seen from Figure 17 that
the PF-SVR model still maintained good prediction performance, and there were almost
no differences between results when considering the 30 datasets used for training, so the
prediction performance of the PF-SVR was thus less affected by the number of data in the
training set. The prediction results of the CS-SVR model were also better, as increasing the
training dataset size can improve prediction performance, which is also reflected in Table 5.
Consequently, the performance of the CS-SVR model was greatly affected by the number
of data in the training set.

Figure 17. Forecast for the hotspot temperature with data from December in 2019.

Table 5. Comparison table of prediction results.

RMSE (◦C) NRMSE (◦C1/2) MAPE

CV-SVR 0.0993 0.1853 1.0505
PF-SVR 0.0739 0.1469 0.5669

In order to test the versatility of the method considered here, another transformer
with the same configuration was analyzed. The results are shown in Figure 18 and Table 6.
It can be seen that the prediction results of the CV-SVR and PF-SVR models were better;
however, the temperature tracking effect of the PF-SVR model was better.
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Figure 18. Hotspot temperature prediction for another transformer.

Table 6. Comparative table for the prediction results.

RMSE (◦C) NRMSE (◦C1/2) MAPE

CV-SVR 0.0993 0.1853 1.0505
PF-SVR 0.0739 0.1469 0.5669

5. Conclusions

Based on the monitoring data of an online transformer temperature monitoring system,
this paper has studied a hotspot temperature prediction method based on a particle filter
support vector regression technique. The following conclusions have been obtained:

The online monitoring system, combining a Pt100 thermal resistance sensor and in-
frared thermal imager for temperature measurement, has realized non-contact monitoring
of temperature. From point detection to surface detection, the temperature of the entire
monitoring area can be obtained and hotspot locations can be viably determined. Continu-
ous temperature changes are conducive to acquiring long-term statistics, and the system
presented here is conducive to the overall status assessment of dry-type transformers.

The applicability of the support vector regression approach for hotspot temperature
prediction was analyzed, and a particle filtering technique was used to optimize the
parameters of the support vector regression method. The particle filter could dynamically
track new observations and consequently provide optimal SVR parameters for the system.

Combined with the offshore platform monitoring load rate, ambient temperature, fan
status, and historical hotspot temperature information, the PF-SVR model was used to
predict hotspot temperatures. The proposed method was compared with a traditional SVR
method in terms of the RMSE, NRMSE, and MAPE results. The results illustrate that the
prediction accuracy of the PF-SVR model was higher. The analysis results are based on
hotspot temperatures for several months, and the hotspot temperature of another trans-
former shows that the PF-SVR model was less affected by the number of training groups
and is more suitable for the prediction of hotspot temperatures in dry-type transformers.

The significance of this article is mainly reflected in two aspects. On the one hand,
hotspot temperature prediction for dry-type transformers provides an early warning
system for transformer overheating, which helps to detect overheating faults in advance,
consequently reducing the transformer failure rates and ensuring the stable operation
of dry-type transformers. On the other hand, the hotspot temperature is an important
condition that restricts the safe operation of a transformer and is an important factor that
restricts the service life of a transformer. The research and determination of the hotspot
temperature here provides a theoretical basis for research on the life of a transformer. In
subsequent research, the relationship between the hotspot temperature and transformer
lifetime will be considered to establish a remaining life calculation method to further guide
the operation and maintenance of transformers.
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