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Abstract: Motivated by describing the symmetry of a theoretical model of dressed photons, we
introduce several spaces with Lie group actions and the morphisms between them depending on
three integer parameters n ≥ r ≥ s on dimensions. We discuss the symmetry on these spaces
using classical invariant theory, orbit decomposition of prehomogeneous vector spaces, and compact
reductive homogeneous space such as Grassmann manifold and flag variety. Finally, we go back to
the original dressed photon with n = 4, r = 2, s = 1.
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1. Introduction

A formulation of dressed photons in quantum field theory is given by the Clebsch
dual variable, motivated by fluid dynamics [1–3]. The Clebsch parametrization of the
rotational model of the velocity field Uµ is formulated of the form Uµ = λ∇µφ with two
scalar fields λ, φ. We define the covariant vectors Cµ = ∇µφ and Lµ = ∇µλ, and the
bi-vector Sµν = CµLν − LµCν. The energy–momentum tensor is defined by T̂ν

µ = −SµσSνσ.
It is shown

T̂ν
µ = ρCµCν (1)

by a simple computation [1].
Our main concern is this last Equation (1). This looks like Veronese embedding

in projective geometry. In this paper, we introduce the model in arbitrary dimension
and describe the symmetry of this model. Most of the material comes from the modern
treatment of classical invariant theory [4,5]. Especially, the quadratic map arising in
reductive dual pair [6,7] is used as one of the key ingredients in this paper to construct
geometric objects describing the symmetry. This enables us to give another explanation of
the last Equation (1) on T̂.

Physical study of dressed photons, including experiments and related applications,
called dressed photon phenomenon, has already been summarized in our previous pa-
per [8]. This paper serves as a complementary observation on symmetry of theoretical
foundations of dressed photon Equation [1], which would be expected as is in classical
electromagnetism. We conclude that the symmetry is well described in terms of com-
pact homogeneous space, such as Grassmann manifolds and flag manifolds, as well as
pre-homogeneous vector spaces, which is not a homogeneous space, but still has a large
symmetry. It is also significant that a part of discussion is not restricted to a specific
dimension, so that half of them are formulated in arbitrary dimension.

The construction of this paper is as follows: In Section 2, we work over the complex
number field C, and do si in arbitrary dimensions n ≥ r ≥ s. In Section 3, we consider the
special case n = 4, r = 2, s = 1 with the real number field R. The symmetry and invariants
are mostly the same for C and for R; however, there is a subtle and rather complicated
problem on connected components over R. In order to concentrate this complication for
R, the common features of the model are discussed over C, and the different point is
separately treated in Section 3.
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2. The Model over the Complex Numbers
2.1. Symmetry in Arbitrary Dimension

Let M(n, r,C), Sym(n,C), Alt(n,C) be the set of n by r matrices, symmetric matrices,
and skew-symmetric matrices with complex entries. We denote by M(n, r,C)rk≤i the subset
consisting of matrices of rank at most i. The transpose of a matrix X is denoted by XT .
Classical invariant theory gives the following maps:

Let J ∈ Alt(r,C)rk=r. We define the map

S : M(n, r,C) −→ Alt(n,C) by X 7→ XJXT .

If r ≥ n, then this map is surjective. If r < n, then the image of this map is Alt(n,C)rk≤r.
This map is GL(n,C)× Sp(r,C)-equivariant, in the sense that S(lXh) = l S(X) lT for any
l ∈ GL(n,C) and h ∈ Sp(r,C), where the symplectic group attached to J is defined by
Sp(r,C) = Sp(J,C) = {h ∈ M(r,C) | hJhT = J}.

Let g ∈ Sym(n,C)rk=n. We define the map

G : M(n, r,C) −→ Sym(r,C) by X 7→ XT gX.

If r ≥ n, then this map is surjective. If r < n, then the image of this map is
Sym(r,C)rk≤n. This map is O(n,C) × GL(r,C)-equivariant, in the sense that
G(lXh) = hTG(X)h for any l ∈ O(n,C) and h ∈ GL(r,C), where the orthogonal group
attached to g is defined by O(n,C) = O(g,C) = {l ∈ M(n,C) | lT gl = g}. Especially, put
r = n and restrict the domain, we define

T : Alt(n,C) −→ Sym(n,C) by X 7→ XgXT = −XgX = XT gX.

This is O(n,C)-equivariant: T(lXlT) = l T(X) lT .
From now on, we assume that n ≥ r ≥ s. Each GL(r,C)-orbit on Sym(r,C) is

parametrized by the rank. The closure relation of orbits is linear, so that the closure of
Sym(r,C)rk=s is Sym(r,C)rk≤s. We define

Y(C) = M(n, r,C)rk=r ∩G−1(Sym(r,C)rk≤s)

Our main target is the description of the image of Y(C) by the map T ◦ S:

Sym(r,C)rk≤s
G←− M(n, r,C)rk=r

S−→ Alt(n,C) T−→ Sym(n,C). (2)

In order to state the main result, we introduce several auxiliary spaces and maps. We
fix g′ ∈ Sym(s,C)rk=s. We define the maps

V : M(n, s,C) −→ Sym(n,C) by V(X) = Xg′XT .

V′ : M(r, s,C) −→ Sym(r,C) by V′(X′) = X′g′X′T ,

Note that these maps are similar to G, but transposed. Especially, the orthogonal
group O(g′,C) acts transitively on each fiber of an element of Sym(r,C)rk=s.

We define Z(C) to be the fiber product of the map G : Y(C) → Sym(r,C)rk≤s and
V′ : M(r, s,C)rk=s → Sym(r,C)rk≤s:

Z(C) = Y(C)×Sym(r,C)rk≤s
M(r, s,C)rk=s

= {(X, X′) ∈ M(n, r,C)×M(r, s,C) | rk(X) = r, rk(X′) = s, XT gX = X′g′X′T}.
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We have the commutative diagram

M(n, r,C) ←− Y(C) Ṽ′←−−−− Z(C)

G
y G

y � G̃
y

Sym(r,C) ←− Sym(r,C)rk≤s
V′←−−−− M(r, s,C)rk=s

(3)

where the right square is Cartesian.
The map T ◦ S does not factor through the map V. However, when we lift the map

from Y(C) to Z(C), the map factor through V. To be more precise, we have the following:

Theorem 1. (T ◦ S)(X) = (V ◦ φ)(X, X′) for all (X, X′) ∈ Z(C), where we define

φ : M(n, r,C)rk=r ×M(r, s,C)rk=s −→ M(n, s,C)rk=s by (X, X′) 7→ XJX′ (4)

Proof. (T ◦ S)(X) = T(XJXT) = (XJXT)g(XJXT)T = XJG(X)JTXT

= XJV′(X′)JTXT = (XJX′)g′(XJX′)T = V(XJX′) = (V ◦ φ)(X, X′).

This theorem is illustrated as the following commutative diagram:

Z(C) −−−→ M(n, r,C)rk=r ×M(r, s,C)rk=s
φ−−−−→ M(n, s,C)rk=s

Ṽ′
y y yV

Y(C) −−−→ M(n, r,C)rk=r
S−−−−→ Alt(n,C) T−−−−→ Sym(n,C)

(5)

Note that the maps S,G,T,V,V′ are common in classical invariant theory and theory
of reductive dual pair, though the space Y(C) and Z(C) is unique in our setting.

2.2. Grassmann and Flag Manifold

We will show that the map φ introduced in Theorem 1 has an interpretation in the
projective setting. We still assume n ≥ r ≥ s. The Grassmann manifold Grass(n, r,C) is the
set of r-dimensional subspace of Cn. This is identified with

M(n, r,C)rk=r/GL(r,C) ∼= Grass(n, r,C).

Every r-dimensional subspace of Cn is spanned by r linear independent column
vectors in Cn.

The flag manifold Flag(n; k1, . . . , km,C) is the set of flags of type (k1, k2, . . . , km), which
is defined to be a sequence of subspaces V1 ⊂ V2 ⊂ · · · ⊂ Vm of Cn, where 1 ≤ k1 < k2 <
· · · < km < n, with dim Vi = ki (i = 1, . . . , m). Grassmann manifold is a special case of flag
manifolds with m = 1. On the other hand, a flag variety is regarded as the incidence variety
of the product of Grassmann manifolds. For example, Flag(n; k1, k2,C) = {(V1, V2) ∈
Grass(N, k1,C)×Grass(N, k2,C) | V1 ⊂ V2}. We have an isomorphism

(M(n, r,C)rk=r ×M(r, s,C)rk=s)/(GL(r,C)× GL(s,C)) ∼= Flag(n; s, r,C).

In the following commutative diagram, each space in the upper line, which arises in
Theorem 1, is a locally closed subset of an affine space, while each space in the lower line is
a projective variety.

M(n, r,C)rk=r ←−−− M(n, r,C)rk=r ×M(r, s,C)rk=s
φ−−−−→ M(n, s,C)rk=sy y y

Grass(n, r,C) ←−−− Flag(n; s, r,C) −−−→ Grass(n, s,C).

(6)
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The maps in the lower line are given by V2 ← (V1, V2) 7→ V1. This double fibration is
often used in Radon transform and Heck correspondence [9].

In the case r = 2, the map

S : M(n, 2,C)rk=2 −→ Alt(n,C)rk=2

induces the Plücker embedding

Grass(n, 2,C) −→ Alt(n,C)rk=2/C× ⊂ Pn(n−1)/2−1(C).

3. The Model over Real Numbers

We now consider the special case n = 4, r = 2, s = 1, and replace C by R. Let

J =
(

0 1
−1 0

)
be the standard non-degenerate skew-symmetric matrix. Note that JT = −J

and det J = 1. Let g be the diagonal matrix with diagonal entries (1,−1,−1,−1). Finally,
we put g′ = 1.

Most of the story in the previous section does hold over the real number field R as
well. However, the disconnectedness makes things complicated. For example, although
the map V′ : M(2, 1,C) −→ Sym(2,C)rk≤1 given by V′(X′) = X′X′T is surjective, the map

V′ : M(2, 1,R) −→ Sym(2,R)rk≤1 is not surjective, because
(

0 0
0 −1

)
is not in the image.

In order to improve this defect, we introduce a non-zero scalar multiplication so that we
modify the map V′ by V2 given below (7).

3.1. Quadratic Polynomial

Let us consider the matrix X = (C, L) =


C0 L0
C1 L1
C2 L2
C3 L3

 ∈ M(4, 2,R) with the column

vectors C, L ∈ R4. Here, M(m, n,R) the set of m by n matrices with real coefficients. The
entry of the map

S : M(4, 2,R) 3 X 7→ XJXT ∈ Alt(4,R)rk≤2

is given by
Sµν(X) = (XJXT)µν = CµLν − LµCν,

which realizes the definition of Sµν. The map S is GL(4,R)× SL(2,R)-equivariant, where
we remark the accidental isomorphism of lower rank groups:

SL(2,R) = {h ∈ M(2,R) | det h = 1} = Sp(2,R) = {h ∈ M(2,R) | hJhT = J}

The action of GL(4,R) on Alt(4,R) is prehomogeneous [10]. The image Alt(4,R)rk≤2
is the complement of the open GL(4,R)-orbit Alt(4,R)rk=4, and its defining equation is
given by the basic relative invariant, Pfaffian

Pf(S) = S01S23 + S02S31 + S03S12.

Then, the singular set Alt(4,R)rk≤2 = {S ∈ Alt(4,R) | Pf(S) = 0} is the zero locus of
Pfaffian, and the open orbit Alt(4,R)rk=4 has two connected components {S ∈ Alt(4,R) |
±Pf(S) > 0}. The relation Pf(S) = 0 is considered as a Plücker relation of Grassmann
manifold Grass(4, 2,R).
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3.2. Symmetry Breaking

We restrict the general linear group GL(4,R) to the subgrouop O(1, 3). Let

g =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 be the standard non-degenerate symmetric matrix with signature

(1, 3). Define Lorentz group (indefinite orthogonal group of signature (1, 3)) by

O(1, 3) = {l ∈ M(4,R) | lT gl = g}.

Gram matrix with respect to this metric is given by the map

G : M(4, 2,R) 3 X 7→ XT gX ∈ Sym(2,R)

where Sym(n,R) is the set of real symmetric matrices of size n. The map G is O(1, 3)×
GL(2,R)-equivariant:

G(lXh) = hTG(X)h, ∀l ∈ O(1, 3), h ∈ GL(2,R).

We define
Y(R) := M(4, 2,R)rk=2 ∩G−1(Sym(2,R)rk≤1),

an O(1, 3)× SL(2,R)-invariant subset of M(4, 2,R). Moreover, let

S1 := {v =

(
v1
v2

)
∈ R2 | v2

1 + v2
2 = 1}

and an analogue of Veronese map is defined by

V2 : S1 ×R× 3 (v,−ρ) 7→ −ρvvT ∈ Sym(2,R)rk≤1. (7)

The fiber product of two maps

G : Y(R) −→ Sym(2,R)rk≤1, C̃ 7→ G(C̃),

V2 : S1 ×R× → Sym(2,R)rk≤1, (v,−ρ) 7→ −ρvvT

is defined by

Z(R) := Y(R)×Sym(2,R)rk≤1
(S1 ×R×)

= {(X, v,−ρ) ∈ M(4, 2,R)rk=2 × S1 ×R× | G(X) = −ρvvT},

then we obtain a real counterpart of (3):

Z(R) Ṽ2−−−−→ Y(R)

G̃

y �

yG
S1 ×R× −−−−→

V2
Sym(2,R)rk≤1

3.3. Tensor T̂

The map
T : Alt(4,R) 3 S 7→ −SgS ∈ Sym(4,R)

has been defined to be compatible with T̂ν
µ = −SµσSνσ. This map is O(1, 3)-equivariant

T(lSlT) = lT(S)lT , ∀l ∈ O(1, 3)
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We replace φ by Φ, and V by V4 given as follows:

Φ : Z(R) 3 (X, v,−ρ) 7→ (XJv,−ρ) ∈ M(4, 1,R)rk=1 ×R×,

V4 : R4 ×R× 3 (w,−ρ) 7→ ρwwT ∈ Sym(4,R)rk≤1.

Theorem 2. (T ◦ S)(X) = (V4 ◦Φ)(X, v,−ρ) for all (X, v,−ρ) ∈ Z(R).

Proof. (T ◦ S)(X) = (XJXT)g(XJXT)T = XJG(X)JTXT = −XJρvvT JTXT

= V4((XJv,−ρ)) = (V4 ◦Φ)((X, v,−ρ)).

This theorem is illustrated as

Z(R) −→ M(4, 2,R)rk=2 × S1 ×R× Φ−−→ M(4, 1,R)rk=1 ×R×

Ṽ2

y y yV4

Y(R) −→ M(4, 2,R)rk=2
S−→ Alt(4,R)rk=2

T−−−−→ Sym(4,R)

3.4. Grassmann and Flag Manifold

Y(R) Ṽ2←−−−− Z(R) Φ−−→ M(4, 1,R)rk=1 ×R×y y y
M(4, 2,R)rk=2 ←−−− M(4, 2,R)rk=2 × S1 ×R× Φ−−→ M(4, 1,R)rk=1 ×R×y y y
Grass(4, 2,R) ←−−−−− Flag(4; 1, 2,R) −−→ Grass(4, 1,R)

The flag manifold is realized as an incidence variety of the product of two Grassmann
manifold:

Flag(4; 1, 2,R) = {(V1, V2) | dim V1 = 1, dim V2 = 2, V1 ⊂ V2 ⊂ R4}
Flag(4; 1, 2,R) = {(V1, V2) ∈ Grass(4, 1,R)×Grass(4, 2,R) | V1 ⊂ V2}.

For (X, v) ∈ M(4, 2,R)rk=2 × S1, two column vectors of X spans a two-dimensional
subspace V2, and a column vector XJv generate a one-dimensional subspace V1 in V2.
The map

Grass(4, 2,R) ←− Flag(4; 1, 1, 2,R) −→ Grass(4, 1,R)
V2 ← (V1, V2) 7→ V1
X ← (X, v) 7→ XJv

is the double fibration.

3.5. The Interpretation of the Off-Shell Condition

The vectors C and L in Clebsch parametrization should satisfy the following off-shell
conditions [2]:

CνCν = 0, LνCµ = 0, LνLµ = −ρ. (8)

We putR̄ :=
(

0 0
0 −ρ

)
. Then, the condition (8) is written as

G(X) = R̄.

In particular, in the case v =

(
0
1

)
∈ S1, we compute the maps V2, Φ and V4:

• V2((v,−ρ)) = −ρvvT = R̄,
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• (w,−ρ) = Φ((X, v,−ρ)) = (XJv,−ρ) = (C,−ρ), this implies w = C,
• V4((w,−ρ)) = ρwwT = ρCCT = T̂.

This coincides with the result in [2]. An unnatural J in the definition of Φ is for the
sake of compatibility with the existing formula.

We now remark R ∈ Sym(2,R)rk≤1.

Z(R)y
G−1(R̄) −→ Y(R)y yG

R̄ ∈ Sym(2,R)rk=1

The group GL(2,R) acts on Sym(2,R)rk=1 and the stabilizer at R̄ is a Borel subgroup

B =

{(
a 0
c d

)}
⊂ GL(2,R).

Then, G : Y(R) −→ Sym(2,R)rk=1 is a GL(2,R)-equivariant bundle. We regard
the off-shell condition specifies a fiber of this bundle. A symmetry is hidden in the
horizontal direction of this bundle, the group action of GL(2,R). Of course, form the
Clebsch parametrization point of view, the role of C and L is not the same; the off-shell
condition specifies the special isotropic direction for C: the choice of this direction is
controlled by the homogeneous space GL(2,R)/B.

4. Discussion

We describe the symmetry of equations of dressed photon in a general manner. The
tensor S is understood as an affine version of Plücker coordinates of Grassmann manifold
Grass(4, 2,R). The splitting expression of the tensor T̂ is related with an affine version of
flag manifold Flag(4; 1, 2,R). We find the off-shell condition (8) chooses the special fiber
of the homogeneous bundle. This mathematical interpretation of the choice may have a
physical interpretation, especially in the context of Clebsch variables, however, which must
be a future work. We also remark that the existence of the symmetry in arbitrary dimension
suggests a feedback from the theory of dressed photon to the theory of reductive dual pairs
on the pullback of nilpotent orbits [6], which is also a topic of future study.
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